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Abstract. Relational reinforcement learning (RRL) is a learning tech-
nique that combines standard reinforcement learning with inductive logic
programming to enable the learning system to exploit structural know-
ledge about the application domain.

This paper discusses an improvement of the original RRL. We introduce
a fully incremental first order decision tree learning algorithm TG and
integrate this algorithm in the RRL system to form RRL-TG.

We demonstrate the performance gain on similar experiments to those
that were used to demonstrate the behaviour of the original RRL system.

1 Introduction

Relational reinforcement learning is a learning technique that combines reinforce-
ment learning with relational learning or inductive logic programming. Due to
the use of a more expressive representation language to represent states, actions
and Q-functions, relational reinforcement learning can be potentially applied
to a wider range of learning tasks than conventional reinforcement learning. In
particular, relational reinforcement learning allows the use of structural repres-
entations, the abstraction from specific goals and the exploitation of results from
previous learning phases when addressing new (more complex) situations.

The RRL concept was introduced by Dzeroski, De Raedt and Driessens in
[5]. The next sections focus on a few details and the shortcomings of the original
implementation and the improvements we suggest. They mainly consist of a
fully incremental first order decision tree algorithm that is based on the G-tree
algorithm of Chapman and Kaelbling [4].

We start with a discussion of the implementation of the original RRL system.
We then introduce the TG-algorithm and discuss its integration into RRL to
form RRL-TG. Then an overview of some preliminary experiments is given to
compare the performance of the original RRL system to RRL-TG and we discuss
some of the characteristics of RRL-TG.



Initialise Qo to assign 0 to all (s,a) pairs
Initialise Examples to the empty set.
e:=0
while true
generate an episode that consists of states so to s; and actions ag to a;—1
(where a; is the action taken in state s;) through the use of a standard
Q-learning algorithm, using the current hypothesis for Q.
for j=i-1 to 0 do
generate example z = (sj,a;,d;),
where §; := r; + ymazy Q. (sj11,a')
if an example (s;,a;, §orq) exists in Examples, replace it with z,
else add = to Examples
update Qg using TILDE to produce QSH using Examples
for j=i-1to 0 do
for all actions aj, possible in state s; do
if state action pair (s;,ay) is optimal according to Qe41
then generate example (s;,ax,c) where ¢ =1
else generate example (s;, ax,c) where ¢ =0
update P, using TILDE to produce P6A+1 using these examples (s;, ax, c)
e:=e+1

Fig. 1. The RRL algorithm.

2 Relational Reinforcement Learning

The RRL-algorithm consists of two learning tasks. In a first step, the classical
Q-learning algorithm is extended by using a relational regression algorithm to
represent the Q-function with a logical regression tree, called the Q-tree. In
a second step, this Q-tree is used to generate a P-function. This P-function
describes the optimality of a given action in a given state, i.e., given a state-
action pair, the P-function describes whether this pair is a part of an optimal
policy. The P-function is represented by a logical decision tree, called the P-tree.
More information on logical decision trees (classification and regression) can be
found in [1,2].

2.1 The Original RRL Implementation

Figure 1 presents the original RRL algorithm. The logical regression tree that
represents the Q-function in RRL is built starting from a knowledge base which
holds correct examples of state, action and Q-function value triplets. To generate
the examples for tree induction, RRL starts with running a normal episode
just like a standard reinforcement learning algorithm [10,9,6] and stores the
states, actions and g-values encountered in a temporary table. At the end of
each episode, this table is added to a knowledge base which is then used for the



tree induction phase. In the next episode, the g-values predicted by the generated
tree are used to calculate the g-values for the new examples, but the Q-tree is
generated again from scratch.

The examples used to generate the P-tree are derived from the obtained Q-
tree. For each state the RRL system encounters during an episode, it investigates
all possible actions and classifies those actions as optimal or not according to the
g-values predicted by the learned Q-tree. Each of these classifications together
with the according states and actions are used as input for the P-tree building
algorithm.

Note that old examples are kept in the knowledge base at all times and never
deleted. To avoid having too much old (and noisy) examples in the knowledge
base, if a state—action pair is encountered more than once, the old example in
the knowledge base is replaced with a new one which holds the updated g-value.

2.2 Problems with the original RRL

We identify four problems with the original RRL implementation that diminish
its performance. First, it needs to keep track of an ever increasing amount of
examples: for each different state-action pair ever encountered a Q-value is kept.
Second, when a state-action pair is encountered for the second time, the new
Q-value needs to replace the old value, which means that in the knowledge base
the old example needs to be looked up and replaced. Third, trees are built
from scratch after each episode. This step, as well as the example replacement
procedure, takes increasingly more time as the set of examples grows. A final
point is that leaves of a tree are supposed to identify clusters of equivalent state-
action pairs, ”equivalent” in the sense that they all have the same Q-value. When
updating the Q-value for one state-action pair in a leaf, the Q-value of all pairs
in the leaf should automatically be updated; but this is not what is done in the
original implementation; an existing (state,action,Q) example gets an updated
Q-value at the moment when exactly the same state-action pair is encountered,
instead of a state-action pair in the same leaf.

2.3 Possible Improvements

To solve these problems, a fully incremental induction algorithm is needed. Such
an algorithm would relieve the need for the regeneration of the tree when new
data becomes available. However, not just any incremental algorithm can be
used. Q-values generated with reinforcement learning are usually wrong at the
beginning and the algorithm needs to handle this appropriately.

Also an algorithm that doesn’t require old examples to be kept for later refer-
ence, eliminates the use of old information to generalise from and thus eliminates
the need for replacement of examples in the knowledge base. In a fully incre-
mental system, the problem of storing different g-values for similar but distinct
state-action pairs should also be solved.

In the following section we introduce such an incremental algorithm.



3 The TG Algorithm

3.1 The G-algorithm

We use a learning algorithm that is an extension of the G-algorithm [4]. This
is a decision tree learning algorithm that updates its theory incrementally as
examples are added. An important feature is that examples can be discarded
after they are processed. This avoids using a huge amount of memory to store
examples.

On a high level (cf. Figure 2), the G-algorithm (as well as the new TG-
algorithm) stores the current decision tree, and for each leaf node statistics for
all tests that could be used to split that leaf further. Each time an example is
inserted, it is sorted down the decision tree according to the tests in the internal
nodes, and in the leaf the statistics of the tests are updated.

create an empty leaf
while data available do
split data down to leafs
update statistics in leaf
if split needed then
grow two empty leafs
endwhile

Fig. 2. The TG-algorithm.

The examples are generated by a simulator of the environment, according to
some reinforcement learning strategy. They are tuples (State, Action, QValue).

3.2 Extending to first order logic

We extend the G algorithm in that we use a relational representation language
for describing the examples and for the tests that can be used in the decision
tree. This has several advantages. First, it allows us to model examples that
can’t be stored in a propositional way. Second, it allows us to model the feature
space. Even when it would be possible in theory to enumerate all features, as in
the case of the blocks world with a limited number of blocks, a problem is only
tractable when a smaller number of features is used. The relational language
can be seen as a way to construct useful features. E.g. when there are no blocks
on some block A, it is not useful to provide a feature to see which blocks are
on A. Also, the use of a relational language allows us to structure the feature
space as e.g. on(State,block_a,block_b) and on(State,block_c,block_d) are treated
in exactly the same way.

The construction of new tests happens by a refinement operator. A more
detailed description of this part of the system can be found in [1].
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Fig. 3. A logical decision tree

Figure 3 gives an example of a logical decision tree. The test in some node
should be read as the existentially quantified conjunction of all literals in the
nodes in the path from the root of the tree to that node.

The statistics for each leaf consist of the number of examples on which each
possible test succeeds, the sum of their QQ values and the sum of squared Q
values. Moreover, the Q value to predict in that leaf is stored. This value is
obtained from the statistics of the test used to split its parent when the leaf
was created. Later, this value is updated as new examples are sorted in the leaf.
These statistics are sufficient to compute whether some test is significant, i.e.
the variance of the Q-values of the examples would be reduced by splitting the
node using that particular test. A node is split after some minimal number of
examples are collected and some test becomes significant with a high confidence.

In contrast to the propositional system, keeping track of the candidate-tests
(the refinements of a query) is a non-trivial task. In the propositional case the
set of candidate queries consists of the set of all features minus the features that
are already tested higher in the tree. In the first order case, the set of candidate
queries consists of all possible ways to extend a query. The longer a query is and
the more variables it contains, the larger is the number of possible ways to bind
the variables and the larger is the set of candidate tests.

Since a large number of such candidate tests exist, we need to store them
as efficiently as possible. To this aim we use the query packs mechanism in-
troduced in [3]. A query pack is a set of similar queries structured into a tree;
common parts of the queries are represented only once in such a structure. For
instance, a set of conjunctions {(p(X), ¢(X)), (p(X),r(X))} is represented as a
term p(X), (¢(X);r(X)). This can yield a significant gain in practice. (E.g., as-



suming a constant branching factor of b in the tree, storing a pack of n queries
of length I (n = b') takes O(nb/(b — 1)) memory instead of O(nl).)

Also, executing a set of queries structured in a pack on the examples re-
quires considerably less time than executing them all separately. An empirical
comparison of the speeds with and without packs will be given in section 1.

Even storing queries in packs requires much memory. However, the packs
in the leaf nodes are very similar. Therefore, a further optimisation is to reuse
them. When a node is split, the pack for the new right leaf node is the same
as the original pack of the node. For the new left sub-node, we currently only
reuse them if we add a test which does not introduce new variables because in
that case the query pack in the left leaf node will be equal to the pack in the
original node (except for the chosen test which of course can’t be taken again).
In further work, we will also reuse query packs in the more difficult case when a
test is added which introduces new variables.

3.3 RRL-TG

To integrate the TG-algorithm into RRL we removed the calls to the TILDE
algorithm and use TG to adapt the Q-tree and P-tree when new experience (in
the form of (State, Action, QV alue) triplets) is available. Thereby, we solved the
problems mentioned in Section 2.2.

— The trees are no longer generated from scratch after each episode.

— Because TG only stores statistics about the examples in the tree and only
references these examples once (when they are inserted into the tree) the
need for remembering and therefore searching and replacing examples is
relieved.

— Since TG begins each new leaf with completely empty statistics, examples
have a limited life span and old (possibly noisy) g-value examples will be
deleted even if the exact same state-action pair is not encountered twice.

Since the bias used by this incremental algorithm is the same as with TILDE, the
same theories can be learned by TG. Both algorithms search the same hypothesis
space and although TG can be misled in the beginning due to its incremental
nature, in the limit the quality of approximations of the g-values will be the
same.

4 Experiments

In this section we compare the performance of the new RRL-TG with the original
RRL system. Further comparison with other systems is difficult because there
are no other implementations of RRL so far. Also, the number of first order
regression techniques is limited and a full comparison of first order regression is
outside the scope of this paper.

In a first step, we reran the experiments described in [5]. The original RRL
was tested on the blocks world [8] with three different goals: unstacking all blocks,



stacking all blocks and stacking two specific blocks. Blocks can be on the floor
or can be stacked on each other. Each state can be described by a set (list) of
facts, e.g., s1 = {clear(a),on(a,b),on(b,c),on(c, floor)}. The available actions
are then move(z,y) where x # y and z is a block and y is a block or the floor.
The unstacking goal is reached when all blocks are on the floor, the stacking goal
when only one block is on the floor. The goal of stacking two specific blocks (e.g.
a and b) is reached when the fact on(a,b) is part of the state description, note
however that RRL learns to stack any two specific blocks by generalising from
on(a,b) or on(c,d) to on(X,Y) where X and Y can be substituted for any two
blocks. In the first type of experiments, a Q-function was learned for state-spaces
with 3, 4 and 5 blocks. In the second type, a more general strategy for each goal
was learned by using policy learning on state-spaces with a varying number of
blocks.

Afterwards, we discuss some experiments to study the convergence beha-
viour of the TG-algorithm and the sensitivity of the algorithm to some of its
parameters.

4.1 Fixed State Spaces
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Fig. 4. The learning curves for fixed numbers of blocks

For the experiments with a fixed number of blocks, the results are shown
in Figure 4. The generated policies were tested on 10000 randomly generated
examples. A reward of 1 was given if the goal-state was reached in the minimal



number of steps. The graphs show the average reward per episode. This gives an
indication of how well the Q-function generates the optimal policy. Compared to
the original system, the number of episodes needed for the algorithm to converge
to the correct policy is much larger. This can be explained by two characteristics
of the new system. Where the original system would automatically correct its
mistakes when generating the next tree by starting from scratch, the new system
has to compensate for the mistakes it makes near the root of the tree — due
to faulty Q-values generated at the beginning — by adding extra branches to
the tree. To compensate for this fact a parameter has been added to the TG-
algorithm which specifies the number of examples that need to be filed in a leaf,
before the leaf can be split. These two factors — the overhead for correcting
mistakes and the delay put on splitting leaves — cause the new RRL system to
converge slower when looking at the number of episodes.

However, when comparing timing results the new system clearly outperforms
the old one, even with the added number of necessary episodes. Table 1 compares
the execution times of RRL-TG with the timings of the RRL system given in
[5]. For the original RRL system, running experiments in state spaces with more
than 5 blocks quickly became impossible. Learning in a state-space with 8 blocks,
RRL-TG took 6.6 minutes to learn for 1000 episodes, enough to allow it to
converge for the stacking goal.

Table 1. Execution time of the RRL algorithm on Sun Ultra 5/270 machines.

3 blocks 4 blocks 5 blocks

Original RRL Stacking (30 episodes) 6.15 min 62.4 min 306 min
Unstacking (30 episodes) 8.75 min not stated not stated
On(a,b) (30 episodes) 20 min not stated not stated
RRL-TG Stacking (200 episodes) 19.2 sec 26.5 sec 39.3 sec
without packs Unstacking (500 episodes) 1.10 min 1.92 min 2.75 min
On(a,b) (5000 episodes) 25.0 min 57 min 102 min
RRL-TG Stacking (200 episodes) 8.12 sec 11.4 sec 16.1 sec
with packs Unstacking (500 episodes) 20.2 sec 35.2 sec 53.7 sec

On(a,b) (5000 episodes) 5.77 min 7.37 min 11.5 min

4.2 Varying State Spaces

In [5] the strategy used to cope with multiple state-spaces was to start learning
on the smallest and then expand the state-space after a number of learning
episodes. This strategy worked for the original RRL system because examples
were never erased from the knowledge base, so when changing to a new state-
space the examples from the previous one would still be used to generate the Q-
and P-trees.



However, if we apply the same strategy to RRL-TG, the TG-algorithm first
generates a tree for the small state-space and after changing to a larger state-
space, it expands the tree to fit the new state space, completely forgetting what
it has learned by adding new branches to the tree, thereby making the tests in
the original tree insignificant. It would never generalise over the different state-
spaces. Instead, we offer a different state-space to RRL-TG every episode. This
way, the examples the TG-algorithm uses to split leaves will come from different
state-spaces and allow RRL-TG to generalise over them. In the experiments on
the blocks world, we varied the number of blocks between 3 and 5 while learning.
To make sure that the examples are spread throughout several state-spaces we
set the minimal number of examples needed to split a leaf to 2400, quite a bit
higher than for fixed state-spaces. As a result, RRL-TG requires a higher number
of episodes to converge.

At episode 15000, P-learning was started. Note that since P-learning depends
on the presence of good Q-values, in the incremental tree learning setting it is
unwise to start building P-trees from the beginning, because the Q-values at
that time are misleading, causing suboptimal splits to be inserted into the P-tree
in the beginning. Due to the incremental nature of the learning process, these
suboptimal splits are not removed afterwards, which in the end leads to a more
complex tree that is learned more slowly. By letting P-learning start only after
a reasonable number of episodes, this effect is reduced, although not necessarily
entirely removed (as Q-learning continues in parallel with P-learning).
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Fig. 5. The learning curves for varying numbers of blocks. P-learning is started at
episode 15 000.

Figure 5 shows the learning curves for the three different goals. The generated
policies were tested on 10000 randomly generated examples with the number of
blocks varying between 3 and 10. The first part of the curves indicate how well
the policy generated by the Q-tree performs. From episode 15000 onwards, when



P-learning is started, the test results are based on the P-tree instead of the Q-
tree; on the graphs this is visible as a sudden drop of performance back to almost
zero, followed by a new learning curve (since P-learning starts from scratch). It
can be seen that P-learning converges fast to a better performance level than Q-
learning attained. After P-learning starts, the Q-tree still gets updated, but no
longer tested. We can see that although the Q-tree is not able to generalise over
unseen state-spaces, the P-tree — which is derived from the Q-tree — usually
can.

The jump to an accuracy of 1 in the Q-learning phase for stacking the blocks
is purely accidental, and disappears when the Q-tree starts to model the en-
countered state-spaces more accurately. The generated Q-tree at that point in
time is shown in Figure 6. Although this tree does not represent the correct
Q-function in any way, it does — by accident — lead to the correct policy for
stacking any number of blocks. Later on in the experiment, the Q-tree will be
much larger and represent the Q-function much closer, but it does not represent
an overall optimal policy anymore.

state(S),action_move(X,Y) ,numberofblocks(S,N)
height(S,Y,H),diff(N,H,D),D<2 ?

yes:
qvalue (1.0)
no:
height (S,B,C) ,height(S,Y,D), D < C 7
yes:
qvalue (0.149220955007456)
no:

qvalue (0.507386078412001)

Fig. 6. The Q-tree for Stacking after 4000 episodes

The algorithm did not converge for the On(A, B) goal but we did get better
performance than the original RRL. This is probably due to the fact that we
were able to learn more episodes.

4.3 The Minimal Sample Size

We decided to further explore the behaviour of the RRL-TG algorithm with
respect to the delay parameter which specifies the minimal sample size for TG
to split a leaf. To test the effect of the minimal sample size, we started RRL-TG
for a total of 10000 episodes and started P-learning after 5000 episodes. We then
varied the minimal sample size from 50 to 2000 examples. We ran these tests
with the unstacking goal.

Figure 7 shows the learning curves for the different settings, Table 2 shows
the sizes of the resulting trees after 10000 episodes ( with P-learning starting at
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Fig. 7. The learning curves for varying minimal sample sizes

episode 5000. The algorithm does not converge for a sample size of 50 examples.
Even after P-learning optimality is not reached. The algorithm makes too many
mistakes by relying on too small a set of examples when choosing a test. With
an increasing sample size comes a slower convergence to the optimal policy. For
a sample size of 1000 examples, the dip in the learning curve during P-learning
is caused by a change in the Q-function (which is still being learned during the
second phase). When looking at the sizes of the generated trees, it is obvious
that the generated policies benefit from a larger minimal sample size, at the cost
of slower convergence. Although experiments with a smaller minimal sample size
have to correct for their early mistakes by building larger trees, they often still
succeed in generating an optimal policy.

Table 2. The generated tree sizes for varying minimal sample sizes

50 400 1000 2000
Q-tree 31 26 16 9
P-tree 9 10 8 8

5 Concluding Remarks

This paper described how we upgraded the G-tree algorithm of Chapman and
Kaelbling [4] to the new TG-algorithm and by doing so greatly improved the
speed of the RRL system presented in [5].



We studied the convergence behaviour of RRL-TG with respect to the min-
imal sample size TG needs to split a leaf. Larger sample sizes mean slower
convergence but smaller function representations.

We are planning to apply the RRL algorithm to the Tetris game to study
the behaviour of RRL in more complex domains than the blocks world.

Future work will certainly include investigating other representation possib-
ilities for the Q-function. Work towards first order neural networks and Bayesian
networks [7] seems to provide promising alternatives.

Further work on improving the TG algorithm will include the use of multiple
trees to represent the Q- and P-functions and further attempts to decrease the
amount of used memory. Also, some work should be done to automatically find
the moment to start P-learning and the optimal minimal sample size. Both will
influence the size of the generated policy and the convergence speed of TG-RRL.
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