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Abstract Purpose: Basic surgical skills of suturing and knot tying are an essential
part of medical training. Having an automated system for surgical skills assessment
could help save experts time and improve training efficiency. There have been some
recent attempts at automated surgical skills assessment using either video analysis
or acceleration data. In this paper, we present a novel approach for automated
assessment of OSATS based surgical skills and provide an analysis of different
features on multi-modal data (video and accelerometer data).

Methods: We conduct the largest study, to the best of our knowledge, for basic sur-
gical skills assessment on a dataset that contained video and accelerometer data for
suturing and knot-tying tasks. We introduce “entropy based” features – Approxi-
mate Entropy (ApEn) and Cross-Approximate Entropy (XApEn), which quantify
the amount of predictability and regularity of fluctuations in time-series data. The
proposed features are compared to existing methods of Sequential Motion Texture
(SMT), Discrete Cosine Transform (DCT) and Discrete Fourier Transform (DFT),
for surgical skills assessment.

Results: We report average performance of different features across all applicable
OSATS criteria for suturing and knot tying tasks. Our analysis shows that the
proposed entropy based features out-perform previous state-of-the-art methods
using video data. For accelerometer data, our method performs better for suturing
only. We also show that fusion of video and acceleration features can improve
overall performance with the proposed entropy features achieving highest accuracy.

Conclusions: Automated surgical skills assessment can be achieved with high accu-
racy using the proposed entropy features. Such a system can significantly improve
the efficiency of surgical training in medical schools and teaching hospitals.
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1 Introduction

Surgical trainees are required to acquire specific skills during the course of their
residency before performing real surgeries. Surgical training involves constant prac-
tice of skills and seeking feedback from supervising surgeons, who are generally
very busy. Furthermore, manual assessments, even by experts are subjective and
prone to errors. Objective Structured Assessment of Technical Skills (OSATS) is
adopted in most medical schools as a standard to assess surgical residents [1]. The
OSATS grading scheme includes specific criteria like Respect for Tissue (RT),
Time and Motion (TM), Instrument Handling (IH), Suture Handling (SH), Flow
of Operation (FO), Knowledge of Procedure (KP), and Overall Performance (OP).
While adopting OSATS grading system reduces the subjectivity of assessment to
some extent, it is quite resource limiting as only a few expert surgeons can do the
scoring and provide feedback.

To address the time consuming and subjective nature of manual assessments,
recent works have proposed techniques that analyze motion from videos [2–5] and
wearable sensors to assess surgical skills [6,7]. These approaches showcase different
feature types to perform OSATS assessments. We propose entropy based features
that quantify the amount of predictability and regularity of fluctuations in time-
series data inherent in surgical motions. We show, using experiments on a large
data set, that these new features outperform existing features types for surgical
skills assessment. Additionally, we also extend our comparison to include different
feature types for both acceleration data (from wearable sensors) and video analysis.

Contributions: (1) We propose a novel way of leveraging the irregularity
in surgeon motions to assess surgical skills using entropy based features. (2) We
provide a comparison of existing techniques on both video and acceleration data.
(3) We perform the biggest study, to our knowledge, on assessing basic surgical
tasks like suturing and knot tying using video and acceleration data.

2 Background

The problem of automated surgical skills assessment has recently seen some good
progress. Pioneering efforts were based on robotic minimally invasive surgery
(RMIS) and focused on gesture recognition and skill assessment using Hidden
Markov Models [8,9]. Some other methods like linear dynamical systems (LDS)
and bag of words (BoW) models have also been used for RMIS based skill assess-
ments [10,11].

Video based skill assessments have also gained interest in recent years. For
example, Augmented BoW (A-BoW) features introduced in [2], modeled motion
as short sequences of events and the underlying temporal and structural informa-
tion is automatically discovered and encoded into BoW models. Other techniques
based on the holistic analysis of time series data include Motion Texture(MT) [3]
for prediction of surgical skill scores by encoding video motion dynamics into frame
kernel matrices followed by texture analysis. Sequential Motion Textures (SMT)
was proposed in [4] which included the sequential information into MT technique
by dividing the time series into sequential time windows. More recently frequency
based features (DFT and DCT) [5,12] have also been used for surgical skill clas-
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sification. An exhaustive analysis of video based OSATS assessments is presented
in [12], however, results for only video data are presented.

The techniques mentioned above do provide encouraging results for video based
surgical skill assessment. However, these studies use very few participants which
limits their ability to capture the wide variation in surgical skills. An expert sur-
geon’s hand motion might be more clean, distinct, ordered and sequential as com-
pared to a non-expert and having more samples helps capture skills of varying lev-
els. Most of the works mentioned above have focused on granularity (MT, SMT)
and repetitiveness (DFT, DCT) of motion, however, disorder in motion has not
been addressed. Also, they do not include studies on wearable motion sensing
devices such as accelerometers that may provide precise motion information for
surgical skills assessment.

In the computer vision literature, there has been some recent progress in as-
sessing quality of actions, especially in the sports domain. In [13], the authors
presented an approach of using pose with frequency features to predict sports
scores. More recently, [14] used entropy features with pose to predict scores for
Olympic diving videos. We take inspiration from their work and propose to encode
predictability in surgical motions via entropy based features for skills assessment.

In this work, we provide comparative analysis of several features using video
and acceleration data on the largest group of participants, to the best of our
knowledge, published thus far. We also propose entropy based features (encoding
orderliness in motion) and demonstrate their efficacy as they outperform other
types of features for both acceleration and video data.

3 Methodology

We believe that the difference in the predictability of the motions of surgeons
with varying skills levels can be used to assess the basic surgical skills, for specific
tasks like suturing and knot tying. An expert will have more predictable hand
motion while a beginner will exhibit erratic and irregular patterns. We propose to
measure this difference in predictability of motions using entropy based features
“Approximate Entropy (ApEn)” and “Cross Approximate Entropy (XApEn)”.

Figure 1 shows the flow diagram for video and accelerometer data processing.
For videos, we follow the standard approach, as used by [4,5,12], for encoding
motion information from video data into a multi-dimensional time series using
Spatio-Temporal Interest Points (STIPS). As presented in these previous works,
we use expert videos to learn motion classes via k-means clustering for different
number of clusters K. These motion classes are then used to convert each video
into a multi-dimensional time series Tv ∈ <K×N , where K represents the number
of motion classes learned (number of clusters used in k-means clustering) and N
is the number of frames in the video. For the accelerometer data, the x, y and z
acceleration time series captured from two accelerometers for each surgical task
are concatenated to produce a time series Ta ∈ <6×Q, where Q is the number of
samples captured. We also use individual accelerometer time series data for our
analysis as discussed in Section 5. The time series data obtained for both modal-
ities is then used for feature extraction and skill prediction. Sequential forward
feature selection (SFFS) is used to reduce the dimensionality of the features used
in comparison and a Nearest-Neighbor (NN) classifier is used for classification.
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Fig. 1 Flow diagram for processing the video and accelerometer data.

3.1 Entropy Features for Skill Assessment

Entropy is a measure of uncertainty in any data. For time series data analysis,
entropy based features are used to quantify the amount of predictability and reg-
ularity of fluctuations in the time series data. In this paper, we propose to use
entropy based features ‘Approximate Entropy’ and ‘Cross Approximate Entropy’
for assessing the skill of surgeons on various OSATS criteria. The details of both
these techniques are given below.
Approximate Entropy: Approximate entropy is a measure of regularity in time
series data initially proposed in [15]. A more predictable time series would have
a low approximate entropy value whereas an irregular time series would have a
higher entropy. For a one-dimensional time series, the approximate entropy ‘ApEn’
is dependent on three parameters: embedding dimension (m), radius (r) and time
delay (τ). The embedding dimension (m) represents the length of the series which
is being checked for repeatability, the radius (r) is used for local probabilities
estimation and time delay (τ) is selected in a way to make the components of the
embedding vector independent enough. For a given time series T ∈ <N , we form
a sequence of embedding vectors x(1), x(2), . . . , x(N −m+ 1), where x(i) is given
by x(i) = [Ti, Ti+τ , . . . , Ti+(m−1)τ ], for 1 ≤ i ≤ N − (m − 1)τ . Then, for each
embedding vector x(i), the frequency of repeatable patterns Cmi (r) is calculated
by

Cmi (r) =
1

N − (m− 1)τ

∑
j

H(r − dist(x(i), x(j))) (1)

where H is the Heaviside step functions and dist(x(i), x(j)) = max(|T (i + (k −
1)τ)− x(j + (k − 1)τ)|) for k ∈ [1, 2, . . . ,m]. The conditional frequency estimates
are calculated by

Ωm(r) =
1

N − (m− 1)τ

N−(m−1)τ∑
i=1

ln(Cmi (r) (2)

Ω(r) is then used to calculate the approximate entropy for the time series T ∈ <N
as ApEn(m, r, τ) = Ωm(r)−Ωm+1(r).

In order to show how ‘ApEn’ varies for signals with different predictability, we
generate a set of sinusoids V . A pure sine wave without any noise can be consid-
ered as completely ‘predictable’ since it has a fixed repeating pattern. However,
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adding noise to the same function would make it less predictable. We induce white
Gaussian noise into our set of sinusoids V to vary the signal-to-noise (SNR) of the
set of signals. The range of SNR in the set V was kept from 1 to 50. Figure 2(a)
shows some sample sinusoidal waves in the set V with different SNR. Figure 2(b)
shows the variation of ApEn with varying SNR and radius. As expected, we can
see that the higher the SNR (lesser noise), the lower the value of ApEn gets for
any value of r.
Cross Approximate Entropy: Cross approximate entropy ‘XApEn’ is a measure
of asynchrony between two time series. For two given time series [T, S] ∈ <N , the
embedding vectors are defined as x1(i) = [Ti, Ti+τ , . . . , Ti+(m−1)τ ] and x2(i) =
[Si, Si+τ , . . . , Si+(m−1)τ ], for 1 ≤ i ≤ N − (m− 1)τ . The frequency of repeatable
patterns Cmi (r)(T ||S) for the embedding vectors x1(i) and x2(i) is then calculated
by

Cmi (r)(T ||S) =
1

N − (m− 1)τ

∑
j

H(r − dist(x1(i), x2(j))) (3)

Ωm(r) is then calculated using

Ωm(r) =
1

N − (m− 1)τ

N−(m−1)τ∑
i=1

ln(Cmi (r)(T ||S)) (4)

This is then used to finally calculate the cross approximate entropy between the
two time series by XApEn(m, r, τ) = Ωm(r)(T ||S)−Ωm+1(r)(T ||S).

Similar to ApEn, we generate a set of sinusoids W to show the variation of
XApEn for varying synchrony between different signals. The set W consists of
sinusoids with the same SNR but with phase varying from 0 to π. Figure 2(c)
shows some sample of sinusoids in this set. Figure 2(d) shows how the value of
XApEn varies when the phase difference between the signals varies. We can see
that the value of XApEn reaches a max at about 0.5π and then reduces back to
0 at π phase difference. It is important to note that two sinusoids with a phase
difference of π are completely out of phase but in perfect synchrony. This is because
if one increases the other decreases with the same rate. This should result in a very
low XApEn value which we observe in Figure 2(d) as well.

Surgical motions in suturing and knot tying tasks are inherently repetitive in
nature. The repetitiveness of motion can be encoded using frequency features.
However, frequency features would not be able to capture the sudden movements
or jerks in motion that define the competitiveness of a surgeon. They do not quan-
tify the orderliness or predictability of patterns. On the other hand, approximate

Fig. 2 (a) Sample sine waves with different SNR. (b) Variation of ‘ApEn’ with respect to
SNR (c) Sample sine waves with different phases (d) Variation of ‘XApEn’ with respect to
phase difference between signals
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Fig. 3 Image on left shows a screenshot from ELAN software for synchronization of video and
accelerometer data. Middle column and right most column shows sample frames for suturing
and knot tying, respectively. The accelerometers can also be seen placed on the wrists and the
needle-holder

entropy represents the likelihood of occurrence of similar patterns of observations.
A time series containing many repetitive patterns has lower approximate entropy
and is more predictable.Therefore, using ‘ApEn’ features can potentially capture
repetitiveness along with more finer details crucial for skills assessment. Moreover,
in surgical motions, it is also important for surgeons to move their hands and tools
in a smooth motion together. We think that ‘XApEn’ features can potentially cap-
ture information on how synchronized the surgeon’s hands and tools are with each
other. We use both the entropy based features described above to encode surgical
motion predictability for our analysis.

4 Experimental Evaluation

4.1 Data Set

Our data set consists of video and accelerometer data for evaluating the perfor-
mance of proposed and previous state-of-the-art features for skill assessment. We
use the surgical skills dataset from [5] for direct comparisons. This dataset had 18
participants. We augmented this dataset with additional 23 participants to a total
of 41 participants consisting of surgical residents and nurse practitioners, essen-
tially doubling the data set from previous studies. In this data set, each participant
undertook two instances each of suturing and knot tying tasks. For each instance,
video data was captured at 30 frames per second at a resolution of 640×480 using
a standard RGB camera. We collected 4000 and 1000 frames for each trial of su-
turing and knot tying, respectively. Each video was captured in different lighting
conditions and from varying camera angles to make the data set invariant to light-
ing and viewing angle. Figure 3 shows some sample frames from the videos. Due
to acquisition errors, some videos had to be excluded from the data set resulting
in 74 videos for each surgical task.

The acceleration data was captured using Axivity sensors. Two accelerometers
were used for each surgical task. For knot tying, one accelerometer was attached
to each hand wrist whereas for suturing, one accelerometer was attached to the
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Table 1 Skill class distribution. Each cell contains two values V : A, where ‘V ’ = No. of
participants for video data, ‘A’ = No. of participants for acceleration data.

Suturing Knot Tying
RT TM IH SH FO TM SH FO OP

Beginner 38 : 28 46 : 34 47 : 35 47 : 35 45 : 33 27 : 18 27 : 19 22 : 15 23 : 15
Intermediate 22 : 20 15 : 15 13 : 13 17 : 17 18 : 18 22 : 17 28 : 21 28 : 22 28 : 22

Expert 14 : 14 13 : 13 14 : 14 10 : 10 11 : 11 25 : 19 19 : 14 24 : 17 23 : 17

dominant hand wrist and one to the needle-holder. The data captured consisted
of x, y and z acceleration values resulting in a 3-dimensional time series for each
accelerometer. At the start of each instance, all participants were asked to rapidly
shake the hands/instruments with the accelerometers to get the synchronization
waveform that is used to align the starting point of acceleration data with the video
using the ELAN software (a snapshot shown in figure 3). The accelerometer data
had some additional noise as the accelerometers were not being attached properly,
resulting in unwanted jerks. For some cases, the accelerometer even fell off during
a session and had to be reattached. All such cases were removed from the data
set resulting in a final 54 acceleration data recordings for knot tying and 62 for
suturing. The average length of acceleration time series data was 8434 for suturing
and 1919 for knot tying. A complete class distribution for video and accelerometer
data is given in Table 1.

4.2 Parameter Selection

Both the entropy based features proposed in this paper were evaluated on our
data set. In order to compare the performance of these features, we also evaluate
previous state-of-the-art methods such as SMT [4] and DCT/DFT [5] in the same
experimental setup. Traditional methods such as HMM, BoW and A-BoW were
reported to perform poorly as compared to SMT and DCT/DFT features in [5]
and hence were excluded from the experiments.

We used K ∈ [2, 3, 4, 5, 6, 7, 8, 9, 10, 12, 14, 16, 18, 20] for k-means clustering to
learn motion classes (the number of time series dimensions used) for analysis of
video data. The accelerometer data, however, did not have this dependency with
a 6-dimensional time series (concatenation of 3-dimensional time series from two
accelerometers used) for all evaluations. SMT and frequency based features (DCT
and DFT) were implemented as presented in [4,5] for both modalities. As described
in the previous section, entropy based features are dependent on some parameters
which need to be specified. These are mainly the embedding dimension (m) and
the radius (r). In order to be able to differentiate time series data on the basis
of regularity, radius (r) can have value between 0.1 to 0.25 times the standard
deviation of the time series, whereas m = 1 and m = 2 both work equally well
[15].

For ApEn, the approximate entropy for each dimension of the time series is
calculated for values of r = [0.1, 0.13, 0.16, 0.19, 0.22, 0.25] resulting in a feature
vector θApEn ∈ <6K , where K is the dimension of time series used (6 for accel-
eration data but variable for video data). However, for XApEn, we use the same
values of r for accelerometer data but only use r = 0.2 for videos. This was done
since it was observed that the value of XApEn did not vary much for different
values of r for videos. Moreover, the computation time for XApEn also increases
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significantly with increasing dimensionality of time series as is the case for videos.

We obtain a final feature vector for cross entropy θXApEn ∈ <
RK(K−1)

2 , where R
denotes the number of radius values used in evaluation. We also check the perfor-
mance of fusing ApEn and XApEn before classification by concatenation resulting

in a feature vector θApEn+XApEn ∈ <
RK2+K(12−R)

2 .
The value of m is set as 1 for all evaluations. For fair comparisons with pre-

viously proposed techniques, we use similar classification methodology and adopt
Leave-one-out cross validation (LOOCV) and use a Nearest Neighbor (NN) clas-
sifier after selecting features using SFFS.

5 Results and Discussion

The features described in the previous section were evaluated on video and ac-
celerometer data for suturing and knot tying tasks for all applicable OSATS cri-
teria. For video, we calculate the average classification accuracy over all OSATS
criteria of different features for all the values of K in order to find the optimum
number of clusters to use for each feature type. The average accuracy Â is calcu-
lated using Â = 1

O

∑
OSATS

AK , where AK is the accuracy using K clusters for a

specific OSATS criteria, and O represents the total number of applicable OSATS
criteria for that task. Figure 4 shows the comparison of different features for sutur-
ing and knot tying tasks using video data. We can see that entropy based features
are able to achieve the highest average accuracy for both suturing and knot tying
tasks using combined ApEn and XApEn features.

For accelerometer data, we evaluate the different features for both the ac-
celerometers attached for each task; wrist and needle-holder for suturing and hand
wrists for knot tying. Figure 5 shows the average classification results achieved. Its
evident from Figure 5 that the combination of data from both accelerometers per-
forms better than individual accelerometers for both tasks and all feature types.
However, it is interesting to see a difference in accuracy achieved using accelerom-
eters attached on different positions for skill assessment. This analysis can show
which motions are more skill relevant for the two tasks at hand and can potentially
be used to give better feedback to surgeons on how to improve their performance.

Fig. 4 Average classification accuracy versus value of K used (number of dimensions of time
series) for video data only. (Best viewed in color)
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Fig. 5 Average classification results for accelerometer data using individual and combination
of the two accelerometers attached. (Best viewed in color)

The highest average accuracy and the corresponding standard deviations achieved
for different techniques are given in Table 2. We can see that entropy based fea-
tures perform better for video data as compared to state-of-the-art techniques. For
accelerometer data, entropy based features perform better for suturing but not so
well for knot tying. The reasons for this is mainly because entropy based features
are dependent on the dimension of the time series used (can also be seen in Fig-
ure 4 for increasing values of K); the higher the dimension of time series being
evaluated, the more information is captured especially for cross entropy (XApEn).
In case of accelerometer data, we only have 3-axis acceleration values so entropy
based features cannot capture enough information. However, it is interesting to
see that entropy based features still perform better for suturing task.

Figure 6 shows the results for individual OSATS criteria by using the optimal
K for each feature type (as indicated in Table 2). Comparing the two modali-
ties, we see that all the techniques perform better for video as compared to ac-
celerometer. This can be explained by the fact that accelerometers only capture the
hands/needle-holder 3-D acceleration data whereas videos can be used to extract
all motions (both hands, instruments etc.).

Comparing results for individual modalities shows us that using video data
performs much better than accelerometer for all feature types. However, it is pos-
sible that a fusion of features from video and accelerometer data performs better
compared to individual modalities. Therefore, we adopt an early fusion scheme
and run our analysis for frequency(DCT and DFT) and best performing entropy
features (ApEn+XApEn). The features are fused via concatenation. Since some of
the accelerometer data had to be excluded (as described in Section 4), we only use

Table 2 Highest average classification accuracies with standard deviations for different tech-
niques using multi-modality data. For video data, K corresponding to highest accuracy is also
shown.

Video Accelerometer
Suturing Knot Tying Suturing Knot Tying

SMT 78.9 ± 5.7 (K=3) 61.1 ± 2.3 (K=10) 72.9 ± 4.5 72.7 ± 5.3
DCT 91.9 ± 3.4 (K=9) 89.5 ± 2.8 (K=9) 84.5 ± 4.9 83.3 ± 2.1
DFT 92.4 ± 3.7 (K=7) 86.8 ± 2.8 (K=10) 85.5 ± 3.0 84.7 ± 4.1
ApEn 93.7 ± 2.2 (K=20) 89.2 ± 5.3 (K=20) 80.3 ± 2.1 75.0 ± 6.5

XApEn 91.4 ± 3.0 (K=16) 90.9 ± 4.3 (K=20) 81.0 ± 4.0 66.2 ± 4.1
ApEn+XApEn 95.1 ± 3.1 (K=16) 92.2 ± 3.0 (K=14) 86.8 ± 4.5 78.7 ± 5.8
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Fig. 6 Individual OSATS criteria results for video and accelerometer data. For each feature,
the optimal value of K (as indicated in Table 2) was used. (Best viewed in color)

videos for which the corresponding accelerometer data is available i.e 54 for knot
tying and 62 for suturing. Tables 3 and 4 show the average accuracies (over all OS-
ATS criteria) with standard deviations using different modalities for suturing and
knot tying, respectively. We can see that combining video and accelerometer data
deteriorates performance for DCT and DFT features as compared to video. For
ApEn+XApEn, the performance improves for knot tying but has a slight decrease
as compared to video for suturing. Overall, the highest performance is achieved
using ApEn+XApEn features for each task (shown in bold).

In order to check the robustness of different features, we perform another ex-
periment by using harder cross validation schemes of 2,5 and 10 fold. We again
compare ApEn+XApEn with DCT and DFT. For this analysis, the best perform-
ing modality for each feature being compared was used. Therefore, we use video
data with DCT and DFT for both tasks, whereas, we use video data for sutur-
ing and video+accelerometer data for knot tying with ApEn+XApEn (refer to
Tables 3 and 4). Figure 7 shows the average accuracies over all OSATS criteria
for the different cross validation schemes used. One can see that the proposed
ApEn+XApEn features outperform frequency based features for all cross valida-
tion schemes. This shows that the proposed entropy based features are also robust
to the amount of training data available as compared to frequency features.

Although the previously proposed frequency features perform reasonably well
(especially for accelerometer data), we think that they perform well on repetitive
surgical tasks like suturing and knot tying. We believe that the proposed entropy
based features would perform better in other surgical procedures as well since they
try to capture the irregularity in motion instead of just the repetitiveness.
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Table 3 Average accuracies with standard deviations for corresponding feature types using
different data modalities for suturing task. Highest performance across all modalities and
feature types is shown in bold

Video Accelerometer Video+Accelerometer
DCT 90.6 ± 3.1 84.5 ± 4.9 86.8 ± 7.7
DFT 87.1 ± 1.1 85.5 ± 3.0 86.1 ± 2.1

ApEn+XApEn 93.9 ± 3.7 86.8 ± 4.5 93.2 ± 6.6

Table 4 Average accuracies with standard deviations for corresponding feature types using
different data modalities for knot tying task. Highest performance across all modalities and
feature types is shown in bold

Video Accelerometer Video+Accelerometer
DCT 91.7 ± 6.1 83.3 ± 2.1 83.8 ± 4.9
DFT 86.1 ± 1.9 84.7 ± 4.1 81.0 ± 5.5

ApEn+XApEn 90.3 ± 3.1 78.7 ± 5.8 94.0 ± 2.8

Fig. 7 Average classification accuracies for different cross validation schemes by using highest
performing modality. For DCT and DFT, video data was used for both tasks. Whereas, for
ApEn+XApEn, video data was used for suturing and video+accelerometer data was used for
knot tying (see Tables 3 and 4 for best performances). (Best viewed in color)

6 Conclusion

We presented a comparison of the proposed entropy based features for assessment
of surgical skills using video and accelerometer data with previous state-of-the-art.
Overall, our analysis showed that videos are better for extracting skill relevant
information as compared to accelerometer. However, a fusion of video and ac-
celerometer features can improve on performance. Also, the proposed combination
of ApEn and XApEn outperforms state-of-the-art features.

Having an automated system for surgical skills assessment can significantly
improve the quality of surgical training. It would allow the surgical trainees to
practice their basic skills a lot more with valuable feedback. Moreover, such a
system could also save time for expert surgeons that is spent on trainee assessment.
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