DESIGNING ATECHNOLOGY COACH

BY WENDY A. ROGERS, IRFAN A. ESSA, & ARTHUR D. FISK

A multidisciplinary team models a system
that can alert users of a complex medical
device when they make an error.

ECHNOLOGY IN THE HOME HAS THE

potential to support older adults in a variety of

ways. The success of such technology depends

on understanding the needs and capabilities of

the user and on developing the technology to
provide seamless and appropriate support.

Our goal was to develop a technology “coach” that could
support older adults in learning to use a medical device — in
this case, a blood glucose meter. Our approach was inter-
disciplinary: It involved human factors/ergonomics (HF/E)
researchers with expertise in cognitive psychology and a
computer scientist with expertise in computer vision.

Based on our analysis of user capabilities and task de-
mands, we developed a computer vision system that could
noninvasively observe, track, recognize, and interpret a person’s
interaction with the meter. We assessed the relative benefits of
different feedback types to correct errors. This research illus-
trates the potential for the development of in-home personal
assistants and the necessity for interdisciplinary approaches
to the design of “smart” home technologies.

Potential Benefits of a Technology
Coach in the Home

Health care is a concern to adults of all ages, but particularly
to older adults, who often have at least one chronic condition
such as arthritis, hypertension, or diabetes. Monitoring chronic
conditions and learning new medical procedures, usually
accomplished with some technology, are often part of their
daily routines. Unfortunately, such technology can be difficult
to master. Innovations in automated activity recognition may
support the use of home medical devices by providing
instruction, monitoring use, guiding interpretation of results,
troubleshooting errors, and reminding about maintenance
tasks.

Consider the following scenario:

Mrs. Q. has recently been diagnosed with diabetes.
She uses a blood glucose meter daily to monitor her
glucose levels. She sits at her kitchen table to perform
the glucose check, and an automated system records
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her activities, recognizes when she has made an error,
and provides her with corrective feedback to ensure
that she performs the procedure correctly. This auto-
mated coach will help her learn to calibrate the device
and properly check her glucose levels. The system will
also provide her with guidance in interpreting the
results and determining whether she should eat, take
medicine, or exercise more to regulate her glucose.
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Technology in the home can support the activities of its
older residents as a virtual assistant or technology coach. In
an “aware home,” technology is designed with intelligence to
support the activities of people living there (http://www.aware-
home.gatech.edu). Given existing sensing technology, one can
recognize the activities of an individual (Moore, Essa, & Hayes,
1999) and use that information to provide guidance, much as
a human caregiver can. However, to design an effective coach,
one must first obtain the answers to a number of questions.
What does the technology have to “know” about the human’s
action? How can advanced technology provide instruction
and support the user’s performance? What types of feedback
can older adults successfully use?

FEATURE AT A GLANCE: Technology in the home environ-
ment has the potential to support older adults in a variety of ways.
We took an interdisciplinary approach (human factors/ergonomics
and computer science) to develop a technology “coach” that could
support older adults in learning to use a medical device. Our system
provided a computer vision system to track the use of a blood glu-
cose meter and provide users with feedback if they made an error.
This research could support the development of an in-home per-
sonal assistant to coach individuals in a variety of tasks necessary
for independent living.

KEYWORDS: home technology, medical devices, support for
learning
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Many health-related tasks — especially those involving
medical devices — consist of sequential steps. One error in the
process may invalidate the entire sequence. Planning these
steps can be cognitively intensive, and it may be especially
difficult for older adults to monitor where they are in a
sequence of actions or if they have made an error. The system
itself provides little feedback about performance accuracy,
yet the consequences of errors are high. Devices of this type
include blood glucose meters, blood pressure monitors,
heart rate monitors, oxygen tanks, and infusion pumps.

We selected the blood glucose meter as an exemplar tech-
nology for developing our coaching system because of the
complexity of the glucose monitoring task and the limited in-
structions provided by manufacturers of these devices (Rogers,
Mykityshyn, Campbell, & Fisk, 2001). Experienced users can
make errors using these meters (Colagiuri, Colagiuri, Jones, &
Moses, 1990; Hancock, Fisk, & Rogers, 2001), and even with well-
designed training programs, both younger and older adults
make errors using and calibrating the device (Mykityshyn,
Fisk, & Rogers, 2002).

An Interdisciplinary Approach

Older users have unique needs, capabilities, and limita-
tions that must be considered throughout the design process
(Fisk, Rogers, Charness, Czaja, & Sharit, 2004). In addition,
significant engineering challenges had to be addressed before
we could implement a technology coach. The development of
our technology coach required guidance from human fac-
tors/ergonomics as well as computer science (see Figure 1).
We had to (a) model user needs through identification of task
demands and understanding of needs and capabilities of the
target user population— namely, older adults; (b) develop a
system that could capture information from the environment
in an unobtrusive manner; (¢) use this information to recog-
nize actions; (d) interpret activities being performed and
identify if an error has been made; and (e) provide feedback to
support task performance and learning. These steps provide
the framework for our discussion.
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Figure 1. Overview of the interdisciplinary research approach.
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Model User Needs

Identify task demands. We conducted an in-depth task
analysis of several blood glucose meters. These devices are
often advertised in terms such as, “It’s as easy to use as 1, 2, 3.
Just set up the meter, check the system, and test your blood.”
Yet, our analysis revealed that more than 50 substeps are re-
quired to perform the three basic steps (Rogers et al., 2001).
We defined each task in terms of the information the user
would need to complete it (task/knowledge requirements), the
feedback provided by the system, and the potential problems
that might arise if the task was not carried out properly. Many
tasks required knowledge of the correct procedure and of the
location and function of the control buttons.

We specifically designed our technology
coach to increase awareness of the
sequence of steps (as determined by the
task analysis), to detect errors, and to
provide immediate feedback to correct
the error.

The most striking finding from our task analysis was the
relative complexity of this supposedly simple medical device.
More than 70% of the users in our survey reported difficulties
learning to use their specific device (Rogers et al., 2001): They
had trouble remembering steps, setting up and calibrating
the meter, using the lancet, getting a blood sample, and reading
the display.

The sequential nature of the task might contribute to
problems because an error in an early step carries through
to the other steps (e.g., inserting the strip incorrectly creates
a lack of proper calibration, which may lead to an incorrect
reading). Thus, it is crucial that users receive appropriate in-
structions about how to use the system safely and effectively.
The task analysis provided detailed information about the task
demands that would be required for the development of a
successful technology coach. The steps identified in the task
analysis served as the model for identifying and interpreting
the users’ actions.

Understand user needs and capabilities. Understanding
user needs and capabilities is crucial to system design. We
focused on cognitive capabilities such as working memory (the
ability to keep information active while processing it); in
this case, remembering the multiple steps involved in cor-
rectly using the blood glucose meter while performing them.
Research has shown that working memory declines through
life, beginning as early as age 30 and becoming more severe
after age 65 (Wilson et al., 2002). Consequently, we specifically
designed our technology coach to support working memory —
to increase awareness of the sequence of steps (as determined
by the task analysis), to detect errors, and to provide immediate
feedback to correct the error.
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Figure 2. Conceptual diagram for the glucose calibration task.

We relied on general knowledge about age-related percep-
tual capabilities to ensure that the older adults in our study
could adequately see and hear the feedback, but the more
complicated issue of whether they could comprehend the
feedback and use it effectively was the focus of study.

Information Capture, Recognition,
and Interpretation

Developing a noninvasive system to observe and accu-
rately recognize activities is a challenging but worthwhile
research activity for computer vision researchers. Automated
recognition of daily activities provides the basic contextual
information one must have to implement a range of assistive
technologies, smart appliances, and aware environments.

Consider the example of reading a book. The primitive
intervals, as well as the temporal relationships, include the
following: “First, fetch the book; next, look at the book while
occasionally flipping the pages; finally, put down the book.”
Even this relatively trivial example suggests that one needs a
variety of relationships to represent activity:

o Sequential streams: There is a natural partial ordering of
components.

e Duration of elements: The primitives are not events but have
temporal extent.

e Multiple parallel streams: Many intervals may occur in
parallel.

e Logical constraints: Some intervals can be satisfied by a
disjunction of subintervals.

e Nonadjacency: Sequenced intervals may not meet but may
only be ordered.

o Uncertainty of underlying vision component: Extracted
features will always be noisy.

Extensive research has been conducted on developing
systems that recognize, annotate, or respond to user activity
(e.g., Aggarwal & Cai, 1999; Vaswani, Roy-Chowdhury, &
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Chellappa, 2003). However, most approaches consider activity
as a single stream of events.

We developed a new approach for modeling and recogniz-
ing activities for the sole purpose of coaching blood glucose
monitor use. First, we presumed that elemental or primitive
intervals are basic units that are sequenced to define higher-
level activities. Second, we assumed temporal and logical
constraints (for example, one must remove the litmus paper
from its container before installing it into the meter).

It was clear that older adults could

benefit from feedback, both immediately
and after a retention interval, but that the
feedback must be specific to be effective.

We devised a representational mechanism and interpreta-
tion method that explicitly encoded the glucose meter task. We
propose a new representation schema, Propagation Networks
(P-Nets), and a corresponding inference algorithm called
D-Condensation. A P-Net represents an activity by associating
one event node in the network with each primitive event in the
activity (see Figure 2 and Shi, Huang, Minnen, Bobick, & Essa,
2004, for details). Two dummy nodes represent the start and
end of the activity. Links in the network correspond to partial
order constraints between pairs of actions. The nodes in the
network were based on task analysis findings of the proper
sequential steps for performing tasks such as calibrating the
blood glucose meter.

Sensing system for information capture. We constructed
the system in a layered framework (see Figure 3, next page).
At the bottom layer is an input stream of raw sensor informa-
tion — in the case of our study, both video frames and a data
stream from the glucose meter itself. The tracking informa-
tion and the device state served as input to Bayesian networks
that asserted instantaneous primitives such as unscrewing the
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Figure 3. System architecture.

cap or reading results from the meter’s screen. These networks
served as the observation models for the P-Net (represented
at the top of the system architecture diagram).

We constructed a vision-tracking system that used parti-
cle filters to track multiple objects, including hands, the
testing strip, the liquid bottle, and the glucose meter. We cre-
ated one tracker for each object and randomly initialized its
particle locations. Two statistical features — color histograms
and orientation histograms— measured the similarity between
the image and the template corresponding to the particle state
and thus allowed computation of the particle likelihood. Both
features were computationally simple and insensitive to varia-
tions in image scaling and rotation. Figure 4 (page 21) provides
tracked key frames of the sequence, with each representing
one salient event node in the P-Net.

Recognize and interpret activities. We built a 16-node
P-Net representation for the blood glucose meter calibration
procedure. Three participants performed 41 sequences: 21
were correct, 10 were missing one step, and 10 were missing
six steps. For training, we used six correct sequences and saved

TABLE 1. OVERALL COMPUTATIONAL
PERFORMANCE

Sequence length range [232,928]
Average speed (frames/s) 122.7
Maximal distinctive particles 238
Maximal subsequent states 1967
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the rest for testing. The middle-level output from the Bayesian
networks was poor because the low-level detectors generated
too many false alarms. The temporal constraints encoded in
the P-Net, however, caused the final labeling to be much bet-
ter than earlier indicators suggested.

The D-Condensation algorithm we used is very fast and
more than sufficient for real-world applications. The compu-
tational statistics are summarized in Table 1, and final results
are listed in Table 2 (page 21). All correct sequences were re-
cognized. Eight of the 10 missing-one-step sequences were
identified, whereas the other two were labeled as correct. Iden-
tification errors were caused by insertion errors in the vision
module that made the sequences statistically indistinguish-
able from correct sequences.

We evaluated the labeling of each frame, specifying
whether a particular node in the P-Net was active or inactive
(see Table 3, page 22). Although there was a range of individ-
ual labeling ratios, the overall correct ratio for any sequence
was very high (over 98%), and the average correct positive
ratio was higher than 87%.

In summary, the computer vision system was able to
capture, recognize, and interpret the activities of the person
who was using the blood glucose meter. The next step was to
provide users with corrective feedback if they omitted an
action, performed an action at the wrong time, or per-
formed an incorrect action.

Provide Effective User Feedback
Feedback, simply defined, is action taken by an external
agent to provide information with regard to some aspect of
task performance (Kluger & DeNisi, 1996). Findings in the
literature have been mixed on virtually every aspect of feed-



back delivery, including the ideal timing or content
(McLaughlin, Rogers, & Fisk, 2006).

We assessed whether older adults could benefit from
feedback from the technology coach and whether feedback
effectiveness varied based on the content of the information
provided. We used a “Wizard of Oz” technique to simulate
what the system would ultimately do (e.g., Dahlbick,
Jonsson, & Ahrenberg, 1993). An experimenter played the
role of the technology coach (unbeknownst to the partici-
pant) so we could assess feedback benefits while developing
the recognition system. (Portions of these data were presented
in Fiesler, McLaughlin, Fisk, & Rogers, 2003.)

Future efforts must address the
engineering challenges that remain,

as well as psychological issues related to
the design of effective feedback systems.

Participants received feedback only when they made mis-
takes. The eventual goal of this feedback training would be for
users to operate the meter on their own and feedback would
no longer be necessary for accurate performance. The idea is
that when the medical device is used in the home setting,
performance would be monitored for errors and corrective
feedback would be provided. However, the feedback should
be designed to support learning so that participants can use
the medical device when they are away from home as well.

We manipulated each type of feedback in the following
ways:

1. Action feedback: Participants received instructions on
exactly what action to take to correct the mistake. For
example, if they inserted the strip upside down into the
meter, the feedback might be, “Turn the strip over.”

2. Concept feedback: Participants received instructions on
what to do to correct their mistakes without being told
how to do it. With this same error, the feedback might be
phrased as, “The strips should be inserted pink side up.”

3. Nonspecific feedback: Participants were told if they had
made an error but not how to correct it. Action and con-
cept training are important for training older adults to
use computer-based systems (e.g., Mead & Fisk, 1998). The
nonspecific feedback condition provided a comparison to
assess the benefits of general feedback.

TABLE 2. OVERALL EVALUATION
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Figure 4. One of our test data sequences with the P-Net shown
below it for various actions. The bracketed numbers show the frame
number in the sequence. The grayed action nodes in the P-Net
output shows P-Net belief on whether the action is occurring.
(Refer to Figure 2 for the actions represented by the nodes.)

Participants were 30 older adults ranging in age from 65
to 75. Ten were assigned to each feedback condition. They
received initial instructions via the manufacturer’s video
and were then asked to perform a glucose control calibra-
tion test. They received computerized feedback if they made
an error as they tried to use the system. We measured trials
to criterion, which was performing the calibration without
making a single error. We measured performance immedi-
ately after training and again after a 2-day retention interval
to provide insight into learning.

Sequence Category Total Correct (%) Almost Right (%) Negative (%)
Training 6 100 0 0
Correct I5 100 0 0
Missing one step 10 20 802 0
Missing six steps 10 0 50b 50

a All eight claim missing that step; two of eight claim missing an extra step; one claims missing two extra steps.
b Three claim missing five nodes; two claim missing six; all five claim at least three actual missing steps.
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TABLE 3. LABELING INDIVIDUAL NODES

Individual Node Overall Success? Correct PositiveP Correct Negative®
B:Turn on 0.9999 1.0000 0.9999
C:Read ID screen 0.9901 0.9956 0.9897
D: Read ID strip 0.9893 0.9333 0.9909
E: Press “C” 0.9787 0.2344* 0.9998
F: Match 0.9847 0.9267 0.9908
G: Shake it 0.9590 0.6003 0.9738
H: Unscrew cap 0.9563 0.5041 0.9857
I: Drop it 0.9827 0.8584 0.9941
J:Insert 0.9878 0.8643 0.9961
K:Wait 0.9964 0.9987 0.9958
L: Read result 0.9966 0.9847 0.9991
M: Mark control 0.9983 0.9720 0.9993
N:Turn off 0.9967 0.8997 0.9997
O: Screw cap 0.9476 0.6629 09617

@ Overall success is the average of all nodes computed as the correct positive plus the correct negative divided by all frames.

b Correct positive is the number of correctly labeled positive frames divided by the number of all positive frames for node |.

€ Correct negative is the number of correctly labeled negative frames divided by the number of all negative frames for node |.

*The score is anomalously low because this event is comparatively very short; the other events were much longer and could be more

positively matched to the ground truth.
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Figure 5. Data from the feedback study (means with standard
error bars).

The data in Figure 5 illustrate that performance was worst
for the nonspecific feedback condition. Simply being told an
error had been made did not provide much support for learn-
ing: It took participants nearly seven trials to perform the glu-
cose control calibration test correctly. Moreover, after a 2-day
retention interval, they required almost six more trials to per-
form the same procedure correctly. The two feedback condi-
tions with content — action or concept — did not differ from
each other and supported immediate performance as well as
retention after two days. Participants in those conditions re-
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quired fewer trials after the retention interval, which suggests
they had successfully learned the procedure.

For the calibration task we assessed, feedback with content
supported performance regardless of whether participants
were told what action to perform or the concept of what they
should do. For other tasks, however, the nature of the infor-
mation provided during training does differentially affect per-
formance (e.g., Mead & Fisk, 1998). Therefore, we need to
assess the relative benefits of different feedback content for a
broader range of tasks before drawing conclusions. Neverthe-
less, it was clear that older adults could benefit from feed-
back, both immediately and after a retention interval, but that
the feedback must be specific to be effective.

Conclusion

As noted earlier, self-care in the domestic environment is
an important aspect of health care. Although there is a benefit
of empowering individuals to be involved in their own health
care and maintenance, it is also a challenge because inappropri-
ate use can be harmful. We focused on a medical device used
in a home environment that was representative of the cogni-
tive requirements of many devices currently prescribed for
home use. The significance of this particular device is far from
trivial because of the fact that many older adults are diagnosed
with late-stage diabetes. Moreover, this research should lead
to the development of principles and guidelines that would be
applicable to other technology coaches.

Future efforts must address the engineering challenges that
remain, as well as psychological issues related to the design
of effective feedback systems. With respect to the computer



vision issues, we must continue to improve the accuracy of
the system and integrate multimodal sensing sources. It will be
crucial to extend this effort to other systems that range in com-
plexity and sequential form. We also recognize the importance
of activity discovery; that is, the ability to automate the task
decomposition and to be able to learn a model of “normal”
activity that can be used as the basis to detect misuse.

With respect to the coaching component, many feedback
issues remain: content, timing, amount, and optimal display
format. In addition, we must understand whether and how
feedback effectiveness differs as a function of user capabilities
and experience.

The specification of the components in our computational
vision system, based on the glucose meter, can be used to in-
form the development of technology aids for other medical
devices (e.g., blood pressure monitor, infusion pumps), and
other activities (e.g., preparing a meal, performing specific
exercises prescribed as part of a rehabilitation program).
Technology coaches have the potential to support a variety
of activities for a range of users.
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