
Speeding up Relational Reinfor
ement LearningThrough the Use of an In
remental First OrderDe
ision Tree LearnerKurt Driessens, Jan Ramon and Hendrik Blo
keelDepartment of Computer S
ien
e K.U.LeuvenCelestijnenlaan 200A, B-3001 Leuven, Belgiumfkurt.driessens,jan.ramon,hendrik.blo
keelg�
s.kuleuven.a
.beAbstra
t. Relational reinfor
ement learning (RRL) is a learning te
h-nique that
ombines standard reinfor
ement learning with indu
tive logi
programming to enable the learning system to exploit stru
tural know-ledge about the appli
ation domain.This paper dis
usses an improvement of the original RRL. We introdu
ea fully in
remental �rst order de
ision tree learning algorithm TG andintegrate this algorithm in the RRL system to form RRL-TG.We demonstrate the performan
e gain on similar experiments to thosethat were used to demonstrate the behaviour of the original RRL system.1 Introdu
tionRelational reinfor
ement learning is a learning te
hnique that
ombines reinfor
e-ment learning with relational learning or indu
tive logi
 programming. Due tothe use of a more expressive representation language to represent states, a
tionsand Q-fun
tions, relational reinfor
ement learning
an be potentially appliedto a wider range of learning tasks than
onventional reinfor
ement learning. Inparti
ular, relational reinfor
ement learning allows the use of stru
tural repres-entations, the abstra
tion from spe
i�
 goals and the exploitation of results fromprevious learning phases when addressing new (more
omplex) situations.The RRL
on
ept was introdu
ed by D�zeroski, De Raedt and Driessens in[5℄. The next se
tions fo
us on a few details and the short
omings of the originalimplementation and the improvements we suggest. They mainly
onsist of afully in
remental �rst order de
ision tree algorithm that is based on the G-treealgorithm of Chapman and Kaelbling [4℄.We start with a dis
ussion of the implementation of the original RRL system.We then introdu
e the TG-algorithm and dis
uss its integration into RRL toform RRL-TG. Then an overview of some preliminary experiments is given to
ompare the performan
e of the original RRL system to RRL-TG and we dis
usssome of the
hara
teristi
s of RRL-TG.

Initialise Q̂0 to assign 0 to all (s; a) pairsInitialise Examples to the empty set.e := 0while truegenerate an episode that
onsists of states s0 to si and a
tions a0 to ai�1(where aj is the a
tion taken in state sj) through the use of a standardQ-learning algorithm, using the
urrent hypothesis for Q̂efor j=i-1 to 0 dogenerate example x = (sj ; aj ; q̂j),where q̂j := rj +
maxa0Q̂e(sj+1; a0)if an example (sj ; aj ; q̂old) exists in Examples, repla
e it with x,else add x to Examplesupdate Q̂e using TILDE to produ
e Q̂e+1 using Examplesfor j=i-1 to 0 dofor all a
tions ak possible in state sj doif state a
tion pair (sj ; ak) is optimal a

ording to Q̂e+1then generate example (sj ; ak;
) where
 = 1else generate example (sj ; ak;
) where
 = 0update P̂e using TILDE to produ
e ^Pe+1 using these examples (sj ; ak;
)e := e + 1 Fig. 1. The RRL algorithm.2 Relational Reinfor
ement LearningThe RRL-algorithm
onsists of two learning tasks. In a �rst step, the
lassi
alQ-learning algorithm is extended by using a relational regression algorithm torepresent the Q-fun
tion with a logi
al regression tree,
alled the Q-tree. Ina se
ond step, this Q-tree is used to generate a P-fun
tion. This P-fun
tiondes
ribes the optimality of a given a
tion in a given state, i.e., given a state-a
tion pair, the P-fun
tion des
ribes whether this pair is a part of an optimalpoli
y. The P-fun
tion is represented by a logi
al de
ision tree,
alled the P-tree.More information on logi
al de
ision trees (
lassi�
ation and regression)
an befound in [1, 2℄.2.1 The Original RRL ImplementationFigure 1 presents the original RRL algorithm. The logi
al regression tree thatrepresents the Q-fun
tion in RRL is built starting from a knowledge base whi
hholds
orre
t examples of state, a
tion and Q-fun
tion value triplets. To generatethe examples for tree indu
tion, RRL starts with running a normal episodejust like a standard reinfor
ement learning algorithm [10, 9, 6℄ and stores thestates, a
tions and q-values en
ountered in a temporary table. At the end ofea
h episode, this table is added to a knowledge base whi
h is then used for the

tree indu
tion phase. In the next episode, the q-values predi
ted by the generatedtree are used to
al
ulate the q-values for the new examples, but the Q-tree isgenerated again from s
rat
h.The examples used to generate the P-tree are derived from the obtained Q-tree. For ea
h state the RRL system en
ounters during an episode, it investigatesall possible a
tions and
lassi�es those a
tions as optimal or not a

ording to theq-values predi
ted by the learned Q-tree. Ea
h of these
lassi�
ations togetherwith the a

ording states and a
tions are used as input for the P-tree buildingalgorithm.Note that old examples are kept in the knowledge base at all times and neverdeleted. To avoid having too mu
h old (and noisy) examples in the knowledgebase, if a state{a
tion pair is en
ountered more than on
e, the old example inthe knowledge base is repla
ed with a new one whi
h holds the updated q-value.2.2 Problems with the original RRLWe identify four problems with the original RRL implementation that diminishits performan
e. First, it needs to keep tra
k of an ever in
reasing amount ofexamples: for ea
h di�erent state-a
tion pair ever en
ountered a Q-value is kept.Se
ond, when a state-a
tion pair is en
ountered for the se
ond time, the newQ-value needs to repla
e the old value, whi
h means that in the knowledge basethe old example needs to be looked up and repla
ed. Third, trees are builtfrom s
rat
h after ea
h episode. This step, as well as the example repla
ementpro
edure, takes in
reasingly more time as the set of examples grows. A �nalpoint is that leaves of a tree are supposed to identify
lusters of equivalent state-a
tion pairs, "equivalent" in the sense that they all have the same Q-value. Whenupdating the Q-value for one state-a
tion pair in a leaf, the Q-value of all pairsin the leaf should automati
ally be updated; but this is not what is done in theoriginal implementation; an existing (state,a
tion,Q) example gets an updatedQ-value at the moment when exa
tly the same state-a
tion pair is en
ountered,instead of a state-a
tion pair in the same leaf.2.3 Possible ImprovementsTo solve these problems, a fully in
remental indu
tion algorithm is needed. Su
han algorithm would relieve the need for the regeneration of the tree when newdata be
omes available. However, not just any in
remental algorithm
an beused. Q-values generated with reinfor
ement learning are usually wrong at thebeginning and the algorithm needs to handle this appropriately.Also an algorithm that doesn't require old examples to be kept for later refer-en
e, eliminates the use of old information to generalise from and thus eliminatesthe need for repla
ement of examples in the knowledge base. In a fully in
re-mental system, the problem of storing di�erent q-values for similar but distin
tstate-a
tion pairs should also be solved.In the following se
tion we introdu
e su
h an in
remental algorithm.

3 The TG Algorithm3.1 The G-algorithmWe use a learning algorithm that is an extension of the G-algorithm [4℄. Thisis a de
ision tree learning algorithm that updates its theory in
rementally asexamples are added. An important feature is that examples
an be dis
ardedafter they are pro
essed. This avoids using a huge amount of memory to storeexamples.On a high level (
f. Figure 2), the G-algorithm (as well as the new TG-algorithm) stores the
urrent de
ision tree, and for ea
h leaf node statisti
s forall tests that
ould be used to split that leaf further. Ea
h time an example isinserted, it is sorted down the de
ision tree a

ording to the tests in the internalnodes, and in the leaf the statisti
s of the tests are updated.
reate an empty leafwhile data available dosplit data down to leafsupdate statisti
s in leafif split needed thengrow two empty leafsendwhile Fig. 2. The TG-algorithm.The examples are generated by a simulator of the environment, a

ording tosome reinfor
ement learning strategy. They are tuples (State; A
tion;QV alue).3.2 Extending to �rst order logi
We extend the G algorithm in that we use a relational representation languagefor des
ribing the examples and for the tests that
an be used in the de
isiontree. This has several advantages. First, it allows us to model examples that
an't be stored in a propositional way. Se
ond, it allows us to model the featurespa
e. Even when it would be possible in theory to enumerate all features, as inthe
ase of the blo
ks world with a limited number of blo
ks, a problem is onlytra
table when a smaller number of features is used. The relational language
an be seen as a way to
onstru
t useful features. E.g. when there are no blo
kson some blo
k A, it is not useful to provide a feature to see whi
h blo
ks areon A. Also, the use of a relational language allows us to stru
ture the featurespa
e as e.g. on(State,blo
k a,blo
k b) and on(State,blo
k
,blo
k d) are treatedin exa
tly the same way.The
onstru
tion of new tests happens by a re�nement operator. A moredetailed des
ription of this part of the system
an be found in [1℄.

yes no

noyes

clear(State,BlockB)

on(State,BlockB,BlockA)

Qvalue = 0.5

Qvalue=0.3Qvalue=0.4

on(State,BlockA,BlockB) on(State,BlockC,BlockB)

clear(State,BlockA)

...Fig. 3. A logi
al de
ision treeFigure 3 gives an example of a logi
al de
ision tree. The test in some nodeshould be read as the existentially quanti�ed
onjun
tion of all literals in thenodes in the path from the root of the tree to that node.The statisti
s for ea
h leaf
onsist of the number of examples on whi
h ea
hpossible test su

eeds, the sum of their Q values and the sum of squared Qvalues. Moreover, the Q value to predi
t in that leaf is stored. This value isobtained from the statisti
s of the test used to split its parent when the leafwas
reated. Later, this value is updated as new examples are sorted in the leaf.These statisti
s are suÆ
ient to
ompute whether some test is signi�
ant, i.e.the varian
e of the Q-values of the examples would be redu
ed by splitting thenode using that parti
ular test. A node is split after some minimal number ofexamples are
olle
ted and some test be
omes signi�
ant with a high
on�den
e.In
ontrast to the propositional system, keeping tra
k of the
andidate-tests(the re�nements of a query) is a non-trivial task. In the propositional
ase theset of
andidate queries
onsists of the set of all features minus the features thatare already tested higher in the tree. In the �rst order
ase, the set of
andidatequeries
onsists of all possible ways to extend a query. The longer a query is andthe more variables it
ontains, the larger is the number of possible ways to bindthe variables and the larger is the set of
andidate tests.Sin
e a large number of su
h
andidate tests exist, we need to store themas eÆ
iently as possible. To this aim we use the query pa
ks me
hanism in-trodu
ed in [3℄. A query pa
k is a set of similar queries stru
tured into a tree;
ommon parts of the queries are represented only on
e in su
h a stru
ture. Forinstan
e, a set of
onjun
tions f(p(X); q(X)); (p(X); r(X))g is represented as aterm p(X); (q(X); r(X)). This
an yield a signi�
ant gain in pra
ti
e. (E.g., as-

suming a
onstant bran
hing fa
tor of b in the tree, storing a pa
k of n queriesof length l (n = bl) takes O(nb=(b� 1)) memory instead of O(nl).)Also, exe
uting a set of queries stru
tured in a pa
k on the examples re-quires
onsiderably less time than exe
uting them all separately. An empiri
al
omparison of the speeds with and without pa
ks will be given in se
tion 1.Even storing queries in pa
ks requires mu
h memory. However, the pa
ksin the leaf nodes are very similar. Therefore, a further optimisation is to reusethem. When a node is split, the pa
k for the new right leaf node is the sameas the original pa
k of the node. For the new left sub-node, we
urrently onlyreuse them if we add a test whi
h does not introdu
e new variables be
ause inthat
ase the query pa
k in the left leaf node will be equal to the pa
k in theoriginal node (ex
ept for the
hosen test whi
h of
ourse
an't be taken again).In further work, we will also reuse query pa
ks in the more diÆ
ult
ase when atest is added whi
h introdu
es new variables.3.3 RRL-TGTo integrate the TG-algorithm into RRL we removed the
alls to the TILDEalgorithm and use TG to adapt the Q-tree and P-tree when new experien
e (inthe form of (State; A
tion;QV alue) triplets) is available. Thereby, we solved theproblems mentioned in Se
tion 2.2.{ The trees are no longer generated from s
rat
h after ea
h episode.{ Be
ause TG only stores statisti
s about the examples in the tree and onlyreferen
es these examples on
e (when they are inserted into the tree) theneed for remembering and therefore sear
hing and repla
ing examples isrelieved.{ Sin
e TG begins ea
h new leaf with
ompletely empty statisti
s, exampleshave a limited life span and old (possibly noisy) q-value examples will bedeleted even if the exa
t same state-a
tion pair is not en
ountered twi
e.Sin
e the bias used by this in
remental algorithm is the same as with TILDE, thesame theories
an be learned by TG. Both algorithms sear
h the same hypothesisspa
e and although TG
an be misled in the beginning due to its in
rementalnature, in the limit the quality of approximations of the q-values will be thesame.4 ExperimentsIn this se
tion we
ompare the performan
e of the new RRL-TG with the originalRRL system. Further
omparison with other systems is diÆ
ult be
ause thereare no other implementations of RRL so far. Also, the number of �rst orderregression te
hniques is limited and a full
omparison of �rst order regression isoutside the s
ope of this paper.In a �rst step, we reran the experiments des
ribed in [5℄. The original RRLwas tested on the blo
ks world [8℄ with three di�erent goals: unsta
king all blo
ks,

sta
king all blo
ks and sta
king two spe
i�
 blo
ks. Blo
ks
an be on the
ooror
an be sta
ked on ea
h other. Ea
h state
an be des
ribed by a set (list) offa
ts, e.g., s1 = f
lear(a); on(a; b); on(b;
); on(
; floor)g. The available a
tionsare then move(x; y) where x 6= y and x is a blo
k and y is a blo
k or the
oor.The unsta
king goal is rea
hed when all blo
ks are on the
oor, the sta
king goalwhen only one blo
k is on the
oor. The goal of sta
king two spe
i�
 blo
ks (e.g.a and b) is rea
hed when the fa
t on(a; b) is part of the state des
ription, notehowever that RRL learns to sta
k any two spe
i�
 blo
ks by generalising fromon(a; b) or on(
; d) to on(X;Y) where X and Y
an be substituted for any twoblo
ks. In the �rst type of experiments, a Q-fun
tion was learned for state-spa
eswith 3, 4 and 5 blo
ks. In the se
ond type, a more general strategy for ea
h goalwas learned by using poli
y learning on state-spa
es with a varying number ofblo
ks.Afterwards, we dis
uss some experiments to study the
onvergen
e beha-viour of the TG-algorithm and the sensitivity of the algorithm to some of itsparameters.4.1 Fixed State Spa
es
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 50 100 150 200

A
ve

ra
ge

 R
ew

ar
d

Number of Episodes

’stack 3’
’stack 4’
’stack 5’

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 50 100 150 200 250 300 350 400 450 500

A
ve

ra
ge

 R
ew

ar
d

Number of Episodes

’unstack 3’
’unstack 4’
’unstack 5’

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 500 1000 1500 2000 2500 3000 3500 4000 4500 5000

A
ve

ra
ge

 R
ew

ar
d

Number of Episodes

’on(a,b) 3’
’on(a,b) 4’
’on(a,b) 5’Fig. 4. The learning
urves for �xed numbers of blo
ksFor the experiments with a �xed number of blo
ks, the results are shownin Figure 4. The generated poli
ies were tested on 10 000 randomly generatedexamples. A reward of 1 was given if the goal-state was rea
hed in the minimal

number of steps. The graphs show the average reward per episode. This gives anindi
ation of how well the Q-fun
tion generates the optimal poli
y. Compared tothe original system, the number of episodes needed for the algorithm to
onvergeto the
orre
t poli
y is mu
h larger. This
an be explained by two
hara
teristi
sof the new system. Where the original system would automati
ally
orre
t itsmistakes when generating the next tree by starting from s
rat
h, the new systemhas to
ompensate for the mistakes it makes near the root of the tree | dueto faulty Q-values generated at the beginning | by adding extra bran
hes tothe tree. To
ompensate for this fa
t a parameter has been added to the TG-algorithm whi
h spe
i�es the number of examples that need to be �led in a leaf,before the leaf
an be split. These two fa
tors | the overhead for
orre
tingmistakes and the delay put on splitting leaves |
ause the new RRL system to
onverge slower when looking at the number of episodes.However, when
omparing timing results the new system
learly outperformsthe old one, even with the added number of ne
essary episodes. Table 1
omparesthe exe
ution times of RRL-TG with the timings of the RRL system given in[5℄. For the original RRL system, running experiments in state spa
es with morethan 5 blo
ks qui
kly be
ame impossible. Learning in a state-spa
e with 8 blo
ks,RRL-TG took 6.6 minutes to learn for 1000 episodes, enough to allow it to
onverge for the sta
king goal.Table 1. Exe
ution time of the RRL algorithm on Sun Ultra 5/270 ma
hines.3 blo
ks 4 blo
ks 5 blo
ksOriginal RRL Sta
king (30 episodes) 6.15 min 62.4 min 306 minUnsta
king (30 episodes) 8.75 min not stated not statedOn(a,b) (30 episodes) 20 min not stated not statedRRL-TG Sta
king (200 episodes) 19.2 se
 26.5 se
 39.3 se
without pa
ks Unsta
king (500 episodes) 1.10 min 1.92 min 2.75 minOn(a,b) (5000 episodes) 25.0 min 57 min 102 minRRL-TG Sta
king (200 episodes) 8.12 se
 11.4 se
 16.1 se
with pa
ks Unsta
king (500 episodes) 20.2 se
 35.2 se
 53.7 se
On(a,b) (5000 episodes) 5.77 min 7.37 min 11.5 min
4.2 Varying State Spa
esIn [5℄ the strategy used to
ope with multiple state-spa
es was to start learningon the smallest and then expand the state-spa
e after a number of learningepisodes. This strategy worked for the original RRL system be
ause exampleswere never erased from the knowledge base, so when
hanging to a new state-spa
e the examples from the previous one would still be used to generate the Q-and P-trees.

However, if we apply the same strategy to RRL-TG, the TG-algorithm �rstgenerates a tree for the small state-spa
e and after
hanging to a larger state-spa
e, it expands the tree to �t the new state spa
e,
ompletely forgetting whatit has learned by adding new bran
hes to the tree, thereby making the tests inthe original tree insigni�
ant. It would never generalise over the di�erent state-spa
es. Instead, we o�er a di�erent state-spa
e to RRL-TG every episode. Thisway, the examples the TG-algorithm uses to split leaves will
ome from di�erentstate-spa
es and allow RRL-TG to generalise over them. In the experiments onthe blo
ks world, we varied the number of blo
ks between 3 and 5 while learning.To make sure that the examples are spread throughout several state-spa
es weset the minimal number of examples needed to split a leaf to 2400, quite a bithigher than for �xed state-spa
es. As a result, RRL-TG requires a higher numberof episodes to
onverge.At episode 15000, P-learning was started. Note that sin
e P-learning dependson the presen
e of good Q-values, in the in
remental tree learning setting it isunwise to start building P-trees from the beginning, be
ause the Q-values atthat time are misleading,
ausing suboptimal splits to be inserted into the P-treein the beginning. Due to the in
remental nature of the learning pro
ess, thesesuboptimal splits are not removed afterwards, whi
h in the end leads to a more
omplex tree that is learned more slowly. By letting P-learning start only aftera reasonable number of episodes, this e�e
t is redu
ed, although not ne
essarilyentirely removed (as Q-learning
ontinues in parallel with P-learning).

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 5000 10000 15000 20000 25000 30000

A
ve

ra
ge

 R
ew

ar
d

Number of Episodes

’stack Var’
’unstack Var’
’on(a,b) Var’Fig. 5. The learning
urves for varying numbers of blo
ks. P-learning is started atepisode 15 000.Figure 5 shows the learning
urves for the three di�erent goals. The generatedpoli
ies were tested on 10 000 randomly generated examples with the number ofblo
ks varying between 3 and 10. The �rst part of the
urves indi
ate how wellthe poli
y generated by the Q-tree performs. From episode 15000 onwards, when

P-learning is started, the test results are based on the P-tree instead of the Q-tree; on the graphs this is visible as a sudden drop of performan
e ba
k to almostzero, followed by a new learning
urve (sin
e P-learning starts from s
rat
h). It
an be seen that P-learning
onverges fast to a better performan
e level than Q-learning attained. After P-learning starts, the Q-tree still gets updated, but nolonger tested. We
an see that although the Q-tree is not able to generalise overunseen state-spa
es, the P-tree | whi
h is derived from the Q-tree | usually
an.The jump to an a

ura
y of 1 in the Q-learning phase for sta
king the blo
ksis purely a

idental, and disappears when the Q-tree starts to model the en-
ountered state-spa
es more a

urately. The generated Q-tree at that point intime is shown in Figure 6. Although this tree does not represent the
orre
tQ-fun
tion in any way, it does | by a

ident | lead to the
orre
t poli
y forsta
king any number of blo
ks. Later on in the experiment, the Q-tree will bemu
h larger and represent the Q-fun
tion mu
h
loser, but it does not representan overall optimal poli
y anymore.state(S),a
tion_move(X,Y),numberofblo
ks(S,N)height(S,Y,H),diff(N,H,D),D<2 ?yes:qvalue(1.0)no:height(S,B,C),height(S,Y,D), D < C ?yes:qvalue(0.149220955007456)no:qvalue(0.507386078412001)Fig. 6. The Q-tree for Sta
king after 4000 episodesThe algorithm did not
onverge for the On(A;B) goal but we did get betterperforman
e than the original RRL. This is probably due to the fa
t that wewere able to learn more episodes.4.3 The Minimal Sample SizeWe de
ided to further explore the behaviour of the RRL-TG algorithm withrespe
t to the delay parameter whi
h spe
i�es the minimal sample size for TGto split a leaf. To test the e�e
t of the minimal sample size, we started RRL-TGfor a total of 10 000 episodes and started P-learning after 5000 episodes. We thenvaried the minimal sample size from 50 to 2000 examples. We ran these testswith the unsta
king goal.Figure 7 shows the learning
urves for the di�erent settings, Table 2 showsthe sizes of the resulting trees after 10 000 episodes (with P-learning starting at

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 2000 4000 6000 8000 10000

A
ve

ra
ge

 R
ew

ar
d

Number of Episodes

’50’
’400’

’1000’
’2000’Fig. 7. The learning
urves for varying minimal sample sizesepisode 5000. The algorithm does not
onverge for a sample size of 50 examples.Even after P-learning optimality is not rea
hed. The algorithm makes too manymistakes by relying on too small a set of examples when
hoosing a test. Withan in
reasing sample size
omes a slower
onvergen
e to the optimal poli
y. Fora sample size of 1000 examples, the dip in the learning
urve during P-learningis
aused by a
hange in the Q-fun
tion (whi
h is still being learned during these
ond phase). When looking at the sizes of the generated trees, it is obviousthat the generated poli
ies bene�t from a larger minimal sample size, at the
ostof slower
onvergen
e. Although experiments with a smaller minimal sample sizehave to
orre
t for their early mistakes by building larger trees, they often stillsu

eed in generating an optimal poli
y.Table 2. The generated tree sizes for varying minimal sample sizes50 400 1000 2000Q-tree 31 26 16 9P-tree 9 10 8 8

5 Con
luding RemarksThis paper des
ribed how we upgraded the G-tree algorithm of Chapman andKaelbling [4℄ to the new TG-algorithm and by doing so greatly improved thespeed of the RRL system presented in [5℄.

We studied the
onvergen
e behaviour of RRL-TG with respe
t to the min-imal sample size TG needs to split a leaf. Larger sample sizes mean slower
onvergen
e but smaller fun
tion representations.We are planning to apply the RRL algorithm to the Tetris game to studythe behaviour of RRL in more
omplex domains than the blo
ks world.Future work will
ertainly in
lude investigating other representation possib-ilities for the Q-fun
tion. Work towards �rst order neural networks and Bayesiannetworks [7℄ seems to provide promising alternatives.Further work on improving the TG algorithm will in
lude the use of multipletrees to represent the Q- and P-fun
tions and further attempts to de
rease theamount of used memory. Also, some work should be done to automati
ally �ndthe moment to start P-learning and the optimal minimal sample size. Both willin
uen
e the size of the generated poli
y and the
onvergen
e speed of TG-RRL.A
knowledgementsThe authors would like to thank Sa�so D�zeroski, Lu
 De Raedt and Mauri
eBruynooghe for their suggestions
on
erning this work. Jan Ramon is supportedby the Flemish Institute for the Promotion of S
ien
e and Te
hnologi
al Resear
hin Industry (IWT). Hendrik Blo
keel is a post-do
toral fellow of the Fund forS
ienti�
 Resear
h of Flanders (FWO-Vlaanderen).Referen
es1. H. Blo
keel and L. De Raedt. Top-down indu
tion of �rst order logi
al de
isiontrees. Arti�
ial Intelligen
e, 101(1-2):285{297, June 1998.2. H. Blo
keel, L. De Raedt, and J. Ramon. Top-down indu
tion of
lustering trees.In Pro
eedings of the 15th International Conferen
e on Ma
hine Learning, pages55{63, 1998. http://www.
s.kuleuven.a
.be/~ml/PS/ML98-56.ps.3. H. Blo
keel, B. Demoen, L. Dehaspe, G. Janssens, J. Ramon, and H. Vande
asteele.Exe
uting query pa
ks in ILP. In J. Cussens and A. Fris
h, editors, Pro
eedings ofthe 10th International Conferen
e in Indu
tive Logi
 Programming, volume 1866of Le
ture Notes in Arti�
ial Intelligen
e, pages 60{77, London, UK, July 2000.Springer.4. David Chapman and Leslie P. Kaelbling. Input generalization in delayed reinfor
e-ment learning: An algorithm and performan
e
omparisions. In Pro
eedings of theInternational Joint Conferen
e on Arti�
ial Intelligen
e, 1991.5. S. D�zeroski, L. De Raedt, and K. Driessens. Relational reinfor
ement learning.Ma
hine Learning, 43:7{52, 2001.6. L. Kaelbling, M. Littman, and A. Moore. Reinfor
ement learning: A survey.Journal of Arti�
ial Intelligen
e Resear
h, 4:237{285, 1996.7. K. Kersting and L. De Raedt. Bayesian logi
 programs. In Pro
eedings of the tenthinternational
onferen
e on indu
tive logi
 programming, work in progress tra
k,2000.8. P. Langley. Elements of Ma
hine Learning. Morgan Kaufmann, 1996.9. T. Mit
hell. Ma
hine Learning. M
Graw-Hill, 1997.10. R. Sutton and A. Barto. Reinfor
ement Learning: an introdu
tion. The MIT Press,Cambridge, MA, 1998.

