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Abstract

Most of the approaches for indoor RGBD semantic la-
beling focus on using pixels or superpixels to train a classi-
fier. In this paper, we implement a higher level segmentation
using a hierarchy of superpixels to obtain a better segmen-
tation for training our classifier. By focusing on meaningful
segments that conform more directly to objects, regardless
of size, we train a random forest of decision trees as a clas-
sifier using simple features such as the 3D size, LAB color
histogram, width, height, and shape as specified by a his-
togram of surface normals. We test our method on the NYU
V2 depth dataset, a challenging dataset of cluttered indoor
environments. Our experiments using the NYU V2 depth
dataset show that our method achieves state of the art re-
sults on both a general semantic labeling introduced by the
dataset (floor, structure, furniture, and objects) and a more
object specific semantic labeling. We show that training a
classifier on a segmentation from a hierarchy of super pixels
yields better results than training directly on super pixels,
patches, or pixels as in previous work.

1. Introduction
Recently, much work has been done on dense seman-

tic labeling and indoor scene understanding for the use of

robots. However, these are often limited to scene recog-

nition, limited classes, or structural information. With the

introduction of affordable RGBD cameras such as the Mi-

crosoft Kinect, dense point clouds can be constructed in in-

door environments with minimal effort. This kind of data

has changed the way we do object detection and labeling.

Although object recognition has come a long way with these

new sensors, indoor semantic labeling and scene under-

standing is still in it’s infancy. For robots to effectively in-

teract with an indoor environment autonomously, they need

access to accurate semantic information about their envi-

Figure 1. Semantic segmentation and labeling of 3D Point clouds.

Top: RGB and depth maps used as input in the algorithm. Bottom:

The 4 Class output and 10 Class output as described in Section 5.

ronment. Some work has been done with labeling of SLAM

maps [16, 18, 24, 12, 22, 15]. However, most previous work

doesn’t focus on dense semantic maps to allow a robot to in-

teract with the environment.

With the introduction of the NYU Dataset [17], we now

have an indoor densely labeled Kinect dataset for scene un-

derstanding. Our implementation aims to tackle the prob-

lem of accurate, dense, and fast semantic segmentation. Our

method uses hierarchical segmentation to construct mean-

ingful features from full objects and not patches or individ-

ual pixels. The assumption being that whole objects will

have more meaningful features (shape, size, color) than su-

perpixels, patches, or pixels that correspond to parts of ob-

jects. We evaluate our method using the NYU Dataset [17]

and segment each frame as either floor, structure, furniture,
or props. We additionally segment each frame using more

specific classes to label objects such as bed, chair, etc. based

on [5].

Our method is novel in that we focus on instance labeling
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Figure 2. An overall schematic of our full method. First we generate the point cloud and a graph, then we generate surface normals, then

we over segment the point cloud, create a hierarchy of super pixels, and finally train our feature vectors using a random forest of decision

trees.

based on a hierarchy of segmented super pixels. This has

many advantages to previous work using bounding boxes

or pixel-based detectors. We aim to not only label each seg-

ment as belonging to a category but to separate each seg-

ment as different objects even if they belong to the same

category. In a scene, we can not only know what pixels are

labeled as furniture, we can know how many pieces of fur-

niture there are, where they are, and what pixels belong to

each one. Because of this, we avoid the pitfalls of bounding-

box detectors in that we know the contour of the object and

we avoid the pitfalls of general semantic segmentation since

we generate instances of objects. Another advantage arises

due to this; since we test on larger, merged segments from

super pixels, our testing time can be very fast.

2. Related Work

Most previous work has been focused on semantically

labeling each pixel. Recently this has been extended to be

each super pixel or patch or label using convolutional neural

networks or conditional random fields. In the past, this was

mostly done in outdoor datasets and on RGB images instead

of 3D data. On 3D indoor scenes, most of the work has

been focused on categorizing the environment and that work

which does semantically label uses pixel or super pixels to

train classifiers.

In [16], the authors focus on labeling scenes only (not

objects or segments) such as office, kitchen, hallway, etc;

[18] and [22] label scenes the same way with an actual

robot. Nuchter et al. [18] only label objects as the wall,

floor, ceiling, or doors. These are classes that don’t fit the

challenging categorization we are trying to achieve. [12]

generates meaningful and accurate semantic labeling; how-

ever, it trains specific objects (such as a bed or printer) and

tests them assuming they are in the same environment. So

although they can determine useful objects in an environ-

ment, they require knowledge of the current room. Richts-

feld et al. [21] use NURBS fitted patches to find graspable

objects but do not classify them.

Silberman et al. [17] introduced the NYU dataset and

a method to semantically label indoor scenes. They use a

contour based method with structural inference and a set of

various supervised learning features to train a SVM. Gupta

et al. [8, 9] discuss using bounding box detectors for in-

stance labeling and using an improvement of [17] with ge-

ometric encoding and an additive SVM kernel for semantic

labeling.

Couprie et al. [5] use a multi-scale convolutional neu-

ral network to learn unsupervised features and impose la-

bels on super pixels. They also introduced a new subset of

the NYU V2 dataset [17] to test, which is based on the la-

bels occurring most frequently in the dataset. This allows

us to determine how an algorithm does labeling more spe-

cific categories. Wang et al. [28] also use an unsupervised

method but instead use multi-modality learning in order to

learn features that a linear SVM is trained on to generate

semantically-labeled super pixels. Lin et al. [13] focus

on recognizing cuboid objects by extending CPMC [4] to

leverage 3D data and then use a conditional random field

to generate semantic labels. Cadena et al. [3] similarly use

a conditional random field on superpixels in order to train

general semantic labels. Stuckler et al. [26] use tempo-

ral information to create an object-class segmentation using

SLAM and a random decision forest in order to generate a

fully labeled 3D map.

3. Method

Our method is the first to use a hierarchy of super pix-

els to train a classifier on the NYU V2 dataset. We rely

more on the shape, color, surface, and position of objects

than hand-crafted features like SIFT or pixel-based metrics

like conditional random fields or convolutional neural net-

works. The theory behind this is that people learn objects

based on these characteristics not patches of objects. This

methodology requires a higher level segmentation than just

super pixels. We use a variant of the hierarchical segmenta-

tion method based on Hickson et al. [10] in order to create

segments that match objects instead of patches. The full

method is shown in Figure 2.
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3.1. Fast Surface Normal Estimation

As Kinect data is extremely dense, we use surface nor-

mals to help segment the 3D data and train our classifier.

We use the surface normal estimation described in [11]. It

uses integral images to estimate dense surface normals at

every point for projective devices and is implemented in

PCL [23]. Surface normals allow us to enhance the seg-

mentation of [10] and still maintain the non-linear combi-

nation of color and depth. Our enhancement of the method

is described in Section 3.2.

3.2. 3D/4D Segmentation

Our segmentation method is based on the method de-

scribed in [10] that uses a hierarchical graph-based segmen-

tation based on [7]. Although there are other methods that

segment 3D data such as [25, 29, 1, 29, 27, 19] that could

have been used, we decided on [10] based off it’s impressive

results and open source library.

Hickson et al. [10] build a graph in which each node cor-

responds to a toxel, which they define as a temporal voxel.

In that method, in each graph, each node is connected to

it’s 26-neighbors in two different ways. The first edge’s

weight is the absolute difference in the depth of the two

nodes: |D(x, y, z, t)−D(x′, y′, z′, t′)|, where D(x, y, z, t)
is the depth value in the spatiotemporal volume at time = t
with the corresponding x, y, and z location. The neigh-

borhoods are defined as (x′, y′, z′, t′) ∈ N (x, y, z, t). The

regions are then merged according to [7].

In [10], after the algorithm produces a segmentation us-

ing only the depth, another graph is created with the same

nodes as before using the second set of edges. The sec-

ond edge weight is defined as the difference in the color

of the two nodes: |C(x, y, z, t) − C(x′, y′, z′, t′)|, where

C(x, y, z, t) is the LAB color value in the spatiotempo-

ral volume at time = t with the corresponding x, y, and

z location. As before, edges are created for each of the

26-neighbors in the same neighborhood space, creating an

over-segmentation of super-toxels.

Hickson et al. [10] show that merging depth and color

separately is better than combining them in a linear manner.

We modify their method to allow a single, non-linear edge

weight. Our method differs from [10] in that we construct a

graph using only 8-neighbors (ignoring time and using only

voxels) whilst maintaining non-linearity. We use the surface

normals estimated in Section 3.1 and the color to create one

edge weight W :

W = max(
√
N(x, y, z)2 −N(x′, y′, z′)2,

√
C(x, y, z)2 − C(x′, y′, z′)2)

(1)

where N(x, y, z) is a function that yields the surface

normals from the point cloud, C(x, y, z) is a function that

Figure 3. Hierarchical segmentation results on the NYU Dataset

[17], Left: rgb, Right: our method’s pseudocolored segments.

yields the colors from the point cloud and (x′, y′, z′) ∈
N (x, y, z), where N (x, y, z) is the neighborhood of voxel

(x, y, z). We then over-segment the same way as in [10].

3.3. Hierarchical Construction

After the over-segmentation described in Section /ref-

sec:seg, we compute feature vectors for each super-voxel

that we use for hierarchical propogation and for training our

semantic classifier. For feature vectors we extend the fea-

ture space of [10] by using histograms of CIE Lab color,

histograms of 3D position, and histograms of 3D surface

normals, called LABXYZNxNyNz histograms, using all

the voxels in each region. As in [10], rather than com-

puting large multi-dimensional histograms, we compute 1-

dimensional histograms for each feature. It is important to

note that we have added surface normals as features here

and are ignoring optical flow as we are just looking at sin-

gle RGBD frames. We use 20 bins of LAB color features
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and 30 bins of the XYZ position features just like in [10],

adding 30 bins of the NxNyNz surface normal features. We

also compute the region’s 3D size, height, width, 2D cen-

troid, 3D centroid, 3D minimum, and 3D maximum as extra

features.

Using the aforementioned feature vectors, a new graph

([10] calls it the S-graph) is created to propagate the hi-

erarchy. The graph is comprised of vertices that are each

super-voxel region and edges that are formed to join neigh-

boring regions using Equation 2, which has been modified

from [?] to use surface normals instead of optical flow. We

then construct a dendrogram that is a hierarchical tree of

super-voxel regions defined by similarity where the root

node is the entire-set merged and the leafs are the super-

voxels computed by Section 3.2.

To match the regions we use a modified version of the
SAD difference equation in [10] that adds surface normals
instead of optical flow. The difference between Region R
and Region S is defined as:

ΔH =

NUMBINS∑

i=1

|Rl[i]

RN
− Sl[i]

SN
|+ |Ra[i]

RN
− Sa[i]

SN
|

+|Rb[i]

RN
− Sb[i]

SN
|+ |Rx[i]

RN
− Sx[i]

SN
|+ |Ry[i]

RN
− Sy[i]

SN
|

+|Rz[i]

RN
− Sz[i]

SN
|+ |Rnx[i]

RN
− Snx[i]

SN
|+ |Rny[i]

RN
− Sny[i]

SN
|

+|Rnz[i]

RN
− Snz[i]

SN
|

(2)

where RN is the number of voxels in Region R and SN is

the number of voxels in Region S.

We use the same parameters defined in [10] with a lower

tree cut of 0.15. Pseudo-colored output of this high level

segmentation on the NYU V2 dataset is shown in Figure 3.

3.4. Feature Selection

Feature selection for this task is extremely complex and

it is difficult to determine which properties might be impor-

tant. The objects in each category can vary quite a bit and

it is difficult to tell what features are best for this classifi-

cation. Some semantic segmentation methods [20, 17, 8]

also use custom, expert features to label classes using the

NYU dataset [17] while others use machine learning tech-

niques to learn features such as Couprie et al.[5], which

uses a convolutional neural network to learn important fea-

tures. The arguments between the benefits and limitations

of these approaches are beyond the scope of this paper. For

each region, we use general features such as shape, size,

position, orientation, surface normals, and color in order to

catch any important features. In addition we test the features

described in Section 3.3 as well as the impact of adding a

1000 cluster bag-of-words of SIFT feature points.

Figure 4. Classification Accuracy for different 3D Features on a

validation set as described in Section 3.4. Heat mapped with blue

being 0% and red being 100%

A random forest of 500 decision trees yielded the best

results on our test using the NYU Depth Dataset V2 [17].

When testing all the different features, a random forest was

the most accurate classifier. This makes some amount of

sense given that we are using histograms and the features

are very independent of each other. This was the reason-

ing behind using a random forest as opposed to an SVM or

neural network.

For the histogram features described in Section 3.3, we

ran all different classifiers available in Matlab on each dif-

ferent feature as a binary classifier using a random valida-

tion set from the training data of the NYU dataset [17]. The

results are shown in Figure 4 with 1 being 100% accuracy

and 0 being 0% accuracy for the top 10 classes where each

column is a feature from a subset of our features (size, 2D X

centroid, 2D Y centroid, 3D X centroid, 3D Y centroid, 3D

Z centroid, A histogram, B histogram, L histogram, Nx his-

togram, Ny Histogram, Nz Histogram, 3D X histogram, 3D

Y histogram, 3D Z histogram, and all combined features)

and each row is a class. The last column is a combination

of all the features and is shown to do the best. Not only did

we find that the combination of all features yields the best

result, we also found that random forests [2] always yield

the best accuracies for our data. This confirms our hypoth-

esis that random forests will work best in this scenario.

4. Experiments

We tested our method on two different tasks. The first

is semantically labeling everything as either floor, structure,
furniture, or props as proposed in [17]. This is shown in

Section 4.1 and reveals how our method generalizes cate-

gories accurately compared to state of the art. The second

test is labeling the 13 most frequent classes, with the 14th

being other, in the NYU V2 dataset as proposed by [5]. This

is shown in Section 4.2 and reveals how our method does on

more specific objects and classifications.
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Figure 5. Confusion Matrix for 4 classes of NYU Dataset Left:

[17], Center: our method with SIFT, Right: our method without

SIFT. Heat mapped with blue being 0% and red being 100%

4.1. 4 Class tests

After determining our features and classifier, we ran our

method on the NYU V2 dataset [17] and trained the 4 Class

and 14 Class classifiers to compare against previous imple-

mentations .We further experiment by training our method

on the 4 Class set with and without SIFT [14]. Previous

methods such as [17, 20, 8] use a BOW of SIFT features

[6] to help classify. Being uncertain about the usefulness of

SIFT in such a general classification method, we trained our

method with and without it as a test. The class pixel accu-

racy confidence matrices for our method (with and without

a BOW of SIFT) and NYU’s method [17] are shown in Fig-

ure 5. It is around 10% more accurate although we suffer

categorizing props, showing no improvement over the 42%

of [17]. In table 1, our method is compared to other state

of the art methods showing us to have better accuracy in

ground, furniture, overall class accuracy, and overall pixel

accuracy. Note that we do not compare to [8] in this ta-

ble since they use a different accuracy metric then all of the

other papers testing on this dataset.

4.2. 14 Class tests

We also test our method using the 14 classes (including

other) proposed by Couprie et al [5]. It is important to note

that this classifier was trained independently of the 4 class

classifier does not use the classifications shown in Section

4.1 although that may improve classification results. For

this test, we did use a BOW of SIFT features as we are

finding specific objects. We compare here against Wang

et al. [28] and Couprie et al. [5], which are both unsu-

pervised learning methods as opposed to out method which

uses hand-crafted features. As shown in Table 2, we im-

prove total class accuracy by more than 5% over Wang et

al. [28] and over 11% more than Couprie et al. [5]. We do

slightly worse in a couple categories such as bed, sofa, wall,

books, and TV. It is uncertain whether our performance in-

creases are due to the hand-crafted features or the hierar-

chical segmentation. However, since Silberman et al. [17]

use a much larger set of features that include some of ours,

and both methods outperform [17], we suspect that most of

our accuracy gain comes from using a hierarchical segmen-

tation.

Figure 6. Confusion Matrix for the top 13 classes of NYU

Dataset[17] as proposed by [5] (ignoring the 14th class other).

Heat mapped with blue being 0% and red being 100%

5. Results

To compliment the quantitative results shown in Table 1

and Table 2, we show some qualitative results of our algo-

rithm in Figures 7 and 8. Figure 7 shows the result of our

algorithm on the 4 general classes and Figure 8 shows the

result of our algorithm on the 14 specific classes.

For both tests, we excel at labeling different structures,

the floor, the ceiling, and different furniture. However, our

algorithm suffers labeling objects. This could be due to the

hierarchical segmentation. It is possible that small objects

get merged to larger segments, which would label them as

part of the furniture or structure near the object. It is also

possible that our generic features involving shape and sur-

face normals do not generalize well for objects. The lack of

textural information could also be contributing to the lack

of object accuracy.

However, as shown in Table 2, the hierarchical segmen-

tation does allow the algorithm to excel at recognizing the

furniture and the structure. Our method is far superior at

recognizing chairs, the ceiling, the floor, tables, and win-

dows. These all have relatively similar shapes, sizes, and

surface normals. Graph-based segmentation methods also

tend to match the boundary of more rectangular objects, cre-

ating better segments for planar objects, which contributes

to our high accuracy in these areas.

6. Conclusions/Future Work

In this paper, we present a new approach to indoor

semantic labeling that uses a hierarchical segmentation

method with general features pertaining to shape, size, and
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Ground Furniture Props Structure Class Acc. Pixel Acc.

Silberman et al. [17] 68 70 42 59 59.6 58.6

Couprie et al. [5] 87.3 45.3 35.5 86.1 63.5 64.5

Cadena et al. [3] 87.9 64.1 31 77.8 65.2 66.9

Stuckler et al. [26] 90.7 68.1 19.8 81.4 65.0 68.1

Wang et al. [28] 90.1 46.3 43.3 81.4 65.3 N/A

Our Method (No SIFT) 95.3 60.9 42 80.2 69.6 69.5
Our Method 88.5 75.5 27.1 81.8 68.2 71.8

Table 1. A comparison of the per-pixel and per-class classification accuracy of the 4 class set comparing our algorithm to other state of the

art methods.

Couprie et al. [5] Wang et al. [28] Our Method

bed 38.1 47.6 33.5

chair 34.1 23.5 53.3
ceiling 62.6 68.1 84.8
floor 87.3 84.1 92.8
picture 40.4 26.4 55.3
sofa 24.6 39.1 36.8

table 10.2 35.4 40.1
wall 86.1 65.9 75.6

window 15.9 52.2 59.8
books 13.7 45.0 20.4

TV 6.0 32.4 27.3

Furniture 42.4 16.7 21.5

Objects 8.7 12.4 17.6
Class Acc 36.2 42.2 47.6

Table 2. A comparison of the per-pixel and per-class classification accuracy of the 14 class set proposed by [5] comparing our algorithm to

other state of the art methods.

color in order to generate meaningful segments. We then

use a random forest of decision trees in order to train a clas-

sifier to classify both general categories and more specific

categories on the NYU V2 dataset. We show that our results

are comparable and even improve on state of the art meth-

ods including those that use convolutional neural networks,

super pixels, and advanced structural features. Future work

could include GPU optimization, imposing structural con-

straints as in [17, 8], and combining the labels with Kinect

Fusion or another SLAM system to make a completely la-

beled model of the environment.
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