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Abstract. Asdemands on hospital efficiency increase, there is a stronger
need for automatic analysis, recovery, and modification of surgical work-
flows. Even though most of the previous work has dealt with higher level
and hospital-wide workflow including issues like document management,
workflow is also an important issue within the surgery room. Its study has
a high potential, e.g., for building context-sensitive operating rooms, eval-
uating and training surgical staff, optimizing surgeries and generating au-
tomatic reports.

In this paper we propose an approach to segment the surgical work-
flow into phases based on temporal synchronization of multidimensional
state vectors. Our method is evaluated on the example of laparoscopic
cholecystectomy with state vectors representing tool usage during the
surgeries. The discriminative power of each instrument in regard to each
phase is estimated using AdaBoost. A boosted version of the Dynamic
Time Warping (DTW) algorithm is used to create a surgical reference
model and to segment a newly observed surgery. Full cross-validation
on ten surgeries is performed and the method is compared to standard
DTW and to Hidden Markov Models.

1 Introduction and Related Work

Workflow analysis related to business processes like document and record man-
agement, patient throughput and scheduling within hospitals, has been a well-
established topic over the last decade[l].In recent years, workflow monitoring
inside the Operating Room (OR) has gained more attention[2l3]. Automatic
recovery and analysis of a surgical workflow will help designing future ORs,
specialized for certain surgeries and capable of providing context-sensitive user
interfaces as well as automatic report generation and monitoring. Furthermore,
systems dedicated to the training and the evaluation of the surgical staff may
also benefit from automatic workflow analysis.

High-level approaches deal with abstract representation of surgeries. Jannin
et al. present in [4] a Unified Modeling Language (UML) diagram for multimodal
neurosurgical procedures. They use it to improve multimodal information man-
agement as well as surgical planning. This model was further used in Raimbault
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et al.[5] to build a database of surgical cases, which can be queried to take ben-
efit from past surgical experience. In [6], Neumuth et al. propose a system using
business processes modeling to formalize and facilitate the abstract recording
of a huge amount of surgeries by an operator in the surgical room. While such
works pave the way for the statistical analysis of surgical workflow, they do not
provide a direct representation in terms of surgical signals, as would be required
for monitoring.

Other approaches focus on the analysis of dedicated surgical gestures. In [7],
based on the torque/force signals provided by the Da Vinci robot, Lin et al.
propose a method to recognize the elementary movements of a suturing task.
Linear discriminants analysis is used in combination with a Bayes classifier to
segment the motion. In Rosen et al.[§] the statistics of a surgical movement are
analyzed for surgeon evaluation. The torque/force signals of the laparoscopic
instruments recorded during a suturing task are learned with Hidden Markov
Models (HMMs) in order to classify the skill level of the performing surgeon. To
assess the quality of a surgical movement, Leong et al.[9] use the 3D trajectory
of tracked laparoscopic instruments. The view invariant representations of the
trajectories are evaluated with HMMs.

We present a complementary approach with an objective of automatically
segmenting a complete surgery into phases using live signals from the OR. Our
method is based on the temporal synchronization of multidimensional feature
vectors to an average reference surgery. The algorithm is evaluated on the exam-
ple of laparoscopic cholecystectomy, whose goal is to remove the gallbladder. This
is a rather common but also complex surgery comprising many surgical phases.
Even though the surgery depends in the details on the patient’s anatomy, the
surgeon follows a protocol consisting of 14 phases starting with the insertion of
the trocars up till the suturing phase. These phases are illustrated in table [l

While our algorithm is not limited to the use of a certain kind of features,
we use binary vectors indicating instrument presence during the surgery. Many
other signals would be available from the OR. However, we focus in this work on
the usage of the surgical tools since it describes well the underlying workflow of a
laparoscopic operation. The method is based on a modification of the Dynamic
Time Warping (DTW) algorithm, which is applied with an adaptive distance
measure. The measure is defined from the discriminative power of each instru-
ment with respect to the current surgical phase, estimated by AdaBoost[I0].
Widely used for feature selection[IT], AdaBoost provides a natural way for fea-
ture weighting. This information is combined with temporal synchronizations to
create an average model out of labeled training surgeries. Finally, the adaptive
version of DTW is used to synchronize an unsegmented surgery to the model.
Using this synchronization, labels from the average model can be carried over to
an unsegmented surgery.

In an early work[I2], DTW was used to synchronize several surgeries together
in order to create an average model without any a-priori knowledge. The fo-
cus was set on surgical synchronization and results were evaluated in terms of
simultaneous video visualization. For segmentation, we present in this work a
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Table 1. The fourteen phases labeling each surgery

1 CO2 inflation 8 Liver Bed Coagulation 1

2 Trocar Insertion 9 Packaging of Gallbladder

3 Dissection Phase 1 10 External Gallbladder Retraction
4 Clipping Cutting 1 11 External Cleaning

5 Dissection Phase 2 12 Liver Bed Coagulation 2

6 Clipping Cutting 2 13 Trocar Retraction

7 Gallbladder Detaching 14 Abdominal Suturing

learning-based method. This new approach shows significant improvements and
is evaluated with a complete cross-validation on a set of 10 surgeries. It is also
compared to standard DTW without weights and to HMMs.

2 Methods

2.1 Overview

We first introduce the representation of the acquired signals in section It is
followed by the derivation of the weights per instrument and phase in section
The Adaptive Dynamic Time Warping (ADTW) algorithm is introduced in
section [Z4] In the same section we describe its use for the segmentation of a new
surgery. Finally, the computation of the average surgical model is presented in
section

2.2 Instrument Signals

In minimally-invasive surgeries the instruments strongly correlate with the un-
derlying surgical workflow. To record the surgical actions during the procedure,
instrument presence is acquired for K = 17 laparoscopic instruments and repre-
sented as a multivariate time series I where I, € {0,1}% :

I, =1 iff instrument k is used at time ¢

The instrument signals for an exemplary operation are displayed in fig.
The vertical lines display the segmentation in phases. While several phases
can be simply characterized by a few instruments, in the others the relation
phase/instruments is more complicated (for instance for phases 3 to 7). This
is well illustrated by fig. where the self-similarity matrix of the tempo-
ral vector sequence is displayed. The similarity matrix M is here defined by
My 4, = exp “0el2) The phases are marked by vertical and horizontal lines
on the matrix. For phases involving very specific instruments, a distinctive block
appears on the diagonal, while for phases involving the same instruments blocks
are harder to identify. Note the distinctive blocks bottom-right off the diagonal
for the liver bed coagulation phases, indicating their strong correlation as they
use almost the same instruments (phases 8 and 12).
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Fig. 1. Temporal sequence of instrument vectors for one surgery, and its self similarity
matrix, showing the amount of instrument usage similarity between all phases

2.3 Weighting Method

The instruments occurring within a phase vary and are generally not sufficient
to characterize the phase, as the temporal sequence of actions often plays a
decisive role. But the instruments can be weighted to reflect their ability to
discriminate between neighboring phases. When synchronizing a surgery to the
average reference model, using those weights, the ADTW algorithm will put a
higher priority on the most significant instruments for each phase.

AdaBoost[I0] builds a strong classifier out of a sum of weak classifiers. They
are iteratively chosen to optimally classify weighted training data and are them-
selves weighted accordingly. For each phase p, a strong classifier trying to clas-
sify all the instrument vectors of the phase with respect to all the vectors of the
neighboring phases is built. By choosing the pool of weak classifiers to be simply
related to the instruments, weights for the instruments can be naturally derived
from the strong classifier.

The weak classifiers are chosen to perform the classification based on the
presence/absence of a single instrument: a simple weak learner C,, , classifies
an instrument vector according to whether the state of the instrument n within
the vector is equal to z. AdaBoost selects at each step i a classifier C,,, ,, and a
weight a; to construct the strong classifier:

SC = Z aiCni,.ti

The variable n; and z; indicate the instrument and its state that were selected
at step 7. As the algorithm reweights the data that was hard to classify, the
selected weak classifiers are the most important for the classification. The weights
are obtained by looking at the influence of each instrument £ within the strong
classifier:
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Fig. 2. Instrument weights computed for the first dissection phase (phase 3) and the
first liver bed coagulation phase (phase 12)

Wy, = E oy — E (673

n;==k,r;=1 n;=k,r;=0

They are then normalized to one. As they are computed for each phase, this
leads to weights w,(f ), for all phase p and instrument k. Depending on the phase,
the convergence of AdaBoost requires a few to several dozens of steps. As some
phases are very short, better results are obtained by classifying the phases with
respect to the two previous and the two next phases. Fig. Pldisplays the computed
weights for two phases. In the first dissection phase, the three most significant
instruments are found to be the grasper, which has to be present, and the clipping
device and laparoscopic scissors, which have to be absent. In the first liver bed
coagulation phase, they are the trocar 1 and 3 as well as the liver rod, which all
have to be present.

2.4 Adaptive DTW

The Dynamic Time Warping algorithm|[I3] is both a time-invariant similarity
measure and a method to synchronize two time series by finding a non-linear
warping path. It has to warp each point in one time series onto at least one point
in the other time series while respecting the temporal order. This is done in a
way to minimize the sum of the distances between all points that are warped
onto each other. It has been applied in various domains to synchronize series
of application-dependent feature vectors[T4/T5]. As the length of a phase varies
highly between different OPs, depending on the patient anatomy and the surgeon
ability, the synchronization of a surgery to the model is also highly non-linear.

Traditional DTW computes the distance between the two series with a fixed
distance function. As our reference time series is segmented in phases, we propose
to use a distance function which is phase-dependent, so as to involve mainly
instruments which are discriminative for a phase.
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We define for each phase p the weighted distance d, between instrument vec-
tors v; and va:

k=K
dp(v1,v2) = Z w,(qp) (V1,6 — v2,5)?
k=1

To compute the ADTW, within the dynamic time warping algorithm the
distance function corresponding to the known phase of the reference series is
used.

By warping an unsegmented surgery onto a segmented reference surgery, we
can carry over the segmentation. As reference we use a model of an average
surgery whose creation is described below.

2.5 Average Model Computation

Out of all training surgeries Oy ... 0, an average surgery is computed. Let P;; be
the ith phase from surgery Q;. The average phase IP; is constructed as follows.
Out of P;;...P;, the phase with length closest to the average length of this
phase is chosen as initial average P;. Next P;; ...P;, are warped onto P; using
DTW with the weighted distance d; of the current phase. Next, IP; is updated
by taking the average of the warped versions of Pj; ... P;,.

These two steps are repeated iteratively until convergence of P;. In the final
step, the average surgery is built by simply concatenating all average phases
Py ...IP14. While the training surgeries only consist of boolean values, stating
whether an instrument is in use, the average can also contain non-boolean values.
These can be interpreted as the probability of an instrument to be used at this
moment.

3 Experiments and Results

For the experiments we use 10 surgeries of a cholecystectomy, labeled with 14
phases as described in the previous sections. One surgeon did 9 of the surgeries,
where some parts have been performed by assistants. The 10th surgery has been
done completely by another surgeon from the same school. A complete cross-
validation has been performed, each time using 9 surgeries to compute weights
with AdaBoost and construct the average surgery. The remaining surgery is then
segmented using the three following algorithms for comparison: ADTW, stan-
dard DTW and HMMs. The standard DTW method is similar to ADTW, but
all weights are set to be constant and equal. The labeled training information
is thus only used in the creation of the reference model. For HMMs, the same
amount of a-priori information is provided: left-right HMMs with fourteen states
are used and trained on the labeled surgeries. The transition model is computed
so that the expected state duration matches the average phase duration of the 9
surgeries in the training set. The observation model is computed from the usage
frequency of each instrument within each phase, assuming instrument indepen-
dence as this yields the best results. To evaluate the quality of the segmentation,
we compute the following errors:
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Table 2. Mean of the computed errors on all cross-validation tests

overall error mean error per phase max error per phase skipped phases

HMM 8.9% 10.1% 60.9% 0.5
standard DTW 0.8% 0.9% 10.9% 0
ADTW 0.3% 0.3% 4.5% 0

— overall error: percentage of wrong segmentation labels in the complete
surgery

— mean error per phase: percentage of wrong segmentation labels within a
phase, mean on the 14 phases

— max error per phase: percentage of wrong segmentation labels within a
phase, maximum on the 14 phases

— skipped phases: number of phases that have no overlap with their ground-
truth.

The mean results on all cross-validation tests are displayed in table 2l The
segmentation with HMMSs provided the worst results. As a few phases are skipped
in several surgeries, leading to a max error per phase of 100%, the resulting
maz error per phase in the table is very high. However, they still recognise
91.1% of the labels, with a time resolution of a second. None of standard DTW
and ADTW provided skipped phases, but ADTW outperforms in mean DTW
without adaptive weights by a factor greater than 2. It yields a very accurate
segmentation for all phases, as the mean maz error per phase is below 5%. The
max mazx error per phase is 13.6% for ADTW, while it is 40.2% for standard
DTW. Moreover, experiments with the 10 surgeries show the errors to decrease
faster with ADTW than with standard DTW when the size of the training set
grows. Finally, the surgery carried out by the second surgeon obtained also very
good segmentation results.

4 Discussion and Conclusion

In this paper we presented a reliable way to automatically recognize the workflow
of a laparoscopic operation using only little training data. We have shown that
the laparoscopic instruments provide enough information to automatically seg-
ment fourteen procedural phases of laparoscopic cholecystectomies with a high
success rate. To this end the laparoscopic instruments used in each phase are
analyzed with AdaBoost and weighted according to their discriminative power.
An adaptive dynamic time warping algorithm using those weights synchronizes
the workflow to a reference model, yielding the segmentation.

While the segmentation is automatic after acquisition of the input informa-
tion, up-to-now not all input signals are obtained automatically for practical
reasons. Automatic signal acquisition is for example currently possible for in-
struments like the coagulation/cutting device or the optics. With the use of
sensors, it would also be possible to get it for the others.

Experiments were carried out on 10 cholecystectomies and cross-validation
proved the algorithm to outperform both standard DTW and HMMs. These
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results are very promising and we believe they can apply to other kinds of la-
paroscopic surgeries. Examples of valuable by-products of this research are the
automatic reporting of a surgical operation and/or the evaluation and compari-
son of trainees. Future work will focus on selecting appropriate input information
that can be obtained automatically, so as to provide a fully automatic system
and pave the way for surgical monitoring.
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