Commentary/ The work of Roger Shepard

suit of them has yielded impressive results. A question remains,
however, one that falls outside the province of Shepard’s discussion.
The question concerms what exactly Shepard’s equations purport to
describe. Shepard speaks of “representations” and “appearances.”
This implies that what Shepard is after is a set of principles govern-
ing creatures’ manipulation of representational states of mind.

Physicists employ equations to represent and explain the ac-
tions and powers of material bodies: bodies “obey” or “follow” laws
these equations express. In just the same sense, intelligent crea-
tures could be said to obey or follow laws of physics. Compare this
to a case in which you obey a rule for stopping at stop signs by halt-
ing your car at a stop sign. Invoking a distinction made famous by
Kant, we can say that you are guided by oract on the stop sign rule.
In contrast, although your actions accord with laws of nature, you
do not act on those laws. This is just to say that actions can accord
with a law or principle without thereby being based on or guided
by that law or principle. In acting on a principle, an agent’s grasp
or representation of the principle (in concert with other states of
mind) controls the action.

What of SHEPARD's principles? Suppose Shepard has it right:
creatures assessments {explicit or implicit) of certain features of
their environment conform to the principles he advances. Do
these principles guide creatures” assessments of colors, or shapes,
or motions? That is one possibility. Another, less ambitious, possi-
bility is that creatures’ actions merely satisfy the principles. If that
were 50, then the creatures need only possess a nature the physi-
cal composition of which supports mechanisms whose operation
is describable via the principles.

Is this one of those philosophical distinctions without a differ-
ence? Certainly anything any creature does, if governed by any
law, is governed by (and so accords with) basic physical law. Just
as this need not be taken to imply that every science is reducible
to (in the sense of being replaceable by) physics and chemistry, so
it need not mean that explanations that appeal to principles on
which agents are taken to act, are replaceable by explanations
framed in terms of laws to which agents” actions merely conform.
In invoking representations in explanations of creatures’ actions
we appeal to this very distinction.

Representing our surroundings differs from simply mirroring
those surroundings. Representation is selective and partial; we
represent the world in a particular way from a particular point of
view. Evolution ensures that perceptual representations are con-
strained by the world. Our finite nature imposes additional con-
straints. This can be made to sound trite: the way the world looks,
feels, sounds, and tastes to us depends on how the world is and
how we are. But the formulation of principles that capture the
workings of this mechanism is anything but trite.

Psychological explanation is susceptible to a peculiar sort of
mis-direction. Features of the explanatory apparatus are easily
mistaken for features of what is being explained. This occurs in
everyday life when we anthropomorphize pets, ascribing to them
states of mind they are unlikely to be in a position to harbor. Psy-
chologists risk a similar confusion in formulating principles taken
to govern mental representations. It is easy to mistake features of
the formulation for features of the system. An example of a mis-
take of this kind might be the imputation of a mechanism for solv-
ing differential equations in the brain of an outfielder pursuing a
fly ball. We describe the ball’s trajectory using differential equa-
tions, and the outfielder’s brain must incorporate mechanisms that
arrive at comparable solutions. But it need not follow that the
brain engages in computations of the kind we would use to de-
scribe the flight of the ball. Instead, the brain might avail itself of
simpler heuristic mechanisms. One way to describe these mecha-
nisms is to describe their inputs and specify a principle that takes
these into appropriate outputs. But we cannot move directly from
such a description to the conclusion that the brain operates on,
and not merely in accord with, these principles.

Perhaps the nervous system is a “smart machine” or, better, a vast
system of smart machines (Heil 1983; Runeson 1977). Smart ma-
chines are devices that execute computationally sophisticated tasks
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in mechanically simple ways. A centrifugal governor on a steam en-
gine is a smart machine, as is a polar planimeter (a simple device
used to determine the area of irregular spaces, the area of an island
on a map, for instance). Such devices act in accord with certain
mathematical rules, but not on the basis of those rules. Knowing the
rules would not tell you how the devices were constructed, how they
actually operate. It is hard to avoid the impression that SHEPARD'S
principles are like this. In representing the world, we (or our visual
systems) act in accord with these principles, but not on them. This
is where talk of mental representations stands to be misleading.
Mechanisms underlying the production and manipulation of our
worldly representations could well operate in accord with certain
principles without those principles mirroring the underlying mech-
anisms. Mechanisms operating in accord with the very same prin-
ciples could well differ internally in important ways.

None of this affects the validity or significance of SHEPARD's re-
sults — results which, in any case, a philosopher is in no position to
challenge. It does, however, affect the ways we might seek to un-
derstand and test those results in looking at the underlying hard-
ware.
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Abstract: The great advantage of Tenenbaum and Griffiths’s model is that
it incorporates both specific and general prior knowledge into category
learning. Two phenomena are presented as supporting the detailed as-
sumptions of this model. However, one phenomenon, effects of diversity,
does not seem to require these assumptions, and the other phenomenon,
effects of sample size, is not representative of most reported results.
[TENENBAUM & GRIFFITHS]

The Bayesian model proposed by TENENBAUM & GRIFFITHS has
a number of strengths, such as extending Shepard’s (1987b) ac-
count of generalization to multiple stimuli. This model is by no
means the only model of categorization that extends SHEPARD’S
work (see, e.g., Nosofsky 1988b), nor is it the only Bayesian model
of categorization to be applied to psychological data (see, e.g., An-
derson 1991). Perhaps whatis mostimportant and novel about this
modeling effort is the explicit emphasis on how people’s prior be-
liefs are put together with observed category members to make
classification judgments.

Since Murphy and Medin (1985), there have been many theo-
retical arguments and empirical demonstrations showing that cat-
egorization must be constrained by prior knowledge and cannot
simply depend on generalization from observations (see Heit
1997b, for a review). However, model-based research in catego-
rization has lagged behind on this important issue, with most cat-
egorization models not addressing influences of prior knowledge.
In contrast, the Bayesian model of TENENBAUM & GRIFFITHS
gives an elegant account of how two kinds of prior knowledge are
incorporated into categorization.

First, category learning is set against the backdrop of a hypoth-
esis space, which represents expectations about the possible con-
tent of the category. Category learning can be viewed as elimina-
tion of hypotheses that do not fit the data while strengthening the
remaining hypotheses (cf., Horwich 1982). The Bayesian method
for deriving posterior probabilities of hypotheses embodies the
idea that not only does prior knowledge serve as a guide to what



the observed category members will be like, but also the observa-
tions themselves are crucial for selecting from among numerous
prior hypotheses (Heit & Bott 2000).

Second, the modeling framework can apply general knowledge
about how observations are sampled. This is knowledge not about
the possible content of the category to be learned, but rather
about the manner of learning itself. The crucial idea introduced
by TENENBAUM & GRIFFITHS is “strong sampling,” an assump-
tion that observations are drawn randomly from some fixed pop-
ulation. Strong sampling has important consequences, such as fa-
voring specific hypotheses corresponding to smaller populations
of positive examples — this is called the “size principle.” Within this
modeling framework it could be possible to build in further dis-
tinctions about sampling, such as whether sampling is with or
without replacement (Barsalou et al. 1998) or whether the obser-
vations have been presented in some purposeful order according
to goals of a teacher (Avrahami et al. 1997).

In support of the Bayesian model including the size principle,
TENENBAUM & GRIFFITHS focus on two phenomena, that more
variable or diverse observations lead to broader generalizations,
and that as the number of observations within a given range
increases, generalization outside the range is reduced. These two
phenomena are now considered in turn.

First, although the effect of diversity does appear to be robust,
there have been salient exceptions reported in inductive reason-
ing tasks (reviewed by Heit 2000). Some cross-cultural work and
developmental research has failed to find the diversity effect.
Even with American college students, Osherson et al. (1990) re-
ported an exception to the diversity effect: People draw stronger
inferences given an observation that flies, for example, have some
characteristic, compared to being given an observation that both
flies and orangutans have this characteristic. It would be a chal-
lenge for any Bayesian account of induction, including Heit
(1998), to address these exceptions, because Bayesian accounts do
seem to predict robust diversity effects.

Tt is notable that Heit’s (1998) Bayesian model of inductive rea-
soning predicts diversity effects without any size principle or as-
sumption of strong sampling. Indeed, use of information about
variability of evidence is taken to be a hallmark of Bayesian mod-
els in general (Earman 1992). Likewise, models of categorization
without any size principle, such as Nosofsky’s (1988b) exemplar
model and Ashby and Gott’s (1988) parametric model, also pre-
dict broader generalization from more variable observations. Al-
though it is clear from TENENBAUM & GRIFFITHS’s Figure 2 that
it is possible to predict the diversity effect with strong sampling
and the size principle, it seems that the diversity effect in itself is
not strong evidence for these assumptions. Other models without
these assumptions can also predict this result.

The second, fascinating result, is that with other things being
equal, larger samples tend to promote less broad inferences (re-
ported in Tenenbaum 1999). This result does seem to be distinc-
tive evidence for the size principle, as illustrated by TENENBAUM
& GRIFFITHS's Figure 3. This result would not be predicted by
categorization models without the size principle such as Nosofsky
(1988b) and Ashby and Gott (1988).

However, this result differs from numerous results showing just
the opposite, with larger numbers of observations leading to
broader generalizations. Although it is hard to perfectly eliminate
confounds between number of observations and their variability,
it appears that Homa et al. (1981) did show greater generalization
to categories with more members. Nosofsky (1988b) showed that
when a category member is presented a large number of times,
there is increased generalization of similar stimuli to the same cat-
egory. Maddox and Bohil (1998) showed that people can track the
base rates of categories, with a bias to put transfer stimuli in more
categories with more members. None of these results are insur-
mountable evidence against TENENBAUM & GRIFFITHS's Bayes-
ian model; for example, Bayesian models can easily incorporate in-
formation about base rates. Yet, it does appear that the result
presented by TENENBAUM & GRIFFITHS, that larger samples lead
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to less broad generalization, is not characteristic of most results re-
ported in this area. It would be important to establish the bound-
ary conditions for this fascinating but isolated result.

In sum, the Bayesian model of generalization proposed by
TENENBAUM & GRIFFITHS makes substantial contributions beyond
existing accounts. However, the value of this model surely will be in
its ability to address already documented phenomena in generaliza-
tion, categorization, and inductive inference, including the excep-
tions to the diversity and sample size effects predicted by the model.
In the target article, the model is applied to tasks where only posi-
tive cases of a single category are presented. Although it is valuable
to focus on this important learning situation, it is notable that many
more psychological experiments have addressed learning to distin-
guish one category from another, or learning from positive and neg-
ative examples. To address this large body of existing research, the
Bayesian model itself would require some further generalization.

Adaptation as genetic internalization
Adolf Heschl

Konrad Lorenz Institute for Evolution and Cognition Research, University
of Vienna, A-3422 Altenberg, Austria. Adolf.Heschl@kla.univie.ac.at
http://www.univie.ac.at/evolution/kli/

Abstract: In the course of evolution organisms change both their mor-
phology and their physiology in response to ever-changing environmental
selection pressures. This process of adaptation leads to an “internaliza-
tion,” in the sense that external regularities are in some way “imitated” by
the living system. Countless examples illustrate the usefulness of this
metaphor. However, if we concentrate too much on Shepard’s “universal
regularities in the world,” we run the risk of overlooking the many more
fascinating evolutionary details which alone have made, and still make pos-
sible the evolution of diversity on earth.

[SHEPARD]

T will first attempt to theoretically underpin the concept of “in-
ternalisation” as it has been used and further developed in an im-
pressive way by Roger SHEPARD. Let us begin at the lowest imag-
inable level of evolution: the genetic modification of organisms
through random variation and natural selection. As has been em-
pirically shown (Luria & Delbriick 1943), random genetic varia-
tion forms the molecular basis for subsequent evolutionary pro-
cesses. These mutations can have three effects on the biological
fitness of their carriers: they can be neutral, negative or — rarely —
positive. In the first case, the traits of the organisms concerned will
vary in a completely random way and no structuring effect of the
environment will be recognizable. In the second case, many or
even all carriers of the mutation will ultimately disappear from the
evolutionary scene. This will have a clear structuring effect on the
whole population of a given species, in the sense that only those
individuals lacking this mutation will survive and reproduce. In
such a case, we could speak of negative selection or, more simply,
an extermination effect of specific adverse external influences.
The third case, in which a new mutation provides an advantage
for the organisms concerned, leads to something we could indeed
call an “internalization” of external regularities. To give an exam-
ple at the molecular level: an enzyme (lactase) is produced which
allows humans to better digest the form of sugar found in milk
(lactose); as is to be expected, the distribution of the gene coding
for this enzyme within the population reflects the structure of a
concrete external regularity: the geographic distribution of inten-
sive dairy-farming (Jones 1992). What is valid at the population
level must also be valid at the molecular level: the chemical struc-
ture of lactase in turn reflects certain specific structural aspects of
the disaccharide lactose. Hence, in an evolutionary perspective, it
is perfectly legitimate to equate the process of biological adapta-
tion with a kind of internalization process of external selection
pressures, because every adaptive change must necessarily be ac-
companied by a corresponding form of internal restructuring.
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