
Speeding up Relational Reinforement LearningThrough the Use of an Inremental First OrderDeision Tree LearnerKurt Driessens, Jan Ramon and Hendrik BlokeelDepartment of Computer Siene K.U.LeuvenCelestijnenlaan 200A, B-3001 Leuven, Belgiumfkurt.driessens,jan.ramon,hendrik.blokeelg�s.kuleuven.a.beAbstrat. Relational reinforement learning (RRL) is a learning teh-nique that ombines standard reinforement learning with indutive logiprogramming to enable the learning system to exploit strutural know-ledge about the appliation domain.This paper disusses an improvement of the original RRL. We introduea fully inremental �rst order deision tree learning algorithm TG andintegrate this algorithm in the RRL system to form RRL-TG.We demonstrate the performane gain on similar experiments to thosethat were used to demonstrate the behaviour of the original RRL system.1 IntrodutionRelational reinforement learning is a learning tehnique that ombines reinfore-ment learning with relational learning or indutive logi programming. Due tothe use of a more expressive representation language to represent states, ationsand Q-funtions, relational reinforement learning an be potentially appliedto a wider range of learning tasks than onventional reinforement learning. Inpartiular, relational reinforement learning allows the use of strutural repres-entations, the abstration from spei� goals and the exploitation of results fromprevious learning phases when addressing new (more omplex) situations.The RRL onept was introdued by D�zeroski, De Raedt and Driessens in[5℄. The next setions fous on a few details and the shortomings of the originalimplementation and the improvements we suggest. They mainly onsist of afully inremental �rst order deision tree algorithm that is based on the G-treealgorithm of Chapman and Kaelbling [4℄.We start with a disussion of the implementation of the original RRL system.We then introdue the TG-algorithm and disuss its integration into RRL toform RRL-TG. Then an overview of some preliminary experiments is given toompare the performane of the original RRL system to RRL-TG and we disusssome of the harateristis of RRL-TG.



Initialise Q̂0 to assign 0 to all (s; a) pairsInitialise Examples to the empty set.e := 0while truegenerate an episode that onsists of states s0 to si and ations a0 to ai�1(where aj is the ation taken in state sj) through the use of a standardQ-learning algorithm, using the urrent hypothesis for Q̂efor j=i-1 to 0 dogenerate example x = (sj ; aj ; q̂j),where q̂j := rj + maxa0Q̂e(sj+1; a0)if an example (sj ; aj ; q̂old) exists in Examples, replae it with x,else add x to Examplesupdate Q̂e using TILDE to produe Q̂e+1 using Examplesfor j=i-1 to 0 dofor all ations ak possible in state sj doif state ation pair (sj ; ak) is optimal aording to Q̂e+1then generate example (sj ; ak; ) where  = 1else generate example (sj ; ak; ) where  = 0update P̂e using TILDE to produe ^Pe+1 using these examples (sj ; ak; )e := e + 1 Fig. 1. The RRL algorithm.2 Relational Reinforement LearningThe RRL-algorithm onsists of two learning tasks. In a �rst step, the lassialQ-learning algorithm is extended by using a relational regression algorithm torepresent the Q-funtion with a logial regression tree, alled the Q-tree. Ina seond step, this Q-tree is used to generate a P-funtion. This P-funtiondesribes the optimality of a given ation in a given state, i.e., given a state-ation pair, the P-funtion desribes whether this pair is a part of an optimalpoliy. The P-funtion is represented by a logial deision tree, alled the P-tree.More information on logial deision trees (lassi�ation and regression) an befound in [1, 2℄.2.1 The Original RRL ImplementationFigure 1 presents the original RRL algorithm. The logial regression tree thatrepresents the Q-funtion in RRL is built starting from a knowledge base whihholds orret examples of state, ation and Q-funtion value triplets. To generatethe examples for tree indution, RRL starts with running a normal episodejust like a standard reinforement learning algorithm [10, 9, 6℄ and stores thestates, ations and q-values enountered in a temporary table. At the end ofeah episode, this table is added to a knowledge base whih is then used for the



tree indution phase. In the next episode, the q-values predited by the generatedtree are used to alulate the q-values for the new examples, but the Q-tree isgenerated again from srath.The examples used to generate the P-tree are derived from the obtained Q-tree. For eah state the RRL system enounters during an episode, it investigatesall possible ations and lassi�es those ations as optimal or not aording to theq-values predited by the learned Q-tree. Eah of these lassi�ations togetherwith the aording states and ations are used as input for the P-tree buildingalgorithm.Note that old examples are kept in the knowledge base at all times and neverdeleted. To avoid having too muh old (and noisy) examples in the knowledgebase, if a state{ation pair is enountered more than one, the old example inthe knowledge base is replaed with a new one whih holds the updated q-value.2.2 Problems with the original RRLWe identify four problems with the original RRL implementation that diminishits performane. First, it needs to keep trak of an ever inreasing amount ofexamples: for eah di�erent state-ation pair ever enountered a Q-value is kept.Seond, when a state-ation pair is enountered for the seond time, the newQ-value needs to replae the old value, whih means that in the knowledge basethe old example needs to be looked up and replaed. Third, trees are builtfrom srath after eah episode. This step, as well as the example replaementproedure, takes inreasingly more time as the set of examples grows. A �nalpoint is that leaves of a tree are supposed to identify lusters of equivalent state-ation pairs, "equivalent" in the sense that they all have the same Q-value. Whenupdating the Q-value for one state-ation pair in a leaf, the Q-value of all pairsin the leaf should automatially be updated; but this is not what is done in theoriginal implementation; an existing (state,ation,Q) example gets an updatedQ-value at the moment when exatly the same state-ation pair is enountered,instead of a state-ation pair in the same leaf.2.3 Possible ImprovementsTo solve these problems, a fully inremental indution algorithm is needed. Suhan algorithm would relieve the need for the regeneration of the tree when newdata beomes available. However, not just any inremental algorithm an beused. Q-values generated with reinforement learning are usually wrong at thebeginning and the algorithm needs to handle this appropriately.Also an algorithm that doesn't require old examples to be kept for later refer-ene, eliminates the use of old information to generalise from and thus eliminatesthe need for replaement of examples in the knowledge base. In a fully inre-mental system, the problem of storing di�erent q-values for similar but distintstate-ation pairs should also be solved.In the following setion we introdue suh an inremental algorithm.



3 The TG Algorithm3.1 The G-algorithmWe use a learning algorithm that is an extension of the G-algorithm [4℄. Thisis a deision tree learning algorithm that updates its theory inrementally asexamples are added. An important feature is that examples an be disardedafter they are proessed. This avoids using a huge amount of memory to storeexamples.On a high level (f. Figure 2), the G-algorithm (as well as the new TG-algorithm) stores the urrent deision tree, and for eah leaf node statistis forall tests that ould be used to split that leaf further. Eah time an example isinserted, it is sorted down the deision tree aording to the tests in the internalnodes, and in the leaf the statistis of the tests are updated.reate an empty leafwhile data available dosplit data down to leafsupdate statistis in leafif split needed thengrow two empty leafsendwhile Fig. 2. The TG-algorithm.The examples are generated by a simulator of the environment, aording tosome reinforement learning strategy. They are tuples (State; Ation;QV alue).3.2 Extending to �rst order logiWe extend the G algorithm in that we use a relational representation languagefor desribing the examples and for the tests that an be used in the deisiontree. This has several advantages. First, it allows us to model examples thatan't be stored in a propositional way. Seond, it allows us to model the featurespae. Even when it would be possible in theory to enumerate all features, as inthe ase of the bloks world with a limited number of bloks, a problem is onlytratable when a smaller number of features is used. The relational languagean be seen as a way to onstrut useful features. E.g. when there are no blokson some blok A, it is not useful to provide a feature to see whih bloks areon A. Also, the use of a relational language allows us to struture the featurespae as e.g. on(State,blok a,blok b) and on(State,blok ,blok d) are treatedin exatly the same way.The onstrution of new tests happens by a re�nement operator. A moredetailed desription of this part of the system an be found in [1℄.
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...Fig. 3. A logial deision treeFigure 3 gives an example of a logial deision tree. The test in some nodeshould be read as the existentially quanti�ed onjuntion of all literals in thenodes in the path from the root of the tree to that node.The statistis for eah leaf onsist of the number of examples on whih eahpossible test sueeds, the sum of their Q values and the sum of squared Qvalues. Moreover, the Q value to predit in that leaf is stored. This value isobtained from the statistis of the test used to split its parent when the leafwas reated. Later, this value is updated as new examples are sorted in the leaf.These statistis are suÆient to ompute whether some test is signi�ant, i.e.the variane of the Q-values of the examples would be redued by splitting thenode using that partiular test. A node is split after some minimal number ofexamples are olleted and some test beomes signi�ant with a high on�dene.In ontrast to the propositional system, keeping trak of the andidate-tests(the re�nements of a query) is a non-trivial task. In the propositional ase theset of andidate queries onsists of the set of all features minus the features thatare already tested higher in the tree. In the �rst order ase, the set of andidatequeries onsists of all possible ways to extend a query. The longer a query is andthe more variables it ontains, the larger is the number of possible ways to bindthe variables and the larger is the set of andidate tests.Sine a large number of suh andidate tests exist, we need to store themas eÆiently as possible. To this aim we use the query paks mehanism in-trodued in [3℄. A query pak is a set of similar queries strutured into a tree;ommon parts of the queries are represented only one in suh a struture. Forinstane, a set of onjuntions f(p(X); q(X)); (p(X); r(X))g is represented as aterm p(X); (q(X); r(X)). This an yield a signi�ant gain in pratie. (E.g., as-



suming a onstant branhing fator of b in the tree, storing a pak of n queriesof length l (n = bl) takes O(nb=(b� 1)) memory instead of O(nl).)Also, exeuting a set of queries strutured in a pak on the examples re-quires onsiderably less time than exeuting them all separately. An empirialomparison of the speeds with and without paks will be given in setion 1.Even storing queries in paks requires muh memory. However, the paksin the leaf nodes are very similar. Therefore, a further optimisation is to reusethem. When a node is split, the pak for the new right leaf node is the sameas the original pak of the node. For the new left sub-node, we urrently onlyreuse them if we add a test whih does not introdue new variables beause inthat ase the query pak in the left leaf node will be equal to the pak in theoriginal node (exept for the hosen test whih of ourse an't be taken again).In further work, we will also reuse query paks in the more diÆult ase when atest is added whih introdues new variables.3.3 RRL-TGTo integrate the TG-algorithm into RRL we removed the alls to the TILDEalgorithm and use TG to adapt the Q-tree and P-tree when new experiene (inthe form of (State; Ation;QV alue) triplets) is available. Thereby, we solved theproblems mentioned in Setion 2.2.{ The trees are no longer generated from srath after eah episode.{ Beause TG only stores statistis about the examples in the tree and onlyreferenes these examples one (when they are inserted into the tree) theneed for remembering and therefore searhing and replaing examples isrelieved.{ Sine TG begins eah new leaf with ompletely empty statistis, exampleshave a limited life span and old (possibly noisy) q-value examples will bedeleted even if the exat same state-ation pair is not enountered twie.Sine the bias used by this inremental algorithm is the same as with TILDE, thesame theories an be learned by TG. Both algorithms searh the same hypothesisspae and although TG an be misled in the beginning due to its inrementalnature, in the limit the quality of approximations of the q-values will be thesame.4 ExperimentsIn this setion we ompare the performane of the new RRL-TG with the originalRRL system. Further omparison with other systems is diÆult beause thereare no other implementations of RRL so far. Also, the number of �rst orderregression tehniques is limited and a full omparison of �rst order regression isoutside the sope of this paper.In a �rst step, we reran the experiments desribed in [5℄. The original RRLwas tested on the bloks world [8℄ with three di�erent goals: unstaking all bloks,



staking all bloks and staking two spei� bloks. Bloks an be on the ooror an be staked on eah other. Eah state an be desribed by a set (list) offats, e.g., s1 = flear(a); on(a; b); on(b; ); on(; floor)g. The available ationsare then move(x; y) where x 6= y and x is a blok and y is a blok or the oor.The unstaking goal is reahed when all bloks are on the oor, the staking goalwhen only one blok is on the oor. The goal of staking two spei� bloks (e.g.a and b) is reahed when the fat on(a; b) is part of the state desription, notehowever that RRL learns to stak any two spei� bloks by generalising fromon(a; b) or on(; d) to on(X;Y ) where X and Y an be substituted for any twobloks. In the �rst type of experiments, a Q-funtion was learned for state-spaeswith 3, 4 and 5 bloks. In the seond type, a more general strategy for eah goalwas learned by using poliy learning on state-spaes with a varying number ofbloks.Afterwards, we disuss some experiments to study the onvergene beha-viour of the TG-algorithm and the sensitivity of the algorithm to some of itsparameters.4.1 Fixed State Spaes
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number of steps. The graphs show the average reward per episode. This gives anindiation of how well the Q-funtion generates the optimal poliy. Compared tothe original system, the number of episodes needed for the algorithm to onvergeto the orret poliy is muh larger. This an be explained by two harateristisof the new system. Where the original system would automatially orret itsmistakes when generating the next tree by starting from srath, the new systemhas to ompensate for the mistakes it makes near the root of the tree | dueto faulty Q-values generated at the beginning | by adding extra branhes tothe tree. To ompensate for this fat a parameter has been added to the TG-algorithm whih spei�es the number of examples that need to be �led in a leaf,before the leaf an be split. These two fators | the overhead for orretingmistakes and the delay put on splitting leaves | ause the new RRL system toonverge slower when looking at the number of episodes.However, when omparing timing results the new system learly outperformsthe old one, even with the added number of neessary episodes. Table 1 omparesthe exeution times of RRL-TG with the timings of the RRL system given in[5℄. For the original RRL system, running experiments in state spaes with morethan 5 bloks quikly beame impossible. Learning in a state-spae with 8 bloks,RRL-TG took 6.6 minutes to learn for 1000 episodes, enough to allow it toonverge for the staking goal.Table 1. Exeution time of the RRL algorithm on Sun Ultra 5/270 mahines.3 bloks 4 bloks 5 bloksOriginal RRL Staking (30 episodes) 6.15 min 62.4 min 306 minUnstaking (30 episodes) 8.75 min not stated not statedOn(a,b) (30 episodes) 20 min not stated not statedRRL-TG Staking (200 episodes) 19.2 se 26.5 se 39.3 sewithout paks Unstaking (500 episodes) 1.10 min 1.92 min 2.75 minOn(a,b) (5000 episodes) 25.0 min 57 min 102 minRRL-TG Staking (200 episodes) 8.12 se 11.4 se 16.1 sewith paks Unstaking (500 episodes) 20.2 se 35.2 se 53.7 seOn(a,b) (5000 episodes) 5.77 min 7.37 min 11.5 min
4.2 Varying State SpaesIn [5℄ the strategy used to ope with multiple state-spaes was to start learningon the smallest and then expand the state-spae after a number of learningepisodes. This strategy worked for the original RRL system beause exampleswere never erased from the knowledge base, so when hanging to a new state-spae the examples from the previous one would still be used to generate the Q-and P-trees.



However, if we apply the same strategy to RRL-TG, the TG-algorithm �rstgenerates a tree for the small state-spae and after hanging to a larger state-spae, it expands the tree to �t the new state spae, ompletely forgetting whatit has learned by adding new branhes to the tree, thereby making the tests inthe original tree insigni�ant. It would never generalise over the di�erent state-spaes. Instead, we o�er a di�erent state-spae to RRL-TG every episode. Thisway, the examples the TG-algorithm uses to split leaves will ome from di�erentstate-spaes and allow RRL-TG to generalise over them. In the experiments onthe bloks world, we varied the number of bloks between 3 and 5 while learning.To make sure that the examples are spread throughout several state-spaes weset the minimal number of examples needed to split a leaf to 2400, quite a bithigher than for �xed state-spaes. As a result, RRL-TG requires a higher numberof episodes to onverge.At episode 15000, P-learning was started. Note that sine P-learning dependson the presene of good Q-values, in the inremental tree learning setting it isunwise to start building P-trees from the beginning, beause the Q-values atthat time are misleading, ausing suboptimal splits to be inserted into the P-treein the beginning. Due to the inremental nature of the learning proess, thesesuboptimal splits are not removed afterwards, whih in the end leads to a moreomplex tree that is learned more slowly. By letting P-learning start only aftera reasonable number of episodes, this e�et is redued, although not neessarilyentirely removed (as Q-learning ontinues in parallel with P-learning).
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P-learning is started, the test results are based on the P-tree instead of the Q-tree; on the graphs this is visible as a sudden drop of performane bak to almostzero, followed by a new learning urve (sine P-learning starts from srath). Itan be seen that P-learning onverges fast to a better performane level than Q-learning attained. After P-learning starts, the Q-tree still gets updated, but nolonger tested. We an see that although the Q-tree is not able to generalise overunseen state-spaes, the P-tree | whih is derived from the Q-tree | usuallyan.The jump to an auray of 1 in the Q-learning phase for staking the bloksis purely aidental, and disappears when the Q-tree starts to model the en-ountered state-spaes more aurately. The generated Q-tree at that point intime is shown in Figure 6. Although this tree does not represent the orretQ-funtion in any way, it does | by aident | lead to the orret poliy forstaking any number of bloks. Later on in the experiment, the Q-tree will bemuh larger and represent the Q-funtion muh loser, but it does not representan overall optimal poliy anymore.state(S),ation_move(X,Y),numberofbloks(S,N)height(S,Y,H),diff(N,H,D),D<2 ?yes:qvalue(1.0)no:height(S,B,C),height(S,Y,D), D < C ?yes:qvalue(0.149220955007456)no:qvalue(0.507386078412001)Fig. 6. The Q-tree for Staking after 4000 episodesThe algorithm did not onverge for the On(A;B) goal but we did get betterperformane than the original RRL. This is probably due to the fat that wewere able to learn more episodes.4.3 The Minimal Sample SizeWe deided to further explore the behaviour of the RRL-TG algorithm withrespet to the delay parameter whih spei�es the minimal sample size for TGto split a leaf. To test the e�et of the minimal sample size, we started RRL-TGfor a total of 10 000 episodes and started P-learning after 5000 episodes. We thenvaried the minimal sample size from 50 to 2000 examples. We ran these testswith the unstaking goal.Figure 7 shows the learning urves for the di�erent settings, Table 2 showsthe sizes of the resulting trees after 10 000 episodes ( with P-learning starting at
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5 Conluding RemarksThis paper desribed how we upgraded the G-tree algorithm of Chapman andKaelbling [4℄ to the new TG-algorithm and by doing so greatly improved thespeed of the RRL system presented in [5℄.
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