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Abstract

We present an algorithm for finding temporally consis-
tent occlusion boundaries in videos to support segmenta-
tion of dynamic scenes. We learn occlusion boundaries in a
pairwise Markov random field (MRF) framework. We first
estimate the probability of an spatio-temporal edge being
an occlusion boundary by using appearance, flow, and geo-
metric features. Next, we enforce occlusion boundary conti-
nuity in a MRF model by learning pairwise occlusion prob-
abilities using a random forest. Then, we temporally smooth
boundaries to remove temporal inconsistencies in occlusion
boundary estimation. Our proposed framework provides an
efficient approach for finding temporally consistent occlu-
sion boundaries in video by utilizing causality, redundancy
in videos, and semantic layout of the scene. We have de-
veloped a dataset with fully annotated ground-truth occlu-
sion boundaries of over 30 videos (∼5000 frames). This
dataset is used to evaluate temporal occlusion boundaries
and provides a much needed baseline for future studies. We
perform experiments to demonstrate the role of scene lay-
out, and temporal information for occlusion reasoning in
dynamic scenes.

1. Introduction
Objects in a scene exhibit occlusion due to their depth or-

dering with respect to the camera. In video, occlusion

relationships can change over time due to ego-motion or

movement of the objects themselves. In both cases, edges

of the objects give occlusion boundaries. These occlusion

boundaries are a strong indicator of object segmentations.

Hoiem et al.[11] showed that by reasoning about occlu-

sions, object segmentation, recognition, and scene descrip-

Figure 1. Video frames of an urban scene, occlusion and non-

occlusion boundaries are labeled as red and blue, respectively. We

demonstrate importance of geometric features and temporal redun-

dancy for finding temporally consistent occlusion boundaries.

tion in images can be improved. To locate these edges, some

initial estimates of motion and segmentations are required,

but typical algorithms tend to fail close to these boundaries

due to depth inconsistency. In this paper, we estimate these

occlusion boundaries by combining low level appearance

and flow cues with higher level information like geometric

scene labels. These estimates of boundaries provide signif-

icant improvements to spatio-temporal video segmentation.

Our algorithm learns temporally consistent occlusion

boundaries in dynamic scenes by leveraging spatio-

temporal segmentation of videos. We first segment a

video into spatio-temporal super-voxels [8, 26]. Over-

segmentation provides a large number of candidate bound-

aries for learning occlusion/non-occlusion boundaries. We

extract a broad range of features from each segment’s
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boundary, and train unary and pairwise boundary classifier

and enforce occlusion boundary continuity in MRF. MRF

enables us to encode pairwise edgelet relations into our

model, i.e., probability of an occlusion boundary to be con-

nected to other occlusion and non-occlusion boundaries, re-

ducing false positives. We also demonstrate that aggregat-

ing information about occlusion boundaries over a temporal

window increases performance when compared to a frame

by frame approach. For testing and evaluations, we have

developed a large dataset consisting of outdoor videos, an-

notated with occlusion boundaries.

Our primary contributions are: (1) a method for esti-

mating temporally consistent occlusion boundaries by com-

bining appearance, flow, and semantic scene information

in an MRF framework; (2) a thorough evaluation of our

algorithm by examining feature importance in estimating

occlusion boundaries and comparison with other occlusion

boundary algorithms (see Section 5); (3) in addition, we

introduce a novel dataset of 30 annotated videos (∼5,000

frames) with temporal occlusion boundaries and semantic

information, as existing datasets do not provide temporal

and semantic annotations.

2. Related Research
Geometric layout and temporal consistency in a dynamic

scene provide strong cues for scene understanding and ob-

ject segmentation. Hoiem et al.[11] demonstrated impor-

tance of geometric features for occlusion detection for im-

ages. Saxena et al.[20] proposed a planar model for estimat-

ing 3D structure of the scene from a single image. Applying

image-based methods to individual video frames can pro-

vide occlusion reasoning of the dynamic scene. However,

such image-based methods may not exploit the temporal in-

formation across frames, leading to temporally inconsistent

scene description.

Detecting occlusion boundaries is a well studied prob-

lem, due to its usefulness in understanding the depth, mo-

tion and context of the scene [22, 12]. Fleet et al. [6] gave a

Bayesian formulation where boundaries resulted from dis-

tinguishing local image motion. Stein et al. [22] has shown

that combining appearance and motion cues improves oc-

clusion boundary detection. They further improve occlu-

sion boundary detection by applying a global conditional

random field where the potentials are learned from Ad-

aBoost. He et al.[9] showed that a global model may not

be necessary for sequences with ego-motion and achieved

comparable results by local edge and psuedo-depth maps.

Recently, Sundberg et al. [23] improved over these bound-

aries by computing motion gradients across static bound-

aries. Since these methods rely on local features they are

unable to reduce false positives where intra-object local mo-

tion or appearance variance is high. Typical examples in-

clude waves in the water or trees in the wind. In our method,

semantic/geometric labels help suppress such errors.

Other methods have also been proposed to detect occlu-

sion boundaries in a single image. Many methods infer-

ring geometric labels initially estimate boundaries in single

images [20, 19, 7]. Probabilistic boundary detectors like

Pb [16] use local oriented energy, color, and texture gradi-

ents. Arbeláez et al. [1] improve boundary detection by im-

posing global constraints via spectral clustering which re-

sults in closed contours. Leordeanu et al. [14] proposed Gb,

which reduces the time for generalized boundary detection

by efficient computing boundary normals. In the last year,

probabilistic boundaries have become feasible to use for re-

altime applications. The first method that deserves mention

is Sketch Tokens [15], which classifies edge patches using a

random forest. Following this work, Dollár and Zitnick [5]

introduced a realtime structure learning method for edge de-

tection. From our point of view, both of these methods make

many leaps forward in the single image boundary detection

problem. Yet, extending these methods to videos is a non-

trivial challenge. In this paper we compare to both Sketch

Tokens, and the single-scale (SE-SS T4). and multi-scale

(SE-MS T4) version of Structured Edges. Unlike previous

methods, we use geometric or semantic labels over video

segmentation for finding temporal consistent boundaries in

videos.

In this paper, we leverage video segmentation to find

temporally consistent boundaries in dynamic scenes. We

use flow, and geometric features for estimating each

edgelet’s occlusion probability, and then enforce bound-

ary continuity in a pairwise MRF framework. We demon-

strate the importance of temporal smoothing and geomet-

ric features in occlusion boundary estimation. To verify

our claims, we developed a comprehensive video occlusion

boundary ground truth dataset with a broad set of examples.

3. Dataset and Annotation
Existing Datasets: A comprehensive dataset is necessary

for evaluation of temporal occlusion boundary detection

in dynamic scenes. However, existing datasets are lim-

ited to ground truth annotation for intermittent frames in

a sequence [3], and not all include semantic information.

This poses a hurdle in the study of the role of the scene

structure, and temporal dynamics for occlusion reasoning.

Two widely used datasets for occlusion detection in videos

are proposed by Stein et al. [22] and Sundberg et al. [23].

These datasets are limited in their scope as (1) they pro-

vide ground-truth for only a single frame; (2) they are not

suitable for the study of the role of the scene layout in oc-

clusion reasoning and were not developed for that purpose.

Butler et al. [4] developed MPI-Sintel flow dataset which

contains motion boundaries but does not include the occlu-

sion boundaries in static background. The only dataset with

semantic labels, and occlusion boundaries was proposed by

Hoiem et al. [11]. They proposed a dataset of 50 images
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Figure 2. Video segmentation from Xu et al. [26] at the top row

and from Grundmann et al. [8] at the bottom row. We selected the

over-segmentation (hierarchy level=0) from Grundmann et al. [8]

because of its performance in preserving occlusion boundaries and

longer temporal coherence over our challenging dataset.

with ground truth annotation of outdoor scenes with occlu-

sion boundaries, surface layout, and depth order. Since this

dataset contains only a single image for a scene, it is also

not ideal for our study. To overcome this limitation, we have

developed a comprehensive dataset with temporal occlusion

boundaries and semantic annotations.

A Video Dataset for Occlusion Reasoning: Our dataset

consists of 30 outdoor videos of urban scenes. Some videos

were recorded while walking, some while driving, and oth-

ers were downloaded from YouTube. We also included

few videos from recently released video geometric con-

text dataset from Raza et al.[17]. The videos contain sky,

ground, roads, pavements, rivers, buildings, trees, humans,

and cars. Annotating temporal occlusion boundaries is a

challenging task and there has been no such dataset until

now. We annotate temporal occlusion boundaries in videos

by using video segmentation, similar to the approach by

Hoiem et al.to annotate image dataset using super-pixels

[11]. Recently, two video segmentation algorithms have

been proposed [8, 26]. Both these algorithms provide a hi-

erarchy of segments from a video. We show a video and

segmentation hierarchy output of these algorithms in Fig-

ure 2. The algorithm by Xu et al.gives a high number of

super-voxels with very short temporal life, while the output

from Grundmann et al.gives less super-voxels with longer

temporal life as well as preserving the occlusion bound-

aries. We therefore selected the video segmentation algo-

rithm proposed by Grundmann et al.[8] to annotate tempo-

ral occlusion boundaries.

We use [17, 8] to annotate the video 1. We group together

the spatio-temporal super-voxels that belong to individual

objects, as well as geometric class labels. Geometric classes

annotated in our dataset are sky, ground (roads, pavements,

grass, rivers), planer surfaces (buildings and rocks), porous

(trees and foliage), and movable objects (humans, cars, and

trains). Boundaries between individual objects and geo-

metric classes provide occlusion boundaries. We show the

process of our manual occlusion boundary annotation in

Figure 3. In very few cases, the segmentation algorithm

fails to segment a region due to similarity in color or poor-

lighting condition. These boundaries are not annotated in

1www.videosegmentation.com
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Figure 3. Occlusion boundary annotation: (a) an input video, (b)

spatio-temporal super-voxels, (c) we cluster super-voxels into se-

mantic classes and objects, (d) boundaries between these semantic

classes and objects give occlusion boundaries.
Name Image/Video Ground-truth frames Semantic Labels

CMU Geometric Context [11] Image 50 Yes

CMU Occlusion [21] Video 30 No

BSDS [23] Video 60 No

Ours Video 5042 Yes

Table 1. Comparison with existing datasets providing ground truth

for occlusion boundaries. Our dataset contains 5042 frame across

30 videos with annotations for occlusion boundaries, and geomet-

ric class labels.

our dataset but such cases are only a small fraction of the

whole dataset. The proposed dataset contains 5,042 anno-

tated frames across 30 videos. Table 1 provides a compari-

son of our dataset with existing datasets.

4. Approach
We provide an overview of our proposed method as shown

in Figure 4. We begin by over-segmenting the video into

spatio-temporal super-voxels. Then, for each neighboring

region pair, we extract features to characterize the edgelet

between those regions. In particular, we leverage geometric

context features to consider the semantic layout in occlusion

boundary detection. First, we train a binary classifier to es-

timate the probability for an edgelet to lie on an occlusion

boundary. Next, we enforce occlusion boundary continuity

in MRF model by using pairwise edgelet occlusion bound-

ary probability learned by a separate classifier. Finally, we

perform temporal smoothing of these estimated occlusion

probabilities by aggregating them across successive frames.

We perform detailed experiments to show the importance

of geometric context features and temporal smoothing for

predicting occlusion boundaries in videos. In the following,

we describe each step of our algorithm in detail.

4.1. Video Segmentation
We build our algorithm on the initial boundaries pro-

vided by video over-segmentation. The purpose of using

video segmentation is to find spatio-temporal regions which

are coherent in appearance and motion. We use the video

segmentation algorithm (and the related online system) pro-

posed by Grundmann et al.[8] and its extensions [25]. There

method’s over-segmentation gives a large number of spatio-

temporal super-voxels, which we use as initial candidates

for occlusion boundaries. Classifying occlusions on over-

segmentation boundaries has following advantages: (1) pro-
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Figure 4. Overview of our method. We learn occlusion boundaries

in a pairwise edgelet MRF framework using unary and continuity

occlusion boundary probabilities using edgelet, flow, and geomet-

ric features. Then we temporally aggregate the frame by frame

predictions to remove inconsistent boundaries.

vides good candidate locations for occlusion detection; (2)

it reduces the complexity of the algorithm by not having

to classify individual pixels; (3) by working with super-

voxels we can enforces temporal coherence or occlusion

boundaries; (4) helps in exploiting temporal redundancy

and causality for efficient video processing. Next we de-

velop models for learning occlusion boundaries using these

candidate boundaries.

4.2. Features for Occlusion Boundary Prediction

To train classifiers for occlusion boundary prediction, we

compute a variety of features. Features are computed on

every frame for each edgelet, i.e., boundary between two

regions. An edgelet might span more than one frame, in

which case it will contribute to the training data multiple

times. For each edgelet, we compute features based on

boundary, regions, flow, and geometric context. These fea-

tures are explained next.

Boundary and Region Based Features Segmentation

boundaries provide good candidate locations for finding oc-

clusion boundaries. Longer boundaries with strong color

gradients are more likely to be occlusion boundaries as

compared to weak short boundaries, we compute bound-

ary length and smoothness for each edgelet, as suggested

by [11]. In addition to the boundary features, we also in-

clude the color difference of the regions surrounding the

edgelet.

Optical-flow/Motion Based Features Motion estimates

may have inconsistencies at the occlusion boundaries due

to parallax. To capture this information in our frame-

work we compute optical flow based features at each

edgelet. We compute optical flow using the total varia-

tion method proposed by Wedel et al.[24]. Flow algorithms

have photo-consistency assumption. Therefore, pixels ad-

vected from reference frame It by estimated flow Ft→t+1

should correspond to the next frame It+1. This assumption

breaks down at occlusion boundaries, hence high photo-

consistency residual should be indicative of such bound-

aries [12, 13]. Residual photo-consistency feature FPC is

computed as

FPC(x) = |It(x)− It+1(x+ Ft→t+1(x))| . (1)

If the motion of two interacting objects is different, their

occlusion boundary will have flow discontinuities. To in-

clude flow discontinuities, we compute the flow gradient

given by

FTG,x = ‖ � ux‖, FTG,y = ‖ � vy‖. (2)

Since flow gradient is only computed over two pixels, it

is unable to capture statistics over a larger area. To capture

these proximal flow discontinuities, we compute the vari-

ance of the magnitude of flow F−→mag = ‖Ft→t+1‖ in a spatial

window around a pixel given as

Fmag(x) = E
[(
F−→mag(xi)−E

[
F−→mag(x)

])2]
, (3)

where xi are the pixels in the 3× 3 window around pixel x
and E(·) is the expectation function. Another way to check

inconsistency in flow is to advect pixels by flow Ft→t+1 and

follow them back by flow Ft+1→t, i.e., flow computed from

It+1 to It. If the pixel was not occluded or dis-occluded,

i.e., it was far from an occlusion boundary, an accurate flow

estimate should bring the pixel back to its starting location

in frame It. We use the �2 distance from the starting loca-

tion as a reverse flow constancy feature,

FRC = ‖x− (x′F + Ft+1→t(x
′
F )) ‖, (4)

where x′F = round(x + Ft+1→t(x)). We can similarly

note the inconsistency in the forward and reverse flow an-

gle. Ft→t+1 and Ft+1→t are said to be consistent if they

are 180◦ apart. Any deviation from this is used as a reverse

flow angle consistency feature, which is computed as,

FRC,θ =

∣∣∣∣π − arccos

[
Ft→t+1(x) · Ft+1→t(x

′
F )

F−→mag(x)F←−mag(x
′
F )

]∣∣∣∣ , (5)

where F←−mag = ‖Ft+1→t‖ is the magnitude of the reverse

optical flow.

Geometric Layout Features Geometric layout estimate

provides strong cues for occlusion boundaries and have

been shown to be useful for occlusion reasoning and scene

understanding [10]. For example, an occlusion boundary

should exist between different geometric classes, such as,

between sky and vertical class(buildings, trees, etc). To in-

clude geometric layout estimate for dynamic video scenes,

we use the method proposed by Raza et al.[17]. Their

method provides confidence for each pixel belonging to ge-

ometric classes, such as sky, ground, static-solid, porous,
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and movable-objects. We use the most likely geometric la-

bel and the difference of the average confidence of each ge-

ometric class of neighboring regions as feature for occlu-

sion reasoning.

4.3. MRF Model

Our goal is to maximize the probability of an edgelet e
being an occlusion boundary given the edgelet feature vec-

tor, i.e., P (e = Occlusion|X). We can estimate this proba-

bility in MRF model as,

P (e = Occlusion|X) =
1

Z

N∏
n=1

gn(en, Xn)

∏
m∈Conn.(n)

fmn(en, em)

(6)

where gn(·) is the unary probability of an edgelet being an

occlusion boundary, and fmn(·, ·) is the pairwise term cap-

turing the occlusion probability for an edgelet with relation

to its connected edgelets. The unary term gn(·), the oc-

clusion boundary probability of an edgelet, is computed by

training a random forest classifier. Random forest are use-

ful for their performance on learning high dimensional non-

linear relationships, while providing feature selection and

importance for free [2, 18]. We trained random forest with

105 trees, 11 random features per node, and a maximum

depth of 35 nodes for a tree. We train the unary classifier

with the features from each edgelet of each frame to capture

the temporal variations.

The unary classifier, computes the probability of an in-

dividual edgelet to be an occlusion boundary edgelet. To

enforce continuity of occlusion boundaries, we train a sepa-

rate random forest classifier to estimate the pairwise edgelet

probability. For continuity classifier, we compute the fea-

ture for each edgelet pair by concatenating the unary fea-

tures of both the individual edgelets. The positive pairwise

occlusion boundaries are the examples with both edgelets

having ground truth occlusion boundary label ”true”.

To predict occlusion boundaries for a test video, we

compute occlusion features for each edge of each frame

in the over-segmented video. Then we compute the unary

and pairwise occlusion boundary probabilities. Final occlu-

sion probability for an edgelet is computed using the MRF

model given in Equation (6). We use loopy-belief propa-

gation algorithm to find the approximate solution for Equa-

tion (6). Pair-wise continuity MRF model reduces false pos-

itives over unary occlusion boundary estimate, as shown in

Figure 5. Now, we have assigned each edgelet an occlu-

sion probability and thresholding these probabilities would

give occlusion boundaries. However, these estimates may

be temporally inconsistent, i.e., occlusion probability of an

edgelet may change significantly from one frame to the

next.

����� ������
����� ����� ������
�����

Figure 5. Pairwise MRF reduces the false positives in unary pre-

diction as shown above. The yellow, green, and red boundaries

show true positives, false positives, and false negatives, respec-

tively.

To provide temporal consistent occlusion boundaries,

we again leverage from video segmentation to temporally

smooth the occlusion probability of an edge over a tempo-

ral window. The temporal window starts where an edgelet

is first formed by two neighboring spatio-temporal regions.

Once we have processed the number of instances of a

unique spatio-temporal edgelet equal to the length of tem-

poral window, we average the occlusion boundary proba-

bilities in the temporal window for that edgelet, and ignore

all future instances of that edgelet. This results in an occlu-

sion boundary algorithm which is linear to the number of

unique edgelets in a video than the algorithms which treat

video as individual frames and have a complexity of number

of edgelets × number of frames. We experiment with dif-

ferent lengths of temporal windows to filter out temporally

inconsistent boundaries (Section 5).

5. Results
In this section, we report the quantitative and qualita-

tive results of our algorithm. Specifically, we measure the

performance of our method as precision vs. recall (PR)

curves estimated over 5-fold cross-validation by varying the

threshold. To compute the precision vs. recall curve for

our experiments with temporal smoothing, we choose the

temporal window with maximum F-1 measure. In our ex-

periments, the occlusion boundary prediction performance

becomes stable for a temporal window of size greater than

15 frames. The plot in Figure 6 shows that geometric fea-

tures combined with temporal smoothing results in the best

performance. Also, note that temporal smoothing improves

performance for each feature set. Table 2 shows F-1 mea-

sure of each case.

Our results show qualitative improvement in occlusion

boundary detection using geometric context (please see sup-

plementary video). In Figure 7, we show the importance of

each feature set from the random forest’s out-of-bag train-

ing estimate. It is evident from the bar-plot, that geometric

features provide more discriminative information for occlu-

sion boundary detection. We show examples to verify the

importance of these geometric features, in Figure 8. Note,

that the inclusion of geometric features improves occlusion

boundary detection by removing boundaries within a ge-

ometric class, e.g., boundaries appearing on the ground,

across sky, or within trees. Further, they provide impor-

tant cues to enforce a boundary between different geometric

classes.
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Figure 6. Performance evaluation: Precision vs. recall (PR) curves for occlusion boundary detection on our dataset. For our algorithm, we

used a temporal window of 30 frames. Legend: ALL (appearance+flow+geometric features), App (appearance features only), and Temp

(with temporal smoothing). (Left) Results show that geometric features combined with temporal smoothing yields in the best performance

compared to other feature combinations.(Right) Comparison of our method with Sketch Tokens [15], SE-MS T4 [5], SE-SS T4 [5], and

Gb [14].

Features Ind. Frames Temporal
ALL 0.58 0.60

Appearance+Flow 0.53 0.55

Appearance Only 0.52 0.53

Table 2. Comparison of feature sets by F-1 measure. Appearance

only uses “Boundary and Region Based Cues”. Appearance+Flow

adds to it “Optical-Flow Based Cues.” Individual frame-based pro-

cessing considers each frame individually in the video, whereas

the temporal approach takes advantage of causality in videos, by

processing over a 30 frame temporal window.

Algorithm F-1
Ours 0.60
Sketch Tokens [15] 0.42

SE-MS T4 [5] 0.46

SE-SS T4 [5] 0.43

Gb [14] 0.21

Table 3. Performance comparison of our method with existing al-

gorithms. Our method exploits causality in videos for temporal

occlusion boundary detection.

�

���

���

���

Figure 7. Feature importance estimate from random forest over

5-fold cross-validation. The bar-plot shows the number of votes

casted by each feature for the correct class in out-of-bag esti-

mate [2]. Geometric confidence FGConf estimate of the neighbor-

ing regions stands out as most useful along with their difference

FGDiff, and the absolute sum FGDSum. Other useful features are

flow magnitude variance Fmag, photo-consistency FPC, and color

feature FClr.

Some misclassification results are shown in Figure 9.

A reason for occlusion boundary misclassification is that

we have a very challenging dataset with fast jittery mo-

����������	
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 ��������
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Figure 8. Qualitative analysis of feature importance: Figure shows

qualitatively that geometric features improve accuracy signifi-

cantly. Visual comparison is performed with a temporal window

of size = 30, and threshold is selected at the peak of F-1 mea-

sure. Occlusion and non-occlusion boundaries are shown in red

and blue, respectively.

tion. Spatio-temporal segments tend to break quickly in

such videos, resulting in very short lived temporal bound-

aries. For these boundaries temporal smoothing is not ef-

fective. Some mis-classifications also occur in shadows due

to bad lighting conditions.

%����
�����$ !��
	��	��%����
�����$ !��
	��	��

Figure 9. Failure cases. Occlusion boundaries are mis-predicted

due to shades and fast jittering movement. Temporal smoothing

is not useful in fast jittery motion sequences due to short temporal

life of segments.

Direct comparisons and evaluations to other efforts and

datasets, with quantitative measures, is hard for our work

as there is no such dataset with temporal occlusion bound-

ary, and semantic label annotations (see Section 3). In any

case, we do undertake and provide a comparison with the

occlusion boundaries detected with other occlusion bound-

ary detection algorithms[14, 15, 5]. We applied their pub-

licly available code on our dataset. Table 3 and Figure 6

(Right) shows the comparison of our method with the ex-
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Figure 11. Qualitative results for occlusion boundary prediction: (left) Ground truth, (right) Predicted occlusion boundaries using geo-

metric, flow, and appearance features with temporal smoothing (temporal window size=30). Occlusion and non-occlusion boundaries are

shown in red and blue, respectively.

Figure 10. Qualitative comparison of occlusion boundaries pre-

dicted by Gb [14], Sketch Tokens [15], and multi-scale (SE-

MS T4) and single scale (SE-SS T4) Structured Edges [5]. The

probabilistic boundaries are thresholded using the best F-1 score

over all sequences.

isting algorithms. To compensate for occlusion boundaries

detected by different algorithms in proximity of our ground-

truth, we dilate our boundary labelling by a pixel (i.e., an

error margin of 3 pixels). We achieve better performance

as compared to other methods. Our algorithm can avoid

making false-positive detection within a geometric class,

e.g., within tree regions, or boundaries on the ground but

other algorithms lack this ability. In addition, by leveraging

spatio-temporal occlusion boundaries, we can learn features

from all the temporal samples of occlusion boundaries. Fig-

ure 10 shows qualitative comparison of the above compar-

ison by overlaying occlusion boundaries threholded at best

F-1 score. It shows that our algorithm can detect occlu-

sion boundaries between different geometric classes, and

avoid false positives within a geometric class. Sketch to-
kens algorithm detects most of the boundaries as occlusion

boundaries, while Gb, SE-MS T4, and SE-SS T4 detect less

boundaries with very few false positives. It should be noted

that in our temporal occlusion boundary detection approach,

we exploit causality to process the videos efficiently. Tem-

poral occlusion boundary detection only requires T (i.e.,
length of temporal window) samples of each unique bound-

ary but other approaches require processing the whole video

	����
������ ������������� ������ �������	
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sequence. Operating on a temporal window makes it pos-

sible for our algorithm to be be applied to streaming video

approaches. Figure 11 shows more qualitative results of our

approach.

6. Conclusion
We have presented an approach for finding temporally

consistent occlusion boundaries in dynamic outdoor scenes.

We learn occlusion boundaries using edge, flow, and ge-

ometric context based features in a pairwise edgelet con-

tinuity MRF model. The results are computed on the

spatio-temporal boundaries provided by over-segmentation

[8]. We choose graph-base video segmentation algorithm

for its accuracy in preserving occlusion boudaries, tempo-

ral coherence, and ability to handle long video sequences

efficiently. However, our approach for learning occlusion

boundaries is independent of any particular video segmen-

tation algorithm and should perform well using other video

over-segmentation algorithms. The results in this study

demonstrate the importance and benefit of integrating scene

layout for occlusion reasoning. Moreover, we show that

temporal smoothing improves accuracy over independent

frame-by-frame processing. Our proposed algorithm also

processes videos efficiently by exploiting causality and tem-

poral redundancy using spatio-temporal video segmenta-

tion. We have also developed a comprehensive dataset with

ground truth temporal occlusion boundary annotations and

a broad set of examples containing dynamic scenes. In the

future, we plan to integrate more semantic classes and depth

information in our method.
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