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Abstract

We present a technique that uses images, videos and sen-
sor data taken from first-person point-of-view devices to
perform egocentric field-of-view (FOV) localization. We
define egocentric FOV localization as capturing the visual
information from a person’s field-of-view in a given envi-
ronment and transferring this information onto a reference
corpus of images and videos of the same space, hence deter-
mining what a person is attending to. Our method matches
images and video taken from the first-person perspective
with the reference corpus and refines the results using the
first-person’s head orientation information obtained using
the device sensors. We demonstrate single and multi-user
egocentric FOV localization in different indoor and outdoor
environments with applications in augmented reality, event
understanding and studying social interactions.

1. Introduction

A key requirement in the development of interactive
computer vision systems is modeling the user, and one very
important question is “What is the user looking at right
now?” From augmented reality to human-robot interac-
tion, from behavior analysis to healthcare, determining the
user’s egocentric field-of-view (FOV) accurately and effi-
ciently can enable exciting new applications. Localizing a
person in an environment has come a long way through the
use of GPS, IMUs and other signals. But such localization
is only the first step in understanding the person’s FOV.

The new generation of devices are small, cheap and
pervasive. Given that these devices contain cameras and
sensors such as gyros, accelerometers and magnetometers,
and are Internet-enabled, it is now possible to obtain large
amounts of first-person point-of-view (POV) data unintru-
sively. Cell phones, small POV cameras such as GoPros,
and wearable technology like Google Glass all have a suite
of similar useful capabilities. We propose to use data from

these first person POV devices to derive an understanding
of the user’s egocentric perspective. In this paper we show
results from data obtained with Google Glass, but any other
device could be used in its place.

Automatically analyzing the POV data (images, videos
and sensor data) to estimate egocentric perspectives and
shifts in the FOV remains challenging. Due to the uncon-
strained nature of the data, no general FOV localization
approach is applicable for all outdoor and indoor environ-
ments. Our insight is to make such localization tractable
by introducing a reference data-set, i.e., a visual model of
the environment, which is either pre-built or concurrently
captured, annotated and stored permanently. All the cap-
tured POV data from one or more devices can be matched
and correlated against this reference data-set allowing for
transfer of information from the user’s reference frame to
a global reference frame of the environment. The problem
is now reduced from an open-ended data-analysis problem
to a more practical data-matching problem. Such reference
data-sets already exist; e.g., Google Street View imagery ex-
ists for most outdoor locations and recently for many indoor
locations. Additionally, there are already cameras installed
in many venues providing pre-captured or concurrently cap-
tured visual information, with an ever increasing number of
spaces being mapped and photographed. Hence there are
many sources of visual models of the world which we can
use in our approach.

Contributions: We present a method for egocentric FOV
localization that directly matches images and videos cap-
tured from a POV device with the images and videos from
a reference data-set to understand the person’s FOV. We
also show how sensor data from the POV device’s IMU can
be used to make the matching more efficient and minimize
false matches. We demonstrate the effectiveness of our ap-
proach across 4 different application domains: (1) egocen-
tric FOV localization in outdoor environments: 250 POV
images from different locations in 2 major metropolitan
cities matched against the street view panoramas from those
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Figure 1. An overview of our egocentric FOV localization system. Given images (or videos) and sensor data from a POV device, and
a pre-existing corpus of canonical images of the given location (such as Google street view data), our system localizes the egocentric
perspective of the person and determines the person’s region-of-focus.

locations; (2) egocentric FOV localization in indoor spaces:
a 30 minute POV video in an indoor presentation matched
against 2 fixed videos cameras in the venue; (3) egocen-
tric video tours at museums: 250 POV images of paint-
ings taken within 2 museums in New York City (Metropoli-
tan Museum of Art and Museum of Modern Art) matched
against indoor street view panoramas from these museums
(available publicly as part of the Google Art Project [1]);
and (4) joint egocentric FOV localization from multiple
POV videos: 60 minutes of POV videos captured concur-
rently from 4 people wearing POV devices at the Computer
History Museum in California, matched against each other
and against indoor street view panoramas from the museum.

2. Related Work

Localization: Accurate indoor localization has been an
area of active research [12]. Indoor localization can lever-
age GSM [24], active badges [31], 802.11b wireless ether-
net [16], bluetooth and WAP [2], listeners and beacons [25],
radiofrequency [3] technologies and SLAM [18].

Outdoor localization from images or video has also been
explored, including methods to match new images to street-
side images [27, 32, 28]. Other techniques include urban
navigation using a camera mobile phone [26], image geo-
tagging based on travel priors [15] and the IM2GPS system
[11].

Our approach leverages these methods for visual and
sensor data matching with first-person POV systems to de-
termine where the user is attending to.

Egocentric Vision and Attention: Detecting and under-
standing the salient regions in images and videos has been
an active area of research for over three decades. Seminal
efforts in the 80s and 90s focused on understanding saliency
and attention from a neuroscience and cognitive psychology
perspective [30]. In the late 90s, Illti et al. [14] built a vi-

sual attention model using a bottom-up model of the human
visual system. Other approaches used graph based tech-
niques [9], information theoretical methods [4], frequency
domain analysis [13] and the use of higher level cues like
face-detection [5] to build attention maps and detect objects
and regions-of-interests in images and video.

In the last few years, focus has shifted to applications
which incorporate attention and egocentric vision. These
include gaze prediction [19], image quality assessment [22],
action localization and recognition [29, 7], understanding
social interactions [6] and video summarization [17]. Our
goal in this work is to leverage image and sensor matching
between the reference set and POV sensors to extract and
localize the egocentric FOV.

3. Egocentric FOV Localization

The proposed methodology for egocentric FOV localiza-
tion consists of five components: (i) POV data consisting of
images, videos and head-orientation information, (ii) a pre-
captured or concurrently captured reference dataset, (iii) ro-
bust matching pipeline, (iv) match correction using sensor
data, and (v) global matching and score computation. An
overview of our approach is shown in Figure 1. Each step
of the methodology is explained in detail below.

Data collection: POV images and videos along with the
IMU sensor data are collected using one or more POV de-
vices to construct a “pov-dataset”. For our experiments, we
used a Google Glass. It comes equipped with a 720p camera
and sensors such as accelerometer, gyroscope and compass
that lets us effectively capture images, videos and sensor
data from a POV perspective. Other devices such as cell-
phones, which come equipped with cameras and sensors,
can also be used.

Reference dataset: A “reference-dataset” provides a vi-
sual model of the environment. It can either be pre-captured



(and possibly annotated) or concurrently captured (i.e. cap-
tured while the person with the POV device is in the envi-
ronment). Examples of such reference datasets are Google
Street View images and pre-recorded videos and live video
streams from cameras in indoor and outdoor venues.

Matching: Given the person’s general location, the cor-
responding reference image is fetched from the reference-
dataset using location information (such as GPS) and is
matched against all the POV images taken by the person
at that location. Since the camera is egocentric, the cap-
tured image provides an approximation of the person’s FOV.
The POV image and the reference image are typically taken
from different viewpoints and under different environmen-
tal conditions which include changes in scale, illuminations,
camera intrinsics, occlusion and affine and perspective dis-
tortions. Given the “in-the-wild” nature of our applications
and our data, our matching pipeline is designed to be robust
to these changes.

In the first step of the matching pipeline, reliable interest
points are detected both in the POV image, Ipov , and the ref-
erence image, Iref using maximally stable extremal regions
(MSER). The MSER approach was originally proposed by
[20], by considering the set of all possible thresholdings
of an image, I , to a binary image, IB , where IB(x)=1 if
I(x) ≥ t and 0 otherwise. The area of each connected
component in IB is monitored as the threshold is changed.
Regions whose rates of change of area with respect to the
threshold are minimal are defined as maximally stable and
are returned as detected regions. The set of all such con-
nected components is the set of all extremal regions. The
word extremal refers to the property that all pixels inside the
MSER have either higher (bright extremal regions) or lower
(dark extremal regions) intensity than all the pixels on its
outer boundary. The resulting extremal regions are invariant
to both affine and photometric transformations. A compar-
ison of MSER to other interest point detectors has shown
that MSER outperforms the others when there is a large
change in viewpoint [21]. This is a highly desirable prop-
erty since Ipov and Iref are typically taken from very dif-
ferent viewpoints. Once the MSERs are detected, standard
SIFT descriptors are computed and the correspondences be-
tween the interest points are found by matching them using
a KD tree, which supports fast indexing and querying.

The interest point detection and matching process may
give us false correspondences that are geometrically incon-
sistent. We use random sample consensus (RANSAC) [8]
to refine the matches and in turn eliminate outlier corre-
spondences that do not fit the estimated model. In the final
step, the egocentric focus-of-attention is transferred from
Ipov to Iref . Using three of the reliable match points ob-
tained after RANSAC, the affine transformation matrix, A,
between Ipov and Iref is computed. The egocentric focus-
of-attention fpov is chosen as the center of Ipov (the red dot

in Figure 1). This is a reasonable assumption in the absence
of eye-tracking data. The focus-of-attention, fref , in Iref ,
is given by fref = Afpov.

Correction using sensor data: The POV sensor data
that we have allows us to add an additional layer of correc-
tion to further refine the matches. Modern cellphones and
POV devices like Glass come with a host of sensors like
accelerometers, gyroscopes and compasses and they inter-
nally perform sensor fusion to provide more stable informa-
tion. Using sensor fusion, these devices report their abso-
lute orientation in the world coordinate frame as a 3× 3 ro-
tation matrix R. By decomposing R, Euler angles ψ (yaw),
θ (pitch), φ (roll) can be obtained. Since Glass is captur-
ing sensor data from a POV perspective, the Euler angles
give us the head orientation information, which can be used
to further refine the matches. For example, consider a sce-
nario where the user is looking at a high-rise building that
has repetitive patterns (such as rectangular windows), all
the way from bottom to the top. The vision-based matching
gives us a match at the bottom of the building, but the head
orientation information suggests that the person is looking
up. In such a scenario, a correction can be applied to the
match region to make it compatible with the sensor data.

Projecting the head orientation information onto Iref ,
gives us the egocentric focus-of-attention, fs, as predicted
by the sensor data. The final egocentric FOV localization is
computed as: f = αfs + (1 − α)fref , where α is a value
between 0 and 1 and is based on the confidence placed on
the sensor data. Sensor reliability information is available in
most of the modern sensor devices. If the device sensors are
unreliable then α is set to a small value. Relying solely on
either vision based matching or on sensor data is not a good
idea. Vision techniques fail when the images are drastically
different or have fewer features and sensors tend to be noisy
and the readings drift over time. We found that first doing
the vision based matching and then applying a α-weighted
correction based on the sensor data gives us the best of both
worlds.

Global Matching and Score Computation: We now
have a match window that is based on reliable MSER
interest point detection followed by SIFT matching and
RANSAC based outlier rejection and sensor based correc-
tion. Although this match window is reliable, it is still based
only on local features without any global context of the
scene. There are several scenarios in the real world (like
urban environments), where we have repetitive and com-
monly occurring patterns and local features that may result
in an inaccurate match window. In this final step, we do a
global comparison and compute the egocentric localization
score.

Global comparison is done by comparing the match win-
dow, Wref located around fs in Iref , with Ipov (i.e., the
red match windows of the bottom image in Figure 1). This



Figure 2. Egocentric FOV localization in outdoor environments. The images on the left are the POV images taken from Glass. The red dot
shows the focus-of-attention. The panorama on the right shows the localization (target symbols) and the shifts in the FOV over time (red
arrows). Note the change in season and pedestrian traffic between the POV images and the reference image.

Figure 3. Egocentric FOV localization in indoor environments. The images on the first column show the room layout. The presenter is
shown in Green and the person wearing Glass is shown in Blue with his egocentric view shown by the blue arrow. The second column
shows the POV video frames from Glass. The red dot shows the focus-of-attention. The third and fourth column show the presenter cam
and the audience cam respectively. The localization is shown by the target symbol and the selected camera is shown by the red bounding
box. The person wearing Glass is highlighted by the blue circle in the presenter camera views.

comparison is done using global GIST descriptors [23].
A GIST descriptor gives a global description of the im-
age based on the image’s spectral signatures and tells us
how visually similar the two images are. GIST descrip-
tors qpov and qref are computed for Ipov and Wref re-
spectively and final egocentric FOV localization score is
computed as the L2-distance between the GIST descriptors:
‖ qpov − qref ‖=

√
(qpov − qref ).(qpov − qref ). Scor-

ing quantifies the confidence in our matches and by thresh-
olding on the score, we can filter out incorrect matches.

4. Applications and Results

To evaluate our approach and showcase different appli-
cations, we built 4 diverse datasets that include both images
and videos in both indoor and outdoor environments. All
the POV data was captured with a Google Glass.

4.1. Outdoor Urban Environments

Egocentric FOV localization in outdoor environments
has applications in areas such as tourism, assistive tech-

nology and advertising. To evaluate our system, 250 POV
images (of dimension 2528x1856) along with sensor data
(roll, pitch and yaw of the head) was captured at different
outdoor locations in two major metropolitan cities. The ref-
erence dataset consists of the 250 street view panoramas (of
dimension 3584x1536) from those locations. Based on the
user’s GPS location, the appropriate street view panorama
was fetched and used for matching. Ground truth was pro-
vided by the user who documented his point of attention
in each of the 250 POV images. However we have to take
into account the fact that we are only tracking the head ori-
entation using sensors and not tracking the eye movement.
Humans may or may not rotate their heads completely to
look at something; instead they may rotate their head par-
tially and just move their eyes. We found that this behavior
(of keeping the head fixed while moving the eyes) causes a
circle of uncertainty of radius R around the true point-of-
attention in the reference image. To calculate its average
value, we conducted a user-study with 5 participants. The
participants were instructed to keep their heads still and use
only their eyes to see as far to the left and to the right as



Figure 4. Egocentric FOV localization in indoor art installations. The images on the left are the POV images taken from Glass. The red dot
shows the focus-of-attention. The images to their right are panoramas from indoor streetview that correctly shows the localization result
(target symbol). When available, the details of the painting are shown. This information is automatically fetched, using the egocentric FOV
location as the cue. For the painting on the right (Van Gogh’s “The Starry Night”), an information card shows up and provides information
about the painting.

they could without the urge to turn their heads. This mean
radius of their natural eye movement was measured to be
330 pixels for outdoor urban environments. Hence for our
evaluation we consider the egocentric FOV localization to
be successful if the estimated point-of-attention falls within
a circle of radius R = 330 pixels around the ground truth
point-of-attention.

Experimental results show that without using sensor
data, egocentric FOV localization was accurate in 191/250
images for a total accuracy of 76.4%. But when sensor data
was included, the accuracy rose to 92.4%. Figure 2 shows
the egocentric FOV localization results and the shifts in
FOV over time. Discriminative objects such as landmarks,
street signs, graffiti, logos and shop names helped in the
getting good matches. Repetitive and commonly occurring
patterns like windows and vegetation caused initial failures
but most of them were fixed when the sensor correction was
applied.

4.2. Presentations in Indoor Spaces

There are scenarios where a pre-built reference dataset
(like street view) is not available for a given location. This
is especially true for indoor environments that have not been
as thoroughly mapped as outdoor environments. In such
scenarios, egocentric FOV localization is possible with a
reference dataset that is concurrently captured along with
the POV data. To demonstrate this, a 30 minute POV video
along with sensor data was captured during an indoor pre-
sentation. The person wearing Glass was seated in the audi-
ence in the first row. The POV video is 720p at 30 fps. The
reference dataset consists of videos from two fixed cameras
at the presentation venue. One camera was capturing the
presenter while the other camera was pointed at the audi-
ence. The reference videos are 1080p at 30 fps. Ground
truth annotations for every second of the video were pro-
vided by the user who wore Glass and captured the POV
video. So, we have 60*30 = 1800 ground truth annotations.
As with the previous dataset, we empirically estimated R
to be 240 pixels. Experimental results show that egocen-

Figure 5. The widths and heights of the 250 paintings, sorted in as-
cending order based on their value. We can see that our dataset has
a good representation of paintings of varying widths and heights.

tric FOV localization and camera selection was accurate in
1722/1800 cases for a total accuracy of 95.67%. Figure 3
shows the FOV localization and camera selection results.

4.3. Egocentric Video Tours in Museums

Public spaces like museums are ideal environments for
an egocentric FOV localization system. Museums have ex-
hibits that people explicitly pay attention to and want to
learn more about. Similar to audio-tours that are available
in museums, we demonstrate a system for attention-driven
egocentric video tours. Unlike in an audio tour where a per-
son has to enter the exhibit number to hear details about it,
our video tour system recognizes the exhibit when the per-
son looks at it and brings up a cue card on the wearable
device giving more information about the exhibit.

For our evaluation, we captured 250 POV images of
paintings at 2 museums in New York City - The Metropoli-
tan Museum of Art and The Museum of Modern Art. The
reference dataset consists of indoor street view panoramas
from these museums, made available as part of the Google
Art Project [1]. Since this dataset consists of paintings,
which have a fixed structure (a frame enclosing the art-
work), we have a clear definition of correctness: egocentric
FOV localization is deemed to be correct if the estimated
focus-of-attention is within the frame of the painting in the
reference image. Experimental results show that the local-
ization was accurate in 227/250 images for a total accuracy
of 90.8%. Figure 5 shows the distribution of the widths
and heights of the paintings in out dataset. We can see that
paintings of all widths and heights are well represented.



The Google Art panoramas are annotated with informa-
tion about the individual paintings. On successful FOV lo-
calization, we fetch the information on the painting that the
person is viewing and display it on Glass or as an overlay.
Figure 4 shows the FOV localization results and the paint-
ing information that was automatically fetched and shown
on Glass.

4.4. Joint Egocentric FOV Localization

When we have a group of people wearing POV devices
within the same event space, egocentric FOV localization
becomes much more interesting. We can study joint FOV
localization (i.e. when two or more people are simultane-
ously attending to the same object), understand the social
dynamics within the group and gather information about the
event space itself.

Joint FOV localization can be performed by matching
the videos taken from one POV device with the videos taken
from another POV device. If there are n people in the
group, P = {pi|i ∈ [1, n]}, then we have n POV videos:
V = {vi|i ∈ [1, n]}. In the first step, all the videos in V are
synchronized by time-stamp. In the second step, k videos
(where k ≤ n) are chosen from V and matched against each
other, which results in a total of

(
n
k

)
matches. Matching

is done frame-by-frame, by treating frame from one video
as Ipov and the frames from the other videos as Iref . By
thresholding the egocentric FOV localization scores, we can
discover regions in time when the k people were jointly pay-
ing attention to the same object. Finally, in the third step,
the videos can be matched against the reference imagery
from the event space to find out what they were jointly pay-
ing attention to.

We conducted our experiments with n = 4 participants.
The 4 participants wore Glass and visited the Computer His-
tory Museum in California. They were instructed to behave
naturally, as they would on a group outing. They walked
around in the museum looking at the exhibits and talking
with each other. A total of 60 minutes of POV videos and
the corresponding head-orientation information were cap-
tured from their 4 Glass devices. The videos are 720p at
30fps. The reference dataset consists of indoor street view
panoramas from the museum. Next, joint egocentric FOV
localization was performed by matching pairs of videos
against each other, i.e. k = 2, for a total of 6 pairs of
matches. Figure 7 shows the results for 25,000 frames of
video for all the 6 match pairs. The plot shows the instances
in time when groups of people were paying attention to the
same exhibit. Furthermore, we get an insight into the social
dynamics of the group. For example, we can see that P2 and
P3 were moving together but towards the end P3 left P2 and
started moving around with P1. Also, there are instances in
time when all the pairs of videos match which indicates that
the group came together as a whole. One such instance is

Figure 6. A heatmap overlaid on a section of the Computer History
Museum’s floorplan. Hotter regions in the map represent exhibits
which had joint egocentric attention from more people. Three of
the hottest regions are labeled to show the underlying exhibits that
brought people together and probably led to further discussions
among them.

highlighted in Figure 7 by the orange vertical line. There
are also instances when the 4 people split into two groups.
This is shown by the green vertical line in Figure 7.

Joint egocentric FOV localization also helps us get a
deeper understanding of the event space. Interesting ex-
hibits tend to bring people together for a discussion and
result in higher joint egocentric attention. It is possible to
infer this from the data by matching the videos with the ref-
erence images and labeling each exhibit with the number of
people who jointly viewed it. By overlaying the exhibits on
the floorplan, we can generate a heat map of the exhibits
where hotter regions indicate more interesting exhibits that
received higher joint attention. This is shown in Figure 6.
Getting such an insight has practical applications in indoor
space planning and the arrangement and display of exhibits
in museums and other similar spaces.

5. Discussion
One of the assumptions in the paper is the availability of

reference images in indoor and outdoor spaces. This may
not be true for all situations. Also, it may not be possi-
ble to capture reference data concurrently (as in the indoor
presentation dataset) due to restrictions by the event man-
agers and/or privacy concerns. However, our assumption
does holds true for a large number of indoor and outdoor
spaces which makes the proposed approach practical and
useful.

There are situations where the proposed approach may
fail. While our matching pipeline is robust to a wide varia-
tion of changes in the images, it may still fail if the reference
image is drastically different from the POV image (for ex-
ample, a POV picture taken in summer matched against a
reference image taken on a white snowy winter). Another
reason for failure could be when the reference dataset is out-
dated. In such scenarios, the POV imagery will not match
well with the reference imagery. However these drawbacks
are only temporary. With the proliferation of cameras and



the push to map and record indoor and outdoor spaces, ref-
erence data for our approach will only become more stable
and reliable.

Our reference images are 2D models of the scene (for
example, Street View panoramas). Moving to 3D refer-
ence models could provide a more comprehensive view of
the event space and result in better FOV localization. But
this would require a computationally intensive matching
pipeline which involves 2D to 3D alignment and pose es-
timation.

6. Conclusion
We have demonstrated a working system that can ef-

fectively localize egocentric FOVs, determine the person’s
point-of-interest, map the shifts in FOV and determine joint
attention in both indoor and outdoor environments from one
or more POV devices. Several practical applications were
presented on “in-the-wild” real-world datasets.
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Figure 7. The plot on the top shows the joint egocentric attention between groups of people. The x-axis shows the progression of time,
from frame 1 to frame 25,000. Each row shows the result of joint egocentric FOV localization, i.e. the instances in time when pairs of
people were jointly paying attention to the same exhibit in the museum. The orange vertical line indicates an instance in time when all
the people (P1, P2, P3 and P4) were paying attention to the same exhibit. The green vertical line indicates an instance in time when P1
and P4 were jointly paying attention to an exhibit while P2 and P3 were jointly paying attention to a different exhibit. The corresponding
frames from their Glass videos is shown. When matched to the reference street view images, we can discover the exhibits that the groups
of people were viewing together and were probably having a discussion about. Details of the exhibit was automatically fetched from the
reference dataset’s annotation.


