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ABSTRACT 
Current systems often create socially awkward interruptions 
or unduly demand attention because they have no way of 
knowing if a person is busy and should not be interrupted.  
Previous work has examined the feasibility of using sensors 
and statistical models to estimate human interruptibility in 
an office environment, but left open some questions about 
the robustness of such an approach.  This paper examines 
several dimensions of robustness in sensor-based statistical 
models of human interruptibility.  We show that real 
sensors can be constructed with sufficient accuracy to drive 
the predictive models.  We also create statistical models for 
a much broader group of people than was studied in prior 
work.  Finally, we examine the effects of training data 
quantity on the accuracy of these models and consider 
tradeoffs associated with different combinations of sensors.  
As a whole, our analyses demonstrate that sensor-based 
statistical models of human interruptibility can provide 
robust estimates for a variety of office workers in a range of 
circumstances, and can do so with accuracy as good as or 
better than people.  Integrating these models into systems 
could support a variety of advances in human computer 
interaction and computer-mediated communication. 

Author Keywords 
Situationally appropriate interaction, managing human 
attention, sensor-based interfaces, context-aware computing, 
machine learning. 

ACM Classification Keywords 
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INTRODUCTION 
Current computer and communication systems are generally 
oblivious to the social conventions defining appropriate 
behavior and the impact that their actions have on social 

situations.  Whether a mobile phone rings in a meeting or a 
laptop interrupts a presentation to announce that its battery 
is fully charged, current systems often create socially 
awkward interruptions or unduly demand attention because 
they do not have any model of whether it is appropriate to 
interrupt.  As a result, we are forced to design systems that 
are passive, waiting for a user to initiate action. 

Prior work has examined the feasibility of using sensors 
and statistical models to estimate human interruptibility in 
an office environment [7, 13].  This work used self-reports 
of interruptibility and a Wizard of Oz technique to analyze 
600 hours of audio and video recordings from the offices of 
four workers, yielding several results.  The first was that 
human subjects asked to distinguish between “highly 
non-interruptible” situations and other situations in the 
recordings had an accuracy of 76.9%.  Statistical models 
based on simulated sensors could make this same 
distinction with an accuracy as high as 82.4%, significantly 
better than the human subjects.  Interestingly, this prior 
work showed that much of the accuracy of these models 
was derived from only a few sensors.  By itself, a simulated 
sensor to determine whether anybody in an office was 
talking had an accuracy of 75.9%, indicating that social 
engagement played a major role in the interruptibility 
self-reports provided by the original subjects.  This 
simulated talking sensor was combined with simulated 
sensors for keyboard or mouse activity, for using the phone, 
and for the time of day, resulting in a model with an 
accuracy of 79.2%.  These results showed that statistical 
models based on simulated sensors can provide useful 
estimates of the interruptibility of office workers. 

While this prior work provided a promising start to this 
approach to statistical models of human interruptibility, it 
left several questions unanswered.  The four subjects 
studied in this work had similar jobs as high-level staff in a 
university, responsible for day-to-day administration of a 
large university department and/or graduate program.  It 
was unclear whether the results obtained with these subjects 
would generalize to different types of office workers, such 
as programmers or others who spend less time interacting 
with people.  There was also a question of whether real 
sensors could be implemented reliably enough to obtain 
results as good as those obtained using simulated sensors. 
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This paper examines several dimensions of robustness in 
sensor-based statistical models of human interruptibility.  
First, we develop real sensors based on the simulated 
sensors used in prior work.  Second, we deploy the sensors 
with a much more diverse group of office workers than was 
examined in prior work.  Results gathered from this 
deployment demonstrate that this approach to modeling 
human interruptibility works with a wide variety of people, 
not just people in the original demographic.  Third, we 
examine the amount of data required to create statistical 
models that provide reliable estimates of interruptibility.  
Because it seems that models should adapt to the nuances of 
an individual person, we use this information to examine 
the tradeoff between general models and models based on 
data from a single person.  Finally, we examine some of the 
tradeoffs associated with different sensor combinations.  On 
one hand, models that examine a person’s computer activity 
and use audio from the built-in microphone of a laptop 
computer can be deployed entirely in software, with no cost 
for sensing infrastructure.  On the other hand, spending 
resources to instrument an office allows a model of human 
interruptibility that does not use cameras or microphones. 

As a whole, our analyses demonstrate that sensor-based 
statistical models of human interruptibility can provide 
robust estimates for a variety of office workers in a variety 
of circumstances, with accuracy as good as or better than a 
previously established measure of human performance.  
The analyses also provide insight into how to include these 
models in systems.  A system might use these models to 
inform callers that a person appears to be busy, allowing the 
caller to choose to leave a message or interrupt the 
apparently busy person.  Another system might delay 
auditory notifications for non-urgent email, still putting new 
email in the client as it arrives, but preventing the client 
from playing a potentially disruptive sound when the user 
appears to be busy.  Awareness and communication 
systems might share information about a colleague’s 
interruptibility, with the goal of encouraging colleagues to 
not interrupt a person who appears to be busy [8].  It seems 
that a variety of advances in human computer interaction 
and computer-mediated communication could be supported 
by robust statistical models of human interruptibility. 

The next section briefly discusses some related work.  We 
then present our data collection method, followed by an 
overview of the data.  Next are our analyses of this data.  
These start by examining the effectiveness of our sensors 
and statistical models across the full set of subjects and 
within interesting subsets of the subjects.  We then discuss 
the effects of training data quantity on model accuracy.  
Our last analysis considers tradeoffs associated with 
different combinations of sensors.  Finally, we provide a 
short discussion and some conclusions. 

RELATED WORK 
Hudson et al used an experience sampling technique to 
explore the perceptions that managers in a research 

environment had about interruptions [12].  They found a 
tension between the desire for uninterrupted time and a 
desire for the helpful information sometimes conveyed by 
an interruption.  Hudson et al propose that the focus, 
therefore, should not be on reducing interruptions, but 
instead on making them more effective.  We agree with this 
description of the problem, and believe that it is important 
that people retain control over how they are affected by 
models of interruptibility.  For example, we do not believe 
that an automated system should inform a caller that the 
callee appears to be busy and then force the caller to leave a 
message.  Instead, a system should give the caller the option 
to leave a message or interrupt the apparently busy callee.  
People can thus consider the importance and timeliness of a 
call versus the apparent interruptibility of the callee. 

Horvitz et al have examined a variety of issues related to 
human attention and computer interfaces [10, 11].  Recent 
work by Horvitz and Apacible explores models based on 
calendar information, computer activity, and real-time 
analyses of audio and video streams [9].  Using a total of 15 
hours of observations collected from the working 
environments of 3 subjects, they evaluate models created 
from these features and subsets of these features.  While 
this work and our work are complimentary, differences in 
the data collection methods make it inappropriate to directly 
compare model performance between this work and our 
work.  Cutrell et al examine interruptions created by instant 
messaging in a relatively specific laboratory study [4].   

Begole et al examine the automatic extraction of temporal 
patterns of a person’s presence [1, 2].  For example, a 
regular meeting could be automatically identified by the 
fact that a person is away from their computer for about an 
hour at about the same time every Wednesday.  However, 
presence and interruptibility are not necessarily the same.  
A person could be present, but too busy to be interrupted.  
Some workers are currently forced to use presence to 
indicate interruptibility, physically moving away from a 
computer or office when they do not want to be interrupted 
[12, 19].  Given these sorts of problems, it seems important 
to examine models of both presence and interruptibility. 

DATA COLLECTION 
Our analyses are based on data collected with an experience 
sampling technique [6], sometimes referred to as a beeper 
study.  After installing sensors in subject offices, we left 
and subjects went about their normal work activities.  At 
random intervals, our setup played an audio file prompting 
subjects to report their current level of interruptibility.  By 
simultaneously collecting sensor data, we can later examine 
which sensors and statistical models would have produced 
the best estimates of a person’s interruptibility. 

Our data was collected by a background process running on 
a subject’s primary computer.  Because some subjects used 
laptop computers that they needed to be able to take with 
them, all of our sensors were attached to the computer by a 
single connection to a USB hub.  Subjects detached this 



connection when they took a laptop computer away from an 
office, and our software gave occasional subtle prompts for 
subjects to reconnect the hub.   

A set of speakers connected to the USB hub was used to 
prompt subjects to give interruptibility self-reports.  The 
speakers played an audio file asking the subject to “Please 
give your current interruption level.”  For the next 10 
seconds, our software recorded audio from a microphone 
attached to the USB hub.  During this time, subjects 
responded orally on a 5-point scale, where a 1 indicated that 
a subject was highly interruptible and a 5 indicated that 
subject was highly non-interruptible.  A sign was posted in 
the subject’s office to remind them which end of the scale 
corresponded to which value.  At the end of the 10 seconds, 
a short tone was played to let subjects know that the 
software was no longer recording audio.  Subjects were told 
that a non-response would be treated as a 5 if they were on 
the phone and could not answer.  Non-responses when the 
subject was not on the phone were discarded, as there was 
no way to reliably determine whether the subject was 
present and had not responded or was just not present.  We 
initially collected this data at random intervals of between 
40 and 80 minutes, but later increased the frequency to 
between 30 and 50 minutes.  This increase was because it 
was very easy for subjects to miss a prompt by stepping out 
of their office for only a few minutes.   

Besides recording subject responses to the interruptibility 
prompts, the USB microphone was also used as a sensor to 
determine whether anybody was talking in the office.  The 
microphones were placed on shelves in each office, about 8 
feet from the floor and away from computer fans or other 
noise sources.  The audio was analyzed in real-time on the 
subject’s computer, using the silence detector provided by 
the Sphinx speech recognition package [3].  This software 
adapts to the relatively constant noise levels generated by 
fans, air conditioning, or quite background music.  It 
identifies sharp increases in the energy of audio frames 
collected from the microphone, but does not indicate 
whether these sharp increases are talking or some other 
noise.  However, conversations tend to go on for many 
seconds or even many minutes, whereas most other loud 
noises are relatively short.  In our experience, this system 
works well for detecting extended conversations.  We 
logged the beginning and end times of non-silent intervals, 
but did not record the audio.  We later examine this sensor 
in a relatively noisy environment, offices in which more 
than one person normally works. 

A custom-built USB sensor board was used to instrument 
each subject’s office.  Two magnetic switches, one near 
each side of the top of the door frame, allowed us to sense 
whether the door was open, cracked, or closed [17].  Two 
motion sensors were put in each office, both about 5 feet 
above the floor, one near the door and one near the 
subject’s desk.  Another magnetic switch was used to 
determine whether a person’s phone was physically off its 
hook.  This switch could not detect if the person was using 

the speaker-phone functionality, but we were not allowed 
access to the phone systems that would have detected this.  
In any case, the microphone talking sensor would be likely 
to detect talking when a subject used the speaker-phone.  

Software on each subject’s computer logged, once per 
second, the number of keyboard, mouse move, and mouse 
click events in the previous second.  It also logged the title, 
type, and executable name of the active window and each 
non-active window.  We chose to log this information out 
of the belief that some subjects might be more or less 
interruptible when working in certain applications.  All of 
the information associated with our study was automatically 
compressed and uploaded to a local server, so that we could 
verify that each subject’s sensors seemed to be working and 
so that we could determine when each subject had given the 
desired number of responses. 

DATA OVERVIEW 
This section discusses interruptibility self-reports collected 
from 10 subjects with no prior relationship to this work.  
The subjects were all employees of a major corporate 
research laboratory, studied during the course of their 
normal work.  The first two subjects were first-line 
managers, selected because we felt that their 
human-centered work was closest to work of the four 
subjects studied in prior work [7, 13].  Just as social 
engagement was a key indicator of non-interruptibility in 
prior work, we expected social engagement to be a key 
indicator for these two subjects.  The next five subjects 
were researchers who spent a significant amount of their 
time programming.  These subjects were selected because 
they seem to represent typical knowledge workers, who do 
interact socially at work but also work on tasks that require 
focused attention.  The last three subjects were summer 
interns, selected because they shared an office with another 
summer intern.  Given the prior work indicating that a 
talking sensor is important for estimating interruptibility, 
these subjects were selected to examine how the regular 
presence of a second person in the office affected the 
usefulness of our talk sensor implementation. 

We set out to collect 100 interruptibility self-reports from 
each subject.  Figure 1 shows the 975 responses that were 
actually collected.  Data collection for subject 7, one of the 
researchers, was terminated early because of an external 
deadline that required the removal of the sensors from his 
office.  Data collection for subject 9, one of the interns, was 
terminated early because she expressed a feeling that the 
interruptibility prompts were annoying and asked for the 
sensors to be removed.  Some subjects went slightly over 
because of the small delay from the subject reaching 100 
reports to us taking down the sensors. 

While there are individual differences in the distribution of 
the interruptibility self-reports, note that the most common 
response was 5, or “highly non-interruptible”, accounting 
for nearly 30% of the data.  This distribution is very similar 
to the distribution found in prior work [7, 13], and seems to 



indicate that there are circumstances in which people 
consider themselves to be clearly non-interruptible, as 
opposed to other times when their interruptibility might be 
more dependent on the nature of the interruption or some 
other factor.  It therefore seems reasonable to attempt to 
build models that identify these “highly non-interruptible” 
circumstances.  Our analyses in this paper will focus on 
models that differentiate between self-reports of 5 versus 
values between 1 and 4.  The base performance for this 
problem is an accuracy of 70.1%, which could be obtained 
by always predicting that the person was not “highly 
non-interruptible”.  Note that this is what current systems 
generally do, because they cannot model interruptibility. 

MODEL PERFORMANCE 
This section presents the performance of statistical models 
of human interruptibility built from this data.  We start by 
examining models built from all of the data, and then move 
to considering interesting subsets.  All of our models were 
built in the Weka machine learning environment [20], using 
a naïve Bayes classifier [5, 15] and wrapper-based feature 
selection [14].  In a wrapper-based technique, the features 
used by a model are chosen by adding new features until no 
potential feature improves the accuracy of the model.  
Models are evaluated using a standard cross-validation 
approach, with 10 folds.  That is, each model is evaluated in 
10 trials, with each trial using 90% of the data to train the 
model and the other 10% to test the model.  The values 
presented are sums of the 10 trials, so they sum to the total 
number of self-reports used.  Prior work considered several 
different types of classifiers, but did not find a significant 
difference in their performance for this problem [7, 13].  
We use naïve Bayes classifiers in this work because they 
are computationally very inexpensive, which is important 
when using a wrapper-based feature selection technique.   

Figure 2 shows the performance of a model built with the 
full set of self-reports, presented as a confusion matrix.  
Because we will use several of these matrices in this paper, 
it is worth clarifying that the upper-left corner indicates that 
there were 640 cases of the model correctly predicting a 
self-report value between 1 and 4.  The bottom-right corner 
indicates there were 135 cases where the model correctly 
predicted a value of 5, or “highly non-interruptible”.  The 
upper-right corner shows there were 43 cases where the 
model predicted a self-report of 5 and the subject had 
actually responded with a value between 1 and 4.  Finally, 
there were 157 cases where the modeling predicted a value 
between 1 and 4, but the subject responded with 5.  This 
model has an accuracy of 79.5%, significantly better than 
the base performance of 70.1% (χ2(1, 1950) = 23.01, 
p < .001).  It is also better than the 76.9% accuracy that 
prior work found for people estimating another person’s 
interruptibility [7], though this difference is not quite 
significant (∆z = 1.34, p ≈ .18).  

The wrapper-based feature selection process used to create 
our models starts with an empty set, tries every feature to 
determine which is most predictive, and adds that feature.  
This process repeats to determine which feature is the best 
second feature, third feature, etc. until no available feature 
will improve the accuracy of the model.  Figure 3 shows 
that much of the predictive power of this model comes from 
the first few features, a finding consistent with prior work 
[7, 13].  The first feature, whether the phone was off its 
hook in the last 15 seconds, improves the accuracy of the 
model from the base of 70.1% to 74.2%.  The next three 
features combine to increase the accuracy to 77.6%.  The 
remaining 14 features contribute very slowly, with the 
accuracy rising to 79.5% before selection terminates. 

  

  Highly 
Interruptible 

Highly
Non-Interruptible 

# Category 1 2 3 4 5 
       

1 Manager 17 31 10 19 37 
2 Manager 2 8 36 26 26 
3 Researcher 67 7 8 13 10 
4 Researcher 23 16 27 3 34 
5 Researcher 4 7 24 18 51 
6 Researcher 5 34 29 12 27 
7 Researcher 0 6 12 16 34 
8 Intern 26 28 25 11 13 
9 Intern 3 17 12 15 17 
10 Intern 11 28 2 25 43 
       

Total 158 
16.2% 

182 
18.7% 

185 
19.0% 

158 
16.2% 

292 
29.9% 

 

Figure 1. Distribution of interruptibility self-reports. 
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Figure 2. Performance of model built from all collected data. 
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Figure 3. Number of features versus percent accuracy. 



Manager Data 
The manager subjects in this study have jobs that seem 
similar to those of the four subjects studied in prior work, 
so our expectation was that the sensors found to work well 
in prior work would also work well for these subjects.  The 
left confusion matrix in Figure 4 shows the result of 
creating and evaluating a model using only the data from 
the two manager subjects.  The model has an accuracy of 
87.7%, significantly better than the 70.3% base for this 
subset (χ2(1, 424) = 19.47, p < .001) and significantly better 
than the 76.9% human performance shown in prior work 
(∆z = 1.34, p < .001).  The first feature to be selected, and 
therefore the most predictive for this data, is whether the 
phone was off its hook in the last 15 seconds.  The third 
feature selected is whether the talking detector has detected 
talking for 3 of the last 5 minutes.  Both of these indicate 
social engagement.  The second feature selected is whether 
the subject generated 30 mouse move events in the last 15 
seconds.  The manager subjects were more interruptible 
when this feature was true, indicating engagement with the 
computer.  Together, these show that social engagement is 
the major indicator of non-interruptibility for these subjects.   

Researcher Data 
Although the researcher subjects interact with colleagues, 
they also spend a significant amount of time programming, 
working on papers, or otherwise engaged in individual 
work.  We were interested to see whether the talking sensor 
would still be useful for these subjects.  The middle 
confusion matrix in Figure 4 shows the result of creating 
and evaluating a model using only the data from the five 
researcher subjects.  The model has an accuracy of 81.1%, 
significantly better than the 68.0% base for this subset 
(χ2(1, 974) = 22.16, p < .001) and better than the 76.9% 
human performance shown in prior work, but not 
significantly (∆z = 0.89, p ≈ .37).  Interestingly, whether or 
not the phone was off its hook during the last 15 seconds 
was not selected until the fourth feature.  The first feature to 
be selected, and therefore the most predictive feature, was 
whether talking had been detected for 30 of the last 60 
seconds.  The second feature selected, whether the subject 
had generated 60 mouse move events inside Microsoft 
Visual Studio in the last 30 seconds, indicated that these 
subjects were less interruptible when interacting with the 
programming environment.  But that did not mean that they 

were less interruptible whenever they were active on their 
computer, as the third feature selected showed that they 
were more interruptible when they had typed 60 characters 
in the last 15 seconds.  As a whole, the selection of these 
features seems to show that task engagement was more 
important for these subjects than it was for the manager 
subjects.  They spent less time on the phone, and so the 
phone sensor was a less reliable way to detect that they 
were non-interruptible.  But the model was able to handle 
this difference between the subject groups by learning that 
the researcher subjects were less interruptible when active 
in a programming environment. 

Intern Data 
The intern subjects are interesting because their shared 
offices meant that noise in the environment was not 
necessarily associated with the subjects.  While it makes 
sense to expect that a talking sensor might be less effective 
in such an environment, we included these subjects to see 
how much of a negative effect the extra noise had on the 
models.  The right confusion matrix in Figure 4 shows the 
result of creating and evaluating a model using only the 
data from the three intern subjects.  The model has an 
accuracy of 80.1%, significantly better than the 73.6% base 
for this subset (χ2(1, 552) = 3.30, p ≈ .070) and better than 
the 76.9% human performance shown in prior work, but not 
significantly (∆z = 0.17, p ≈ .86).  As we might have 
expected, the models compensated for the reduced 
reliability of the talking sensor by selecting features that 
consider the talking sensor over a larger time interval.  
Whereas the model created from the manager data selected 
the talking sensor at a level of 3 of the last 5 minutes and 
the model created from the researcher data selected the 
talking sensor at a level of 30 of the last 60 seconds, the 
model created from the intern data selected the talking 
sensor at a level of 15 of the last 30 minutes.  This indicates 
that the model found long conversations more relevant to 
interruptibility than relatively short activations of the talk 
sensor.  This talk sensor was the third feature selected, 
while the first feature selected was mouse activity in a 
window created by javaw.exe.  Since all three interns had 
programming backgrounds, this is probably related to the 
use of the Eclipse programming environment, which runs as 
javaw.exe.  This shows that this indication of task 
engagement was important for this group of people, as it 
was with the researchers.  Surprisingly, the second feature 
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Figure 4. Performance of models built from the manager, researcher, and intern data. 



selected was whether the motion detectors had been 
triggered 60 times during the last 30 minutes.  The motion 
detector features were not selected by any of the other 
models, and certainly not as the second most predictive 
feature in any of the other models.  This seems to indicate 
that the degradation of the talk sensor associated with the 
noisier environment made the motion sensors useful for this 
group of subjects, perhaps because they captured the 
motion of a guest in the office. 

TRAINING DATA AND MODEL PERFORMANCE 
The results of the previous section seem to make it clear 
that statistical models of interruptibility should adapt to the 
people who are using them.  All three models created from 
a single group of subjects perform better than the model 
created with the full set of data.  While a talking sensor is 
used for all three groups, the time interval over which to 
examine the talk sensor is different for the three groups.  
Different computer applications relate to the interruptibility 
of the different groups.  Furthermore, the usefulness of the 
motion sensors in the relatively noisy environments of the 
intern subjects seems like a surprising finding.  While a 
developer might not think to include this particular feature 
in a model when it is initially deployed, a model should be 
able to recognize that it is predictive and begin to use it. 

If models are to learn which features best predict the 
interruptibility of people, an important question is how 
much training data needs to be collected to give reliable 
estimates.  Figure 5 examines this question with the full set 
of data collected for this work.  The values plotted were 
calculated using a modification of the standard 10 fold 
cross-validation discussed in the previous section.  Recall 
that each fold in the cross-validation uses 90% of the data 
for training and 10% for testing.  This graph plots the 
accuracy of models evaluated on the test data as affected by 
using less than the full 90% of the training data.  The value 
at the 30% mark, for example, is based on using only 30% 
of the training data.  At the 100% mark, the model is trained 
using the full 90% of the training data, yielding the same 
accuracy presented in the last section.  To ensure that we 
did not select a particular good or bad subset of the training 
data, we conducted 10 trials and report the average. Note 
that the accuracy of the model improves very quickly with 
the first 10% of the training data.  After this initial jump, 
the accuracy continues to improve at a relatively slow pace.   

Given that our models seem to gradually approach their 
final accuracy, rather than quickly reaching a level of 
accuracy close to their final accuracy, it seems important to 
consider how we might improve the accuracy of a model 
that is still learning the best predictors for the person using 
it.  One approach to this problem would be to use data 
collected from other people to create an initial model, and 
then update that model as data becomes available about the 
person using the system.  The idea is that there might be 
certain indications of interruptibility that are useful across 
different groups of people.  A statistical model might be 
able to learn this information from data collected for other 
types of office workers, adapting as more information 
becomes available about the person using the model. 

Figure 6 considers the usefulness of our manager data to a 
model being trained from and tested against the researcher 
data.  The bottom line in Figure 6 was plotted in the same 
way as the line in Figure 5, except that it was built using 
only the data from our five researcher subjects.  This shows 
the same initial jump followed by gradual improvement that 
we saw in Figure 5.  The top line in Figure 6 represents a 
similar process, except that each training step also included 
212 self-reports collected from our manager subjects.  Each 
of the manager self-reports is weighted such that the model 
treats it with one-fifth of the importance the model gives to 
each self-report collected from the researchers.  So at the 
0% mark, the model is training with only the equivalent of 
42 manager self-reports, at the 10% mark it is training with 
the equivalent of 42 manager self-reports and 44 researcher 
self-reports, and at the 100% mark it is training with the 
equivalent of 42 manager self-reports and 438 researcher 
self-reports.  The model therefore has the manager data 
available when the researcher data has not yet provided any 
information, but the researcher data is treated as much more 
important when it becomes available.  Note that the top line 
initially performs better when its models are evaluated 
against the researcher data, and it converges to perform the 
same as the bottom line when more researcher data 
becomes available. 

The findings in this section seem to indicate that statistical 
models can adapt to the nuances of interruptibility, and that 
information collected from other people can help to provide 
a more accurate initial model.  The model can then adapt 
using a weighted combination of data from other people 
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Figure 5. Percent of training data versus percent accuracy. 
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Figure 5. Percent of training data versus  

percent accuracy on the full data set. 
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Figure 6. Percent of training data versus percent accuracy on 

researcher data set, comparing addition of manager data.  



and data from the person to whom it is adapting.  This 
seems to be a good property, as it means that statistical 
models of human interruptibility can avoid two pitfalls.  
The first pitfall would be if a model did not match a person 
and could not be corrected.  As we have shown, this 
approach seems to adapt well to different types of office 
workers.  The second pitfall would be if a model required 
extensive training before it could be of any use, which 
might result in a person giving up on it before it had a 
chance to be effective.  This section shows that models can 
use data collected from other people to provide better initial 
performance. 

SENSOR COMBINATIONS 
This section considers statistical models based on two 
particularly interesting combinations of sensors.  Six of our 
ten subjects use laptop computers, which typically have a 
small built-in microphone near the keyboard.  Using this 
microphone and the computer activity, we examine models 
that could be deployed entirely in software.  That is, this 
sensor combination does not require the installation of any 
sensing infrastructure and has essentially zero cost.  But the 
extreme proximity of this microphone to the keyboard and 
the computer fan means that it could be too noisy to be a 
reliable indicator of interruptibility.  Note that while an 
organization-wide deployment of such an approach could 
include a phone sensor implemented in software on the 
organization’s phone system, we do not include a phone 
sensor in this analysis so that the result more accurately 
reflects what might be expected without such support.   

Figure 7 shows the performance of models built using the 
built-in laptop microphone (instead of the microphone we 
placed in the office and attached by USB) for our two 
manager subjects and four of our researcher subjects.  
These models were not allowed to use our phone, door, or 
motion sensors.  Using just the built-in microphone and 
computer activity, the manager model has an accuracy of 
86.8%, not significantly different from the 87.7% accuracy 
of the model presented in Figure 4 (χ2(1, 424) = 3.30, 
p ≈ .77) and significantly better than the 76.9% human 
performance shown in prior work (∆z = 3.55, p < .001).  On 
the other hand, the researcher model, with an accuracy of 
76.8%, is not significantly different from the 76.9% human 
performance shown in prior work (∆z = 0.91, p ≈ .360) and 
worse than the researcher model presented in Figure 4 

(∆z = 0.91, p ≈ .14).  Interestingly, this researcher model 
does not select any feature related to the laptop microphone. 

These models seem to indicate that the laptop microphone 
was a reliable indicator for the manager subjects, but was 
not a reliable indicator for the researcher subjects, probably 
due to the added noise associated with a microphone so 
close to the computer.  Future work would seem to require a 
more robust implementation of a speech sensor, perhaps 
using techniques like those presented by Lu et al [16].  
However, even though the researcher model in Figure 7 was 
not as reliable as that in Figure 4, it still performed as well 
as the 76.9% accuracy of human subjects studied in prior 
work and is still better than the base performance of 68.3% 
that would be associated with current systems that do not 
attempt to model interruptibility. 

We now turn to the possibility of building models without 
using a camera or microphone.  Such models would require 
instrumentation of an office, but might be received more 
positively by a person concerned about the presence of a 
camera or a microphone in their office.  In a discussion of 
privacy and technology, Palen and Dourish point out that 
the lack of real-world cues makes it more difficult to know 
who might have access to information collected by 
technology and how they might use it [18].  These types of 
concerns could prevent the deployment of systems using 
cameras or microphones, so it seems worth considering 
whether more limited sensors can be useful.  For example, a 
motion sensor clearly can only detect motion and a door 
sensor can only detect whether the door is open, cracked, or 
closed.  Neither can be abused to record a conversation. 

Figure 7 shows the accuracy of models built for each group 
of subjects without using a microphone sensor.  Somewhat 
surprisingly, the researcher and intern models both have 
accuracies very close to the accuracy of the models in 
Figure 4 that did include a microphone (χ2(1, 974) = 0.78, 
p ≈ .38, χ2(1, 552) = 0, p ≈ 1).  But the manager model 
accuracy of 81.6% is significantly worse than the 87.7% 
accuracy of the manager model in Figure 4 that was built 
with a microphone (χ2(1, 424) = 3.07, p ≈ .08).  This result 
seems to reemphasize that social engagement was critical to 
predicting the interruptibility of our manager subjects, with 
task engagement being more important for the researcher 
and intern subjects.  Without a microphone, the phone 
sensor was the only method of detecting social engagement, 
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Figure 7. Performance of models built using only computer activity and the built-in microphone, or built without a microphone. 



and the manager model suffered, though it was still better 
than the 76.9% human performance found in prior work 
(∆z = 1.48, p ≈ .14). 

DISCUSSION AND CONCLUSION 
We have shown that statistical models can reliably predict 
interruptibility as well as, if not better than, a level of 
human performance established in prior work.  While prior 
work used simulated sensors in the offices of four workers 
with very similar job responsibilities, these models are 
based on real sensors deployed with a variety of office 
workers.  The researcher and intern subjects were selected 
specifically because their work environments are different 
from those of the subjects studied in prior work.  The 
success of our approach with these subjects gives us reason 
to believe that reliable statistical models of interruptibility 
can be created for a variety of office workers in a broad set 
of circumstances. 

Our results also show that models should adjust to the 
nuances of a person’s interruptibility, as doing so seems to 
allow better performance than is obtained by a general 
model.  But general data is still useful, as it can improve the 
performance of a model that it is still learning the nuances 
of a person’s interruptibility.  It seems that large 
improvements over the accuracy of the models presented in 
this paper are likely to come from a more sophisticated 
model or from considering new features, rather than from 
collecting more data for use with the same type of classifier 
used in this work.  One fruitful approach might be to 
consider combining an approach similar to ours with the 
work on temporal patterns done by Begole et al [1, 2].   

Finally, we have shown that this approach can succeed even 
with significant limitations on the sensors that are available.  
We demonstrated models that could be built without any 
sensors beyond those already present in a typical laptop 
computer, and we also showed that models can succeed 
even if a person will not allow a microphone in their work 
environment.  Even when these limited models did not 
perform as well as models built from the full set of sensors, 
they still performed as well as or better than people. 
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