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ABSTRACT 
A person seeking someone else’s attention is normally able 
to quickly assess how interruptible they are.  This 
assessment allows for behavior we perceive as natural, 
socially appropriate, or simply polite. On the other hand, 
today’s computer systems are almost entirely oblivious to 
the human world they operate in, and typically have no way 
to take into account the interruptibility of the user.  This 
paper presents a Wizard of Oz study exploring whether, 
and how, robust sensor-based predictions of interruptibility 
might be constructed, which sensors might be most useful 
to such predictions, and how simple such sensors might be.   

The study simulates a range of possible sensors through 
human coding of audio and video recordings.  Experience 
sampling is used to simultaneously collect randomly 
distributed self-reports of interruptibility.  Based on these 
simulated sensors, we construct statistical models 
predicting human interruptibility and compare their 
predictions with the collected self-report data. The results 
of these models, although covering a demographically 
limited sample, are very promising, with the overall 
accuracy of several models reaching about 78%.  
Additionally, a model tuned to avoiding unwanted 
interruptions does so for 90% of its predictions, while 
retaining 75% overall accuracy.  
Keywords 
Situationally appropriate interaction, context-aware 
computing, sensor-based interfaces, machine learning. 

INTRODUCTION 
As a part of our early socialization, human beings normally 
learn when it is appropriate to interrupt someone.  As 
adults, we can typically assess someone’s interruptibility 
very quickly and with a minimum of effort.  For example, 
in the time it takes to walk past someone’s open office 
door, we can often tell that we should not intrude on the 
person.  This assessment allows us to balance the benefits 
of an interruption with its cost.  Maintaining such a balance 
usually results in what is recognized as socially appropriate 
(or informally: civil or polite) behavior.   

Unfortunately, computer and communications systems 
cannot currently act in a similar fashion – they are almost 
entirely oblivious to the human context in which they 
operate and cannot assess whether “now is a bad time.”  As 
a result, they operate the same way in essentially all 
situations, and do not act in ways that remain appropriate to 
the situation.  If left unchecked, current systems can easily 
disturb or annoy – consuming the valuable resource of 
human attention in a haphazard and inefficient fashion.  As 
a result, we often avoid building proactive systems – 
forcing our interfaces to be silent and passive until called 
upon.   

If we could develop relatively robust estimators of 
interruptibility, we might enhance human-computer 
interaction and computer mediated communications in a 
number of ways – making people more efficient (and 
possibly even more relaxed).  For example, we might build 
a “smart answering machine” which stopped our phone 
from ringing and diverted our other messaging traffic when 
we should not be interrupted.  We might also be able to 
build information displays that could balance an estimation 
of the importance of a piece of information against the 
attentional costs of delivering it.  

This paper describes work exploring the feasibility of 
creating such an estimator by using sensors to drive models 
that predict human interruptibility.  This should be 
theoretically possible, since the equivalent assessments 
made by people are based on directly observable 
phenomena (rather than, for example, invisible internal 
cognitive state).  However, replicating this kind of rich 
human judgment in practice may be very challenging and 
might even be currently impossible.  The study described 
here seeks to assess the feasibility of this kind of automatic 
prediction based on sensor data.  Specifically it seeks 
answers to at least these five questions:  

 

• Can a practical sensor-driven model reliably predict 
human interruptibility? 

• How can such a model be constructed? 

• How accurate can we make such a model? 

• Which sensors are most useful for such a model? 

• What are the simplest sensors that will produce an 
accurate prediction? 

  



 

We might proceed by creating and deploying sensors, then 
testing their effectiveness with various forms of models.  
However, given the large uncertainty surrounding these 
questions, it is almost inevitable that we would spend 
considerable effort to build sensors which in the end turned 
out to be ill-suited or sub-optimal for the task.  Instead, we 
have chosen a Wizard of Oz approach that allows us to 
simulate a wide range of plausible sensors, build multiple 
models based on data from these simulated sensors, and 
then test the effectiveness of different models and different 
combinations of sensors.   

Specifically, this study is based on a long-term digital audio 
and video recording of the working environment of a 
subject.  These recordings were made during full working 
hours for 14-22 working days for each subject.  The 
recordings were then viewed by a person who coded for 
actions and situations that could plausibly be sensed.  For 
example, as detailed below, we recorded the number of 
people present, who was speaking, what task objects were 
being manipulated, whether the phone was off-hook, and 
other similar facts about the environment.  Overall, we 
recorded 602 hours of audio and video from the office 
environments of four subjects with similar job functions.   

During the time that recordings were being made we 
employed experience sampling techniques [5] (sometimes 
called a beeper study) to elicit in-situ self-reports of their 
interruptibility.  Finally, a variety of machine learning 
techniques were used to create predictive statistical models 
that could use the simulated sensor data to predict the 
collected self-reports.   

While currently limited to a fairly narrow demographic 
group, the results produced have been quite promising.  
When predicting overall interruptibility or non-
interruptibility of subjects (as a binary decision), several 
models produced very similar results with a cross-subject 
accuracy of approximately 78% (compared to a base 
accuracy of 68%).  We were also surprised to discover that 
much of that predictive power of several of these models 
could be obtained using a single, relatively easy to build, 
sensor that indicates whether anyone in the space is talking.   

A primary use for an interruptibility estimator will likely be 
to structure information delivery to avoid situations when 
the user does not wish to be interrupted.  In that setting it 
may be more important to avoid “incorrect” interruptions 
than it is to make sure not to miss opportunities for 
“correct” interruptions.  We have constructed a model 
tuned to avoiding unwanted interruptions that does so for 
90% of its predictions (while retaining 75% overall 
accuracy).  

RELATED WORK 
The study of interruptions began with classic experiments 
in the 1920s showing that tasks that were interrupted were 
more likely to be recalled after a delay than tasks that were 
not interrupted [17]. Much of the psychological literature 
on interruptions has been devoted to examining this effect 
[1, 7, 8], although recent research in HCI has sought to find 

what technological interventions might be best to negotiate 
multiple and sometimes complex tasks [9, 10, 11]. 

HCI researchers have only begun to provide a more 
analytic and precise approach to understanding 
interruption, so as to design better context-aware systems. 
Some researchers believe that understanding the context of 
interruptions cannot be handled successfully by machines, 
but instead machines must defer to users in an accessible 
and useful fashion [2]. Others, such as Horvitz [9], are 
optimistic that machine learning techniques can handle 
many of the predictions needed to present information 
appropriately. 

Other researchers have worked towards design guidelines 
for coordinating interruption in HCI. McFarlane tested four 
known methods for deciding when to interrupt people [11]. 
Although the results have implications for structuring 
appropriate interruption in HCI, no one method emerged as 
best in doing so. O’Conaill completed an ethnographic 
study on the nature of interruptions in the workplace with 
implications for how to better design communication 
technology [13]. One major finding was that the recipients 
of interruptions often derive personal benefit from the 
interruption, often at the expense of the initiator. This 
suggests that a blanket approach of suspending all 
interruptions may eliminate the benefit that recipients 
receive from being interrupted, and that an intelligent 
filtering approach, such as done by human assistants, would 
be useful.  Bellotti defines the components of context, 
design guidelines and human-salient details for realizing 
them [2].  Hudson poses the challenge of making 
interruptions more effective, since many view interruptions 
as a valuable part of getting work done [10]. 

STUDY DETAILS 
In order to increase uniformity for this first experiment, we 
chose four subjects who are similar in terms of working 
environment and the types of tasks they perform.  Each 
serves in a high level staff position in our university, and 
has significant responsibilities for day to day administration 
of a large university department and/or graduate program.  
Each subject has a private office with a closable door.  
Their jobs require them to interact with quite a few 
different people during the day and generally they do not 

Figure 1. Custom Coding Interface  
Showing a Typical View of a Subject’s Office 



 

have full control over their own time.  They typically 
respond to a significant number of “walk in” requests, and 
overall are frequently interrupted.  Each of these subjects 
almost always works with their door open, making them 
accessible to others most of the time.  (Overall their doors 
were closed at some point in the five minutes before a 
sample only 3% of the time, and closed the entire five 
minutes only 0.3% of the time.  Note that this mostly 
eliminates one of the explicit cues people use to indicate 
non-interruptibility, and hence likely makes predictions for 
these subjects more difficult.) 

For each subject we placed a PC with a large disk and an 
A/V capture and compression card connected to a small 
camera and a microphone in their office.  Each machine 
also had speakers for producing audio prompts, and a 
keyboard which allowed the user to temporarily disable 
recording if they felt their conversations were too sensitive 
to be recorded (to ensure privacy, subjects could also 
retroactively request the recordings from any time period 
be destroyed prior to viewing).   The PC did not include a 
visual display. 

As illustrated in Figure 1, cameras with wide angle lenses 
were carefully positioned (using a portable mounting pole) 
so that the primary work area(s) as well as the door were 
visible.  Data was captured in grayscale with a resolution of 
320x240 pixels at about 6 frames per second, and 8-bit 
audio was recorded at 11 Khz. Recording was performed 
from 7am to 6pm on workdays for 14-22 days for each 
subject.  We estimate that 300 hours (27 days) of 
compressed recording could be placed on the 80 Gb disks 
we used.  This recording setup worked well except in one 
case where a week’s data was lost due to an undetected 
improper compression setting that caused the disk to fill up 
prematurely.  For this subject we collected an additional 10 
days of data at a later date.  Overall we recorded 602 hours 
from the subject’s offices. 

Subjects were given an audio prompt to provide a self-
report of interruptiblity at random but controlled intervals, 
averaging two prompts per hour.  In order to try to 
minimize the disturbance caused by our prompts, we chose 
to ask only one question, and used a five point scale so that 
the subject could respond in a minimally disruptive way – 
holding up some number of fingers on one hand (although 
almost all responses ended up being verbal).  Specifically, 
subjects were asked to “rate your current interruptibility on 
a scale from one to five, with one being most interruptible.”  
We collected data for a total of 672 prompts when the 
subject was present.   

While willingness to be interrupted is clearly dependent not 
only on the state of the person, but also on the nature of the 
interruption, we made this study more tractable by 
choosing to only look at the state of the interruptee.  We 
presume that in use of our models, an assessment will also 
be made of the importance of any given interruption, and 
that this will be balanced against the interruptibility 
estimate as well as factors such as the recent and total 

frequency of interruptions and/or specific strategies for 
minimizing the impact of interruptions [11]. 

To facilitate processing of the recorded audio and video, we 
constructed specialized software for playback and coding 
of the data.  Both the overall operation of the software and 
the items coded for were iterated based on coding and 
analysis of the first subject (which was subsequently 
completely re-coded using the final procedures).  Multiple 
coders – students hired on an hourly basis – were 
employed, and began their work being trained for 
consistency with the other coders before performing coding 
that was retained.  For cross-validation between coders we 
performed duplicate coding for a randomly selected 5% of 
the data and found 93.4% agreement at the granularity of 
15 second intervals. To minimize coding time, we have 
initially only coded the five minutes prior to each sample 
point for a total of 56 hours of coded data. 

The final coder’s interface, shown in Figure 1, presented 
recordings in 15 second sequences.  A series of buttons (all 
with keyboard shortcuts) were provided to indicate the 
occurrence of events within that segment.  At the coders’ 
option, a sequence could be played at normal or double 
speed.  After each segment, the coder pressed a key to go to 
the next segment, or could back up and see the segment 
again.   

Overall, we found this setup a very good compromise 
which allowed coders to operate at speeds near or even 
better than real-time in the most common cases where very 
little activity was apparent, but also allowed them to control 
pacing so that they did not fall behind or lose data when 
complex actions were occurring.  To speed up processing, 
multiple passes over the recordings were made, starting 
with whether the occupant was present during each prompt.  
This information was then used to optimize subsequent 
passes.  For example, after coding how many people were 
present, no sequences of an empty room were shown, and 
passes which coded information about the activities of 
guests automatically skipped all sequences when only the 
occupant was present.  With these optimizations, we are 
now able to code data at a rate of between three and four 
minutes of coding time per minute of processed recording.   

THE DATA 
In 54 of the 672 samples (8.0%) the subject was present but 
did not respond to the self-report prompt.  We examined 
these cases individually and determined that in the vast 
majority of them, the subject was either on the phone or 
engaged in conversation with a guest.  Based on empirical 
results from the literature, we expected these activities to be 
highly correlated with non-interruptibility (and this is borne 
out in our data).  Further, in testing we found that removing 
these samples from the data had very little effect on the 
accuracy of the final predictions.  As a result, to make 
analysis and model building simpler we placed these 
samples in the “least interruptible” category for purposes of 
model building. 



 

The overall distribution of self-report responses is shown in 
Table 1 with the aggregate distribution illustrated in 
Figure 2.  Although there are clear differences between the 
subjects, we can see that a substantial portion of the reports 
(32.0%) indicated the least-interruptible condition.   

In coding from recorded data we logged the following 23 
events or situations to act as simulated sensors: 

Occupant related: 

• Occupant presence. 

• Speaking, writing, sitting, standing, or on the phone. 

• Touch of, or interaction with: desk (primary work 
surface), table (large flat surface, not the primary work 
surface), file cabinet, food, drink, keyboard, mouse, 
(gaze at) monitor, and papers (any manipulation, 
including books, newspapers, papers)  

Guest related: 

• Number of guests present. 

• For each guest: sitting, standing, talking or touching 
(any physical contact or very close proximity with 
occupant, including handing occupant an object). 

Environment: 

• Door open or closed. 

• Day of the week, and time of day (hour only). 

These simulated sensors (which we will also refer to as 
features) were chosen because we a priori believed they 
might be correlated with interruptibility, a sensor could 
plausibly be built to detect them, and they could be readily 
observed in our recordings.  (We believe that information 
about what is happening on the computer screen, such as 
what application(s) are running, could also be useful, but 
we could not directly observe that in our recordings.) 

Based on the directly recorded information, we also derived 
a number of variant sensors that captured recency and 
density effects.  For each binary feature – one which either 
occurred or did not occur in each 15 second recorded 

segment – we produced variants of the following forms (the 
names in parenthesis will be used to refer to them later): 

• Event occurred in the 15 second interval immediately 
around the self-report sample (Imm). 

• Event occurred in every 15 second interval for 1 minute 
prior to the sample (All-1).  

• Event occurred in at least one interval in the 1 minute 
prior to the sample (Any-1). 

• Event occurred in every interval in the five minutes 
prior to the sample (All-5). 

• Event occurred in at least one interval in the 5 minutes 
prior to the sample (Any-5). 

• The number of intervals in which the event occurred in 
the five minutes prior to the sample (Count-5). 

For guests present, sitting, standing, talking, or touching, 
we also counted: 

• The number of such guests at the sampling point (Imm). 

• The number of unique guests acting in this way at any 
time during the prior one and five minutes (Any-1 & 
Any-5). 

• The number of guests acting in this way during the 
entire one or five minute prior period (All-1 & All-5).   

Overall, we obtained observation values corresponding to a 
set of 128 direct or derived simulated sensors.  Of these, 30 
were occurrence counts and 98 were based on binary 
events.  Of the binary event sensors, 8 never occurred in 
our data, 14 occurred with fewer than 1% of samples 
(fewer than 7 times), and 20 occurred with fewer than 2% 
of samples (fewer than 14 times).  None of the occurrence 
count sensors had all counted values occurring less 2% of 
the time. 

PREDICTIVE POWER OF INDIVIDUAL SENSORS 
Based on the literature in this area, we would expect that 
the strongest indicators of non-interruptibility would be 
those related to social and task engagement (see for 
example [14]).  In particular, interruptions are undesirable 
when someone is speaking (which can be seen informally 
by noting that it is almost always rude to directly interrupt 
someone who is talking).  Further, speaking on the 
telephone is particularly unfavorable for interruption.  This 
may be because the subtle negotiation of an interruption 
that often occurs in person via eye contact, or other non-
verbal cues, cannot include the remote party to the 
conversation.   

While we knew in advance the general type of activities 
that needed to be detected to produce a good prediction, it 
was still unclear exactly which specific sensors would be 
most useful (and which easy to build sensors might work 
just as well as more complex ones).  To try to understand 
this, we analyzed the predictive power of individual 
simulated sensors using an information gain metric [12].   

 Most     Least 

Subj 1 6.6% 10.2% 29.2% 13.1% 40.9% 

Subj 2 10.2% 12.7% 34.9% 16.3% 25.9% 

Subj 3 31.5% 15.8% 12.1% 6.1% 34.5% 

Subj 4 6.9% 12.3% 22.1% 29.9% 28.9% 

All 13.7% 12.8% 24.3% 17.3% 32.0% 

Table 1. Distribution of Self-Reports. 

0.0%
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20.0%
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Most Least  
Figure 2. Overall Distribution of Interruptibility  

Self-Reports 



 

In simple terms, an information gain metric works by 
sorting a set of observations with respect to the values of a 
single feature within the observation.  This effectively 
removes the entropy associated with variations in that 
feature.  The entropy of the resulting ordered data set is 
then estimated.  The entropy estimates from different 
sortings can then be compared to determine the relative 
amount of entropy removed, hence the relative information 
content of each feature.  Note that the absolute value of an 
information gain metric is not of particular interest, only 
the relative values between features.  Also, information 
gain indicates potential usefulness in prediction, but does 
not show directly whether the feature indicates 
interruptibility or non-interruptibility.   

It is also important to note that many of our simulated 
sensors are, by design, inherently overlapping.  For 
example, Talk (Any-1) will always be true when Talk 
(Imm) is true.  In addition, there are some less obvious 
overlaps such as the fact that the Telephone (Any-*) 
sensors will almost always imply the corresponding Talk 
(Any-*) sensors, and that Guest Talk (Any-*) will be quite 
correlated with Talk (Any-*), since long monologs by 
either the occupant or guest would be expected to be fairly 
rare.  Information gain statistics allow us to consider 
multiple overlapping sensors and provide a way to estimate 
which will be most predictive if we need to choose between 
them. 

Table 2 presents the information gain ordering for the top 
20 features.  Here we can see that the occupant talk and 
telephone sensors clearly rise to the top in predictive power 
– holding eight of the top nine positions.   

After talk and telephone, occupant movement sensors Sit 
(All-1) and Stand (Imm) show the next highest predictive 
power.  These are followed a little further down by Sit 
(Imm) and Stand (Any-1).  Taken together, the sit and stand 
sensors might be interpreted as being positive and negative 
indicators, respectively, of engagement with office tasks 
that are typically done in a seated position.   

The next highest indicator is the number of guests talking 
(Imm), which clearly indicates social engagement.  This is 
followed by several indicators of computer use – Keyboard 
(Imm) and Monitor (All-1, Imm & Count-5). 

In addition to the power of particular sensors, we can also 
see that the shorter term binary sensors (Imm, Any-1, and 
All-1) generally tend to be more predictive than the binary 
sensors working over a five minute period.  However, the 
five minute density sensors (Count-5) seem to have roughly 
the same power as the short term sensors.  (We had initially 
eliminated the Count-1 sensors to make the sensor set 
smaller.  Based on this result, future work will include 
reintroduction of the Count-1 sensors and the analysis of 
their effects.) 

Most of the sensors having very low information gain 
scores occurred too infrequently to provide any predictive 
power.  The only potentially surprising sensor among the 
bottom 30 scores is the Desk (Imm) sensor at rank 101 out 
of 128.  (In contrast desk sensors for Any-1, Any-5, Count-
5, All-1, and All-5 appear at ranks 41, 42, 51, 88, and 99 
respectively). 

Information gain statistics only consider the predictive 
power of features in isolation and do not take into account 
the overlapping nature of our sensors.  In the next section 
we will also consider an approach to analysis of predictive 
power based on constructing models with more and more 
sensors and measuring the results of adding sensors on the 
accuracy of the model. 

CONSTRUCTING PREDICTIVE MODELS 
In order to explore the question of whether predictive 
models can be constructed at all, as well as how predictive 
they might be made, we employed a number of well known 
machine learning algorithms to construct several different 
forms of predictive model.  To make this work simpler and 
less ambiguous we first considered the binary decision 
problem of predicting whether or not the user would 
indicate “least interruptible”.  We will call these two states 
“interruptible” and “not-interruptible.”  This split was 
motivated in part by the expected uses of the predictor in 
avoiding the most harmful interruptions.  In addition, 
anecdotal evidence suggests people often have strong 
feelings about particular times being “obviously not-
interruptible,” but often have more ambivalent attitudes 
towards “partially interruptible” times.  This seems to be at 
least hinted at in the bimodal distribution of self-report 
values, and would also argue for such a split.  After 
considering this binary problem we also took the most 
promising modeling approach and explored other 
variations.  

For the binary decision problem we constructed models 
using decision trees [15], naïve Bayesian predictors, 
support vector machines [3], and AdaBoost with decision 
stumps [6].  (We will not attempt to fully describe each of 
these techniques here.  Interested readers can consult the 
original references above, or a machine learning text such 
as [12].)  All of these models were constructed using 
widely available, open source software packages 
(specifically the C4.5 decision tree package [15] and the 
Weka 3 machine learning software package [16]).   

1 Talk (Imm) 11 N Guests Talk (Imm) 

2 Talk (Any-1) 12 Stand (Any-1) 

3 Telephone (Imm) 13 Keyboard (Imm) 

4 Talk (Count-5) 14 Talk (Any-5) 

5 Telephone (All-1) 15 Monitor (All-1) 

6 Talk (All-1) 16 Monitor (Imm) 

7 Telephone (Count-5) 17 Monitor (Count-5) 

8 Sit (All-1) 18 Sit (Imm) 

9 Telephone (Any-1) 19 Num Guests (All-1) 

10 Stand (Imm) 20 Keyboard (Any-1) 

Table 2. Features with Top 20 Information Gain Scores 



 

For this data set there is a base accuracy rate of 68.0% 
(which would be obtained by always indicating 
“interruptible”).   

For the model evaluations shown in Table 3, we used a 
standard cross-validation approach involving multiple trials 
of model construction.  In each trial we randomly selected 
90% of the data for training, and used the resulting model 
to predict the remaining 10%.  The numbers reported here 
are sums from 10 such trials. 

Decision trees are perhaps the simplest of the techniques.  
The decision trees we used are constructed by first 
selecting the binary test (such as “Num Guests (Imm) > 0”) 
which most usefully splits the data into two parts.  Decision 
trees are then recursively constructed for those subsets.  
Leaves of the resulting tree are then assigned predicted 
values.  One drawback of decision trees is that, after many 
subdivisions, each leaf may represent only a small number 
of samples and hence may be susceptible to noise in the 
data.  As a result, one does not normally build decision 
trees as deeply as possible, but instead applies certain 
stopping criteria.  In our case we used the C4.5 decision 
tree package [15] with 10 trials and a minimum branch size 
of 15. 

Table 3a gives the results from our decision tree model.  
Here, correct predictions appear on the diagonal, and 

incorrect predictions appear off the diagonal (shaded in 
gray).  Incorrect predictions come in two forms, which we 
will call “incorrect interruptions” (bottom left) where 
“interruptible” is incorrectly predicted (and a typical 
application would improperly interrupt), and “incorrect 
delays” (top right) where “non-interruptible” is incorrectly 
predicted (and a typical application would unnecessarily 
delay delivering information).  

We would expect decision trees to work well for this 
problem because there is a strong and unambiguous feature 
(talking) that provides a very good initial split.  In fact as 
shown in the rest of Table 3, the 78.1% accuracy provided 
by decision trees is the best result across the modeling 
techniques.  This prediction is significantly better than 

chance (χ
2
(1, 1344) = 17.5, p < .001). 

In addition to decision trees we also tried creating models 
based on naïve Bayesian predictors, support vector 
machines, and AdaBoost with decision stumps.  The results 
from these four techniques are presented in Table 3b-d.  

These results are all similar and there is no statistically 
significant difference between the largest and smallest.  
Since results from a variety of unrelated approaches 
produce very similar results, we feel this clearly shows that 
predictive models can be constructed, and we are quite 
hopeful that robust models with results in the 75-80% 
accuracy range can be driven from real sensors. 

MODEL VARIATIONS 
Since decision trees represent, in some sense, the simplest 
of the models and also produced the best results, we used 
them to explore several additional variations.   

All the results reported thus far have been for predictions 
across all subjects.  This is a preferable approach because it 
offers the hope that general models could be constructed 
without an extensive individual training period.  However, 
it might be possible to produce better predictions by 
tailoring models to one specific person.  To explore this, we 
constructed four decision tree models isolated to the data 
from each individual.  While we would expect these models 
to perform better, in fact they did not in most cases.  The 
resulting accuracy for individualized models for the four 
subjects was 69.1%, 81.9%, 74.6%, and 76.0%.  This lack 
of improvement is likely due to the effects of having 
substantially less training data.  As a result, it is difficult to 
draw conclusions about how well personalized models 
might work with more extensive individual training data. 

We next revisited the decision to produce predictions of 
“least interruptive” vs. something else.  (Recall that 
subjects gave an interruptibility rating from one for most 
interruptible, to five for least interruptible.)  To do this, we 
considered whether a threshold value of three rather than 
four might produce better results. However, this instead 
reduced accuracy to 69.6% (with a base accuracy for this 
decision problem of 50.7%). 

Finally, we looked at whether better results might be 
obtained via a five-way decision problem rather than a 
binary decision – in other words, whether there was an 
advantage to attempting to directly predict the one-to-five 
interruptibility value.  For a multi-way decision problem 
we were able to use a more sophisticated technique: 
decision trees with error correction codes [4].  Table 4 
presents the results of this model.  Since this multi-way 
problem is substantially harder than the binary problem, 
overall accuracy (the sum of the main diagonal) is 
substantially lower than for the binary problems.   

 Predict 
Inter. 

Predict 
Not 

     Predict 
Inter. 

Predict 
Not 

     Predict 
Inter. 

Predict 
Not 

     Predict 
Inter. 

Predict 
Not 

Actually 
Inter. 

60.6% 

(407) 

7.4% 

(50) 
 

54.4% 

(366) 

13.5% 

(91) 
 

60.6% 

(407) 

7.4% 

(50) 
 

61.5% 

(413) 

6.5% 

(44) 

Actually 
Not 

14.4% 

(97) 

17.6% 

(118) 
 

11.5% 

(77) 

20.5% 

(138) 
 

14.7% 

(99) 

17.3% 

(116) 
 

16.5% 

(111) 

15.5% 

(104) 

 Accuracy: 78.1%  Accuracy: 75.0%  Accuracy: 77.8%  Accuracy: 76.9% 

 a) Decision Trees  b) Naïve Bayesian  c) Support Vector  d) AdaBoost Stumps 

Table 3. Results from Various Model Types 



 

However, we can compare this model more directly if its 
results are mapped onto the same decision problem as the 
previous predictors.  This is done by considering all 1-4 
predictions to match any 1-4 actuals (i.e., a threshold of 4), 
as illustrated in Figure 3.  In this case, the overall accuracy 
is 74.9%.  While this is not an improvement, it is important 
to note that this model has two potential advantages.  First, 
this model allows the decision problem to be changed by 
the user at run-time without changing the model.  In 
particular, the user may set how conservative they would 
like the system to be in choosing to interrupt by selecting a 
threshold value between 0 and 5 (e.g., with 0 meaning 
never interrupt, 3 meaning interrupt when predicted ≤ 3, 
and 5 meaning always interrupt).  The second major 
advantage concerns the distribution of incorrect results.  In 
this model, the percentage of incorrect interruptions as 
defined in the binary problem is only 10.4% of the total 
predictions.  If we assume that incorrect delays are 
preferable to incorrect interruptions in our final application, 
this could be a substantial advantage and worth the loss of 
3% overall accuracy.  Figure 4 illustrates the tradeoffs 

between errors of each type (and resulting overall accuracy) 
at each possible threshold setting.  Note that while it is 
possible to reduce inappropriate interruptions to as low as 
2% of total predictions without stopping all interruptions, 
this causes overall accuracy to drop to 40% which may be 
unacceptably low. 

PREDICTIVE POWER AND SELECTING REAL SENSORS 
In addition to the information gain metric described above, 
we can also examine predictive power of sensors by 
looking at the effect of sensors on the accuracy of the 
models themselves.  To do this, we constructed a series of 
decision tree models constrained by the number of different 
sensors they could employ and measured the accuracy of 
each model.   

Figure 5 presents a graph showing this effect.  The 
important thing to note here is that the first few sensors 
(most notably the first one) have a very large impact which 
accounts for most of the prediction, then the remaining 
sensors provide mixed results, eventually adding only a few 
percentage points to the overall accuracy.  Note that the 
sensors added here are chosen by the decision tree 
algorithm.  This is done on the basis of an information gain 
metric.  However, the analysis performed is more 
sophisticated than the independent information gain scores 
presented earlier, in that it accounts for the overlapping 
effects of previously chosen sensors.  Each point in this 
graph represents the average of several decision trees, and 
so does not necessarily represent a specific sensor being 
added.  However, some of the early sensors added are: 
Telephone (Imm), Talk (Imm), Num Guests (Imm), Sit 
(Imm), Write (Any-5), Table (Count-5), and Keyboard 
(Count-5).   

This indicates that a relatively small number of sensors can 
be used to attain most of the predictive result.  In order to 
further test this, we constructed a final model using sensors 
chosen based on their ease of implementation.  These 
included a new combined “anyone talking sensor” (since it 
is easier to not to have to segregate guests from the 
occupant), as well as telephone (*), keyboard (*), mouse 
(*), and time of day (*).  As indicated in Table 5 the 
accuracy of this model falls within the range of results 
found in main models in Table 3.  Thus we are lead to 
believe that robust results should be attainable from 
practical, relatively easy to implement sensors. 

 Predict 1 Predict 2 Predict 3 Predict 4 Predict 5 
Actual 

1 
5.21% 
(35) 

2.38% 
(16) 

2.83% 
(19) 

1.19% 
(8) 

2.08% 
(14) 

Actual 
2 

2.23% 
(15) 

1.34% 
(9) 

5.36% 
(36) 

1.49% 
(10) 

2.38% 
(16) 

Actual 
3 

1.49% 
(10) 

1.79% 
(12) 

11.76% 
(79) 

3.72% 
(25) 

5.51% 
(37) 

Actual 
4 

1.49% 
(10) 

1.19% 
(8) 

4.61% 
(31) 

5.21% 
(35) 

4.76% 
(32) 

Actual 
5 

1.93% 
(13) 

1.04% 
(7) 

4.76% 
(32) 

2.68% 
(18) 

21.58% 
(145) 

 Accuracy: 45.1%; within 1: 72.6% 
Table 4. Results for Decision Tree  

with Error Correction Codes 
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 Predict 

Inter. 

Predict 

Not 

Actually 

Inter. 

53.3% 

(358) 

14.7% 

(99) 

Actually 

Not 

10.4% 

(70) 

21.6% 

(145) 

 Acc: 74.9% 
 

Figure 3.  Mapping Multi-Way to Binary Decision Using 
the “Interrupt ≤  4” Decision Rule 
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Figure 4. Threshold vs. Error Distribution Tradeoff 
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Figure 5. Accuracy (%) as Features are Added  
to Decision Tree Models 



 

CONCLUSIONS 
While the study described here only considers a particular 
category of office worker, and we cannot yet tell how well 
the results might translate to other demographics, its results 
are still quite promising.  We have demonstrated that 
sensor-based estimators of human interruptibility are 
possible, that robust sensors operating in the 75-80% 
accuracy range might be constructed using several different 
types of models, that speech detectors are the most 
promising sensor for this problem, and that overall a 
relatively simple set of sensors can probably be employed 
to achieve good results. 

FUTURE WORK 
There are many areas for future work in this line of 
research.  First it will be important to expand the study 
done here to different demographic groups (i.e., different 
job functions and different work settings, perhaps even to 
different cultures) in order to understand how robust the 
results might be across the population.  We would also like 
to compare the predictions made by our model with the 
performance of humans estimating interruptibility.  There 
are also many additional opportunities for analysis of this 
data.  For example, the analysis done thus far has 
concentrated almost exclusively on questions relating to 
construction of predictive models.  There is another set of 
interesting questions related to understanding human 
behavior that we have only partially touched on here.  We 
would also like to do an in depth review of the 
misclassifications made by our models to see if there are 
discernible patterns which could be used to improve the 
models, and to systematically explore the effects of sensor 
errors on predictions.  Finally, based on these promising 
results in a Wizard of Oz setting, we hope to be able to 
construct working systems with real sensors, and create 
new interactive applications that use them. 
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 Predict 
Inter. 

Predict 
Not 

Actually 
Inter. 

58.9% 

(396) 

9.1% 

(61) 

Actually 
Not 

14.4% 

(97) 

17.6% 

(118) 

 Accuracy: 76.5% 

Table 5. Results for “Easiest Sensors” Model 


