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ABSTRACT

We introduce methods for augmenting aerial visualizations of Earth
(from services like Google Earth or Microsoft Virtual Earth) with
dynamic information obtained from videos. Our goal is to make
Augmented Aerial Earth Maps that visualize an alive and dynamic
scene within a city. We propose different approaches for analyzing
videos of cities with pedestrians and cars, under differing condi-
tions and then created augmented Aerial Earth Maps (AEMs) with
live and dynamic information. We further extend our visualizations
to include analysis of natural phenomenon (specifically clouds) and
add this information to the AEMs adding to the visual reality.

1 INTRODUCTION

Earth can be visualized on the Internet with the growth of online
Aerial Earth Maps(AEMs) services (e.g., Google Earth, Microsoft
Virtual Earth, etc.). We can visually browse through cities across
the globe from our desktops or mobile devices and see 3D models of
buildings, street views and topologies. Information such as traffic,
restaurant locations, tourist sites, and other services is provided,
within a geo-spatial database. However, such visualizations, while
rich in information, are static and do not showcase the dynamism of
what is happenning in real world. We are motivated to add dynamic
information to such online visualizations of the globe.

In this paper, we introduce an approach to generate ALIVE
cities. So that one can browse and see a city with dynamic and
alive Aerial Earth Maps. Our approach relies on analysis of videos
from different sources around the city. Fig. 1 shows a static still of
such an augmented visualization driven by analysis and subsequent
registration of 36 video sources.

To achieve this goal, we have to address several technical chal-
lenges. First, we develop a framework to extract information about
the geometry of the scene, the status of the scene and also the move-
ments in the environment from video. Second, we register the view
from the given video to a view in the AEMs. In cases where we
have multiple instances of views, but still not full coverage, we
need to infer what is happening in-between the views, in a domain-
specific manner. This requires designing models of dynamics from
observed data. Third, we generate visualizations from the observed
data onto the AEMs. This includes synthesizing behaviors based
on videos, procedural information captured from them and updat-
ing views as they are manipulated in the AEMs.

2 SCENARIOS UNDER STUDY FOR AEMS

Extracting dynamic information from video feeds for augmenting
AEMs is a challenging problem, primarily due to wide variety of
conditions/configurations that we will have to deal with. For ex-
ample, we want to see people moving in different situations, and
also show traffic motions. We also want to show moving clouds. In
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Figure 1: An overview of the Augmented Earth Map generated by our
system. We make use of 36 videos to add dynamic information to city
visualization. Information from each input video of traffic, people, and
clouds is extracted, then it is mapped onto the Earth map in real-time.
See video on our website.

each of the above instances, we have to deal with different view-
points of videos and in many cases with incomplete information.
We also have to track moving objects and determine coherence be-
tween different viewpoints. To address these issues of variation
across different domains of interest to us, we consider four scenar-
ios that address the distribution of cameras and motion of objects.
We describe briefly these cases here. The results showcase the vari-
ations in configurations in how we generate a variety of augmented
visualizations of live cities.
#1. Direct Mapping: Video is analyzed directly and tracked. Data
is projected onto the limited regions covered by camera’s field of
view. We showcase several examples of people walking around.
#2. Overlapping Cameras with Complex Motion: Several cam-
eras with overlapping views observe a relatively small region con-
currently. The motion within the area is complex. We demonstrate
this case with people playing sports.
#3. Sparse Cameras with Simple Motions: Sparsely distributed
cameras cover a wide area but dynamic information is simple. For
example, traffic cameras are separately observing a highway and the
motion of vehicles is relatively simple and is predictable between
nearby regions.
#4. Sparse Cameras and Complex Motion: Cameras are sparsely
distributed and each of them observes a different part in a larger
area and the motion of the target scene is complex. This is the case
where we observe and model natural phenomena such as clouds in
the sky.

3 RELATED AND MOTIVATING PAST WORK

Our work builds on existing efforts in computer vision on tracking
objects [16, 13] and multi-view registration [5]. We also rely on
behavioral animation approaches [8, 9] from computer graphics.

We leverage on the work of Seitz and Dyer [12], which uses mor-
phing with camera models to generate in-between views (view syn-
thesis). They reconstruct intermediate views using precise stereo
pairs and local correspondences. In our approach, where a large
amount of videos are available and need to be registered in real-
time, we use global blending approaches to register a number of
views and visualize them immediately in the AEMs.

Harris [4] introduces a method for rendering realistic clouds
using imposters and sprites generated procedurally for real-time
games. While extremely realistic, these do not suit our purposes
as we are interested in driving clouds from video data. Turk and
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Figure 2: Example of DM: (a)Single video observing pedestrian and
car (b)Screen space position mapped onto virtual plane space

O’Brien [14] uses RBF interpolation to find an implicit surfaces
from scattered data using constraint points. We also rely on Per-
lin noise [7] for generating clouds volume or sprites for generating
clouds maps.

A work most closest to our work is the Video Flashlight system
[10]. This is a surveillance application, which tracks people in a
fixed region using multiple cameras and maps onto the observed
region. Several other similarly motivated surveillance applications
have also been introduced [11].

4 VIDEO TO AUGMENTED AERIAL MAPS

Now we provide technical details of our approaches and also
present how the configurations of cameras and dynamic informa-
tion described in section 2 are analyzed and then visualized. We
first start with the simplest scenario, then we introduce more com-
plex situations with different approaches. More details about each
approach are available from our project website.

4.1 Direct mapping from Single Video: Pedestrains
In our first scenario, we have video from a single viewpoint and we
are interested in projecting the video and the related motions onto
an aerial view from an AEM. This scenario requires direct mapping
of tracked objects in a scene frame onto the virtual plane. This is
the simplest of our scenarios and in essence a basic building block
for all of the other scenario cases described in Section 2.

We rely on direct mapping from video to geometry to visualize
pedestrians in videos. As shown in Fig. 2, we first track [1, 13]
the pedestrian and extract screen-space coordinates and velocities.
These measurements are directly registered onto plane space of vir-
tual environment. If the homogeneous coordinates in video frame
are px,y = [x,y,1]T, the new 2D location at planar space on virtual
environment p̂ is simply calculated by p̂ = Hpx,y, where H is a
planar homography. Subsequently, if the objects (pedestrians) are
moving in the video with the velocity v, we can also project the
velocity onto the earth map plane by v̂ = Hvx,y. This velocity is
used to match simple human motion capture data gathered off-line
(from [15]) to visualize moving pedestrians. We first sample the
trajectories of objects, then insert exact one cycle of walking data
onto them and interpolate the positions.

In our current implementation, we do not classify objects or rec-
ognize their states in the scene. We assume all moving objects on
a sidewalk are pedestrians walking or doing some simple linear ac-
tions. On the road, we assume the object of interest is a car moving.

Direct mapping, as described here is used when (1) a region of
interest is covered by a single view point, and (2) the motions of
objects simple. In Sections 4.2-4.4, we introduce methods to handle
more complex scenarios.

4.2 Overlapping Cameras, Complex Motions: Sports
We now move to the domain where we have videos with overlap-
ping views and motions that have some structure, with several mo-
tions occurring at the same time. While we have employed this case
for a variety of scenarios, we demonstrate it here in the domain of
sports.

Sports videos usually have multiple views and in most instances
we can rely on the field markings to help with registration. The

overlapping views in this domain also require additional types of
modeling and synthesis beyond the direct mapping from single
view (Section 4.1).

(a) (b)
Figure 3: The range of approximately invariant to distortion:(a) and
(b) both are back-projected scenes from same video.

We start by obtaining field of views (FOVs) fi and camera homo-
graphies Hi (from each view to a corresponding patch in the AEM)
from the videos as described earlier. Then, the videos are rectified
to top-views based on the extracted homographies, and registered
onto the corresponding regions of the AEM.

For each video, the rectified top view is used as a texture on the
AEM plane. Then, this textured video is re-projected to a virtual
view based on the model view matrix in the AEM environment. We
refer to this view as Back-projected view and the angle between the
original view and its the back-projected view as θ .

Once multiple views covering the same region are registered
onto the AEM plane, their rectified views are also overlapped. Our
goal is to generate virtual views based on the two consecutive views
that exhibit the most similar viewing angle θ .

First, we search for the pair of the closest two views exhibit-
ing small θ ’s. Let these consecutive views and the corresponding
angles be denoted by fi, fi+1 and θi, θi+1 respectively and denote
rectified planar texture as f̂i and f̂i+1.

Then, we compute the two weights for both views based on the
angle differences where the smaller angle leads to a larger weight
: ωi = θi+1

θi+θi+1
and ωi+1 = θi

θi+θi+1
. If the ωi is close to one, which

indicates that the angle between the virtual view and the given view
fi are similar, then it is safe for a fragment shader to render the back-
projected view based on f̂i only. This is the case where the virtual
view is similar to f̂i, so that the virtually back-projected scene seems
approximately invariant to distortions (Fig. 3(a)(b)).

In general, we blend not only a pair of rectified scenes (f̂i,f̂i+1)
but also the subtracted background scenes generated from a pair of
view videos. Now, suppose that f (t) and g(t) is a bicubic function
for both views. Then, we blend each pixel in the virtual view as :
pv = f (ωi)pi + g(ωi)pi+1 + ωbkgpbkg, where ωbkg = 1− ( f (ωi)+
g(ωi)), pbkg = ωipbkg

i +ωi+1pbkg
i+1, and pbkg

i and pbkg
i+1 are the pixels

of the subtracted background computed sperately from f̂i and f̂i+1
respectively.

Now, the virtual view is almost identical to the background if the
target view is out-of range from the both views. If the target view
approaches a view to some extent, the synthesized view smoothly
transitions to the back-projected view of the closest viewpoint. In
Section 4.3 we introduce an approach to visualize moving objects
when multiple videos are not overlapped and each camera is dis-
tributed sparsely.

4.3 Sparse Cameras with Simple Motion: Traffic
We demonstrate this scenario as the case of analyzing videos of
traffic and synthesizing traffic movements dynamically on AEMs.
The biggest technical challenge with this scenario is that as we have
sparsely distributed, non-overlapping cameras, we do not have the
advantage of knowing how the geometry or the movement from
each camera is related to the other. To deal with this problem, we
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Figure 4: Red nodes indicate observable region M(X) and Green
nodes are unobserved regions M̃(X). (a) The middle chain corre-
sponds to the traffic conditions on the graph which represents the
traffic system. (b) split: outgoing regions O(Xi) from node Xi are
marked. (c) merging: incoming regions I(Xi) to node Xi are marked.

need to model the movements in each view and connect the ob-
servations between cameras, i.e., to model flows from one view to
another. In our framework, we add two functionalities. (1) Model-
ing the flow using a graph-based representation to infer a plausible
traffic-flow across unobservable regions. (2) Develop a synthesis
framework that can be driven from such data.

Fig. 4(a) shows the topology of traffic nodes. Each node is a
patch of the road and has a traffic state Xi and a synthesized state Zi.
A measurement Yi is defined only in observable nodes monitored by
cameras. From visual tracking [1, 13] , we get estimates of position
and velocities of objects from video. The measurement Yi consists
of the positions and the velocities of the low-level features fi and
the detected cars ri.

The state Xi is designed to capture the essential information nec-
essary to visualize traffic flow: (1) the average traffic flow ni, and
(2) the average velocity vi of cars, i.e., Xi = (ni,vi). By average
flow, we mean the average number of cars passing through a region
in unit time, whereas vi denotes the average velocity of the cars.

Then, the entire traffic system is defined as X = {Xi|1 ≤ i ≤
kX} where kX is the number of nodes. Additionally, the physi-
cal length of every i-th node is obtained from the available geo-
spatial database and is denoted by di. Once the traffic system is
decomposed into a graph manually, a set of observable regions
M(X) ⊂ X with available video measurements are identified. On
the other hand, the unobservable regions are denoted by M̃(X)
where X = M(X)∪M̃(X).

The obtained measurement information Yi is used to estimate an
observable state Xi ∈ M(X), after the projection onto the virtual
map plane using the available homography Hi for that region. First,
the average speed v̂i of the cars is estimated as an average of pro-
jected speeds of fi w.r.t. the homography Hi. Secondly, the flow of
the cars passing through the ith region, n̂i, can be computed using
the fact that the number of cars in the region Nri is the product of the
flow multiplied by the average time di/vi for cars to pass a region,
i.e., Nri = n̂i · (di/v̂i).

Once the set of states M(X̂) are estimated for the observable re-
gions, they are used to estimate the unobserved states M̃(X). We
adopt the Bayesian networks [6] formalism to exploit the fact that
the unknown traffic conditions M̃(X) can be estimated by propa-
gating the observed information from the spatial correlation mod-
els. The whole traffic graph is a directed graph where an edge from
a region Xj to another region Xi exists whenever traffic can move
from Xj to Xi. For every node Xi, a local spatial model P(Xi|I(Xi))
between the node Xi and the incoming nodes I(Xi) is specified (See
Fig. 4). Once all the local spatial models are defined, the poste-
rior traffic conditions P(Xi|M(X̂i)),∀Xi ∈ M̃(X) at the unobserved
nodes are inferred using belief propagation [6, 3].

We make an assumption that the average flow Xi|n of the cars in
a region Xi matches the sum of the average flow of the cars from
the incoming regions I(Xi) with a slight variation wi which follows
white Gaussian noise : Xi|n = ∑I(Xi) Xj|n +wi. For velocity, we as-

sume that the average speed in a region matches the average speed
of the cars with a slight variation qi which is again a white Gaussian
noise : Xi|v = (∑I(Xi) Xj|v)/NI(Xj) + qi. The variance of the Gaus-
sian noises, both wi and qi, are set to be proportional to the length
di of the target region i.

Finally, to visualize traffic flow based on the estimated traffic
states X̂, we developed a parameterized version of Reynolds’ be-
havior simulation approach [8]. By parameterized behavior sim-
ulation, we mean that the cars are controlled by the associated
behavior-based controller, but the behaviors are parameterized by
the current traffic conditions. The controller of a car in the i-th re-
gion is parameterized by Xi. Hence, the behavior of a car Zi varies
if the estimated traffic condition within a region changes or if the
car moves onto other adjacent traffic regions based on given Xi.

4.4 Sparse Cameras with Complex Motion: Clouds
Our final scenario aims to use videos of natural phenomenon, pri-
marily clouds and adding them to AEMs for an additional sense
of reality. Cameras are spatially distributed and only a small sub-
set of the targeted sky area that is to be synthesized is visible by the
FOVs of the cameras. For measuring dynamic movement of clouds,
we also extract velocities from videos. We assume that the videos
always have to look at 90 degree of elevation, and zero degree az-
imuth. We refer to this video as an anchor video.

We use a Radial Basis Function(RBF)([2]) to globally interpo-
late density of clouds in unobserved sky region based on mul-
tiple videos. The main concept of our interpolation follows a
method described in [14] where they interpolate implicit surface
from given set of scattered data points. We use this method
to interpolate density of unobservable region in the sky. In our
work, constraint points are the location of feature points(xi,yi)
extracted from each input video, and basis vector is defined as
G = [G1(x1,y1), . . . ,Gn(xn,yn)]( encoded by strong gradient and
velocity vectors representing density of clouds. Now a basis func-
tion di j between any constraints points is chosen as ||(xi− x j)2 +
(yi − y j)2||. Using these measurements we can globally interpo-
late the cloud density of any points in unobserved sky region by
weighted sum of basis function.

Now, the generated density map is used as a density function for
procedural modeling of cloud textures([7]). Figure 5(a)(b) shows
an example of density map generated from four videos. However,
if the generated density map is not appropriate due to mis-detection
of feature vectors, the system provides an user interface to edit the
density map by adding additional basis vectors.

Once cloud textures are generated, the generated sky textures are
mapped onto the sky domes [17]. To visualize sky, representing a
dynamic of current sky, the mapped sky textures moves based on
the velocity captured from anchor video.

5 DISCUSSION OF EXPERIMENTS AND RESULTS

To validate our approach, we undertook a series of experiments for
different scenarios on a variety of challenging domains, under vary-
ing conditions. Fig. 6 shows results of the static stills of each sce-
narios. Please see our website for videos and other results.

The prototype system is developed using C++/OpenGL on a
computer with Quad-core 2.5GHz, 2GB RAM, and NVidia Quadro

(a) (b) (c)

Figure 5: Generating clouds layers procedurally using videos: (a)
videos (b) Interpolated map from RBF (c) resulting cloud layer.
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Figure 6: Results from our prototype system using 36 videos : (1) View Blending : (a) 5 Cameras for soccer game (b) Two broadcasting footages
of NCAA Football game (c) Three surveillance camera. (2) Traffic : (d) Merging Lanes (e) Rendered traffic Scene and corresponding simulated
scene (f) 8 cameras for larger scale traffic simulation including merge and split (3) Pedestrians : (g) Direct mapping of pedestrian having simple
motion (4) Clouds : (h)Four videos for clouds and sky generation.

FX770M graphics card. The resulting visualizations are rendered in
real-time at approximately 20 frames per second where 500 targets
can be tracked at maximum for the traffic flow scenario.

For the scenario that require view blending, the resulting
view transitions are smooth and provide dynamic visualizations
(Fig. 6(a,b,c,)). In the traffic scenario, the visualized traffic closely
matches the average speeds of the real traffic system (Fig. 6(d,e)).
However, it was noted that the quality of the estimated traffic flow
deteriorates in proportion to the distance between the cameras. The
cameras used in our results are placed no more than 0.5 miles away,
and provide qualitatively plausible visualizations.

In the challenging large-scale experiments shown in Fig. 6(f),
8 cameras are installed at different locations where the visualized
road system consists of 13 observed and 26 unobserved regions.
Some cameras observe one-way road while others observe two-way
and the traffic topology include merge, exits and bridge crossings.

Various styles of sky and clouds are generated as shown in
Fig. 6(h). Although the visualization results do not capture the exact
shape of the individual clouds or the exact sky atmosphere, move-
ment and density of the distributed clouds reflect the characteristics
of the input videos plausibly.

6 SUMMARY, LIMITATIONS, AND FUTURE WORK

In this paper, we introduced methods for Augmented Aerial Earth
Maps (AAEMs) with diverse types of real-time live information,
namely pedestrians, sports scenes, traffic flows and sky. The pro-
posed set of solutions are targeted to address different types of
scenes in terms of camera network configuration/density and the
dynamism presented by the scenes. The prototype system which
integrates all the components run in real-time and demonstrates that
our work provides a novel, vivid, and more engaging virtual envi-
ronment through which the users would browse the cities of now.

It is also important to note a few of our limitations. First, we
cannot directly apply our traffic flow approaches to the scenes with
higher-level controls and behaviors, e.g., intersections with traffic
lights, which is an interesting avenue for future research. Secondly,
our solutions do not support the automatic retrieval of high-level
semantic information, e.g., car accidents or street burglaries.

In our future work, we aim to overcome the above limitations,
and incorporate even more types of additional dynamic information
such as flowing rivers, trees with wind, sun, weather patterns, envi-
ronmental condition and even aerial objects like birds and airplanes.
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