
Clustering of Time Series Subsequences is Meaningless:
Implications for Previous and Future Research

 Eamonn Keogh

 Jessica Lin Wagner Truppel

Abstract
Time series data is perhaps the most frequently encountered type
of data examined by the data mining community. Clustering is
perhaps the most frequently used data mining algorithm, being
useful in it’s own right as an exploratory technique, and also as a
subroutine in more complex data mining algorithms such as rule
discovery, indexing, summarization, anomaly detection, and
classification. Given these two facts, it is hardly surprising that
time series clustering has attracted much attention. The data to be
clustered can be in one of two formats: many individual time
series, or a single time series, from which individual time series
are extracted with a sliding window. Given the recent explosion of
interest in streaming data and online algorithms, the latter case
has received much attention.

In this work we make a surprising claim. Clustering of streaming
time series is completely meaningless. More concretely, clusters
extracted from streaming time series are forced to obey a certain
constraint that is pathologically unlikely to be satisfied by any
dataset, and because of this, the clusters extracted by any
clustering algorithm are essentially random. While this constraint
can be intuitively demonstrated with a simple illustration and is
simple to prove, it has never appeared in the literature.

We can justify calling our claim surprising, since it invalidates
the contribution of dozens of previously published papers. We will
justify our claim with a theorem, illustrative examples, and a
comprehensive set of experiments on reimplementations of
previous work. Although the primary contribution of our work is
to draw attention to the fact that an apparent solution to an
important problem is incorrect and should no longer be used, we
also introduce a novel method which, based on the concept of
time series motifs, is able to meaningfully cluster some streaming
time series datasets.

Keywords
Time Series, Data Mining, Clustering, Rule Discovery

1. Introduction
Time series data is perhaps the most commonly encountered kind
of data explored by data miners [26, 35]. Clustering is perhaps the
most frequently used data mining algorithm [14], being useful in
it’s own right as an exploratory technique, and as a subroutine in
more complex data mining algorithms [3, 5]. Given these two
facts, it is hardly surprising that time series data mining has
attracted an extraordinary amount of attention [3, 7, 8, 9, 11, 12,

15, 16, 17, 18, 20, 21, 24, 25, 27, 28, 29, 30, 31, 32, 33, 36, 38,
40, 42, 45]. The work in this area can be broadly classified into
two categories:

• Whole Clustering: The notion of clustering here is similar
to that of conventional clustering of discrete objects. Given
a set of individual time series data, the objective is to group
similar time series into the same cluster.

• Subsequence Clustering: Given a single time series,
individual time series (subsequences) are extracted with a
sliding window. Clustering is then performed on the
extracted time series.

Subsequence clustering is commonly used as a subroutine in
many other algorithms, including rule discovery [9, 11, 15, 16,
17, 20, 21, 30, 32, 36, 42, 45], indexing [27, 33], classification [7,
8], prediction [37, 40], and anomaly detection [45]. For clarity,
we will refer to this type of clustering as STS (Subsequence Time
Series) clustering.

In this work we make a surprising claim. Clustering streaming
time series is meaningless! More concretely, clusters extracted
from streaming time series are forced to obey a certain constraint
that is pathologically unlikely to be satisfied by any dataset, and
because of this, the clusters extracted by any clustering algorithm
are essentially random.

Since we use the word “meaningless” many times in this paper,
we will take the time to define this term. All useful algorithms
(with the sole exception of random number generators) produce
output that depends on the input. For example, a decision tree
learner will yield very different outputs on, say, a credit
worthiness domain, a drug classification domain, and a music
domain. We call an algorithm “meaningless” if the output is
independent of the input. As we prove in this paper, the output of
STS clustering does not depend on input, and is therefore
meaningless.

Our claim is surprising since it calls into question the
contributions of dozens of papers. In fact, the existence of so
much work based on STS clustering offers an obvious counter
argument to our claim. It could be argued: “Since many papers
have been published which use time series subsequence clustering
as a subroutine, and these papers produced successful results,
time series subsequence clustering must be a meaningful
operation.”

Computer Science & Engineering Department
University of California - Riverside

Riverside, CA 92521
{eamonn, jessica, wagner}@cs.ucr.edu

 This is an expanded version of the ICDM 2003 paper. We welcome feedback on this work.

We strongly feel that this is not the case. We believe that in all
such cases the results are consistent with what one would expect
from random cluster centers. We recognize that this is a strong
assertion, so we will demonstrate our claim by reimplementing
the most successful (i.e. the most referenced) examples of such
work, and showing with exhaustive experiments that these
contributions inherit the property of meaningless results from the
STS clustering subroutine.

The rest of this paper is organized as follows. In Section 2 we will
review the necessary background material on time series and
clustering, then briefly review the body of research that uses STS
clustering. In Section 3 we will show that STS clustering is
meaningless with a series of simple intuitive experiments; then in
Section 4 we will explain why STS clustering cannot produce
useful results. In Section 5 we show that the many algorithms that
use STS clustering as a subroutine produce results
indistinguishable from random clusters. Since the main
contribution of this paper may be considered “negative,” we
conclude in Section 6 with the demonstration of a simple
algorithm that can find clusters in at least some trivial streaming
datasets. This algorithm is not presented as the best way to find
clusters in streaming time series; it is simply offered as an
existence proof that such an algorithm exists, and to pave the way
for future research.

2. Background Material
In order to frame our contribution in the proper context we begin
with a review of the necessary background material.

2.1 Notation and Definitions
We begin with a definition of our data type of interest, time
series:

Definition 1. Time Series: A time series T = t1,…,tm is an
ordered set of m real-valued variables.

Data miners are typically not interested in any of the global
properties of a time series; rather, data miners confine their
interest to subsections of the time series, called subsequences.

Definition 2. Subsequence: Given a time series T of length m,
a subsequence Cp of T is a sampling of length w < m of
contiguous positions from T, that is, C = tp,…,tp+w-1 for 1 ≤ p
≤ m – w + 1.

In this work we are interested in the case where all the
subsequences are extracted, and then clustered. This is achieved
by use of a sliding window.

Definition 3. Sliding Windows: Given a time series T of
length m, and a user-defined subsequence length of w, a
matrix S of all possible subsequences can be built by “sliding
a window” across T and placing subsequence Cp in the pth
row of S. The size of matrix S is (m – w + 1) by w.

Figure 1 summarizes all the above definitions and notations.

Figure 1. An illustration of the notation introduced in this
section: a time series T of length 128, a subsequence of length w
= 16, beginning at datapoint 67, and the first 8 subsequences
extracted by a sliding window.

Note that while S contains exactly the same information as T, it
requires significantly more storage space. This is typically not a
problem, since, as we shall see in the next section, the limiting
factor tends to be the CPU time for clustering.

2.2 Background on Clustering
One of the most widely used clustering approaches is hierarchical
clustering, due to the great visualization power it offers [26, 29].
Hierarchical clustering produces a nested hierarchy of similar
groups of objects, according to a pairwise distance matrix of the
objects. One of the advantages of this method is its generality,
since the user does not need to provide any parameters such as the
number of clusters. However, its application is limited to only
small datasets, due to its quadratic computational complexity.
Table 1 outlines the basic hierarchical clustering algorithm.

Table 1: An outline of hierarchical clustering.
Algorithm Hierarchical Clustering

1. Calculate the distance between all objects. Store the
results in a distance matrix.

2. Search through the distance matrix and find the two
most similar clusters/objects.

3. Join the two clusters/objects to produce a cluster that
now has at least 2 objects.

4. Update the matrix by calculating the distances between
this new cluster and all other clusters.

5. Repeat step 2 until all cases are in one cluster.

A faster method to perform clustering is k-means [5]. The basic
intuition behind k-means (and a more general class of clustering
algorithms known as iterative refinement algorithms) is shown in
Table 2:

Table 2: An outline of the k-means algorithm.
Algorithm k-means

1. Decide on a value for k.
2. Initialize the k cluster centers (randomly, if necessary).
3. Decide the class memberships of the N objects by

assigning them to the nearest cluster center.
4. Re-estimate the k cluster centers, by assuming the

memberships found above are correct.
5. If none of the N objects changed membership in the last

iteration, exit. Otherwise goto 3.

The k-means algorithm for N objects has a complexity of
O(kNrD), with k the number of clusters specified by the user, r
the number of iterations until convergence, and D the
dimensionality of time series (in the case of STS clustering, D is
the length of the sliding window, w). While the algorithm is
perhaps the most commonly used clustering algorithm in the
literature, it does have several shortcomings, including the fact
that the number of clusters must be specified in advance [5, 14].
It is well understood that some types of high dimensional
clustering may be meaningless. As noted by [1, 4], in high
dimensions the very concept of nearest neighbor has little
meaning, because the ratio of the distance to the nearest neighbor
over the distance to the average neighbor rapidly approaches one
as the dimensionality increases. However, time series, while often
having high dimensionality, typically have a low intrinsic
dimensionality [25], and can therefore be meaningful candidates
for clustering.

0 2 0 4 0 6 0 8 0 1 0 0 1 2 0

T

C 6 7 C p
p = 1 … 8

2.3 Background on Time Series Data Mining
The last decade has seen an extraordinary interest in mining time
series data, with at least one thousand papers on the subject [26].
Tasks addressed by the researchers include segmentation,
indexing, clustering, classification, anomaly detection, rule
discovery, and summarization.
Of the above, a significant fraction use streaming time series
clustering as a subroutine. Below we will enumerate some
representative examples.

• There has been much work on finding association rules in
time series [9, 11, 15, 16, 20, 21, 30, 32, 26, 42, 45].
Virtually all work is based on the classic paper of Das et. al.
that uses STS clustering to convert real valued time series
into symbolic values, which can then be manipulated by
classic rule finding algorithms [9].

• The problem of anomaly detection in time series has been
generalized to include the detection of surprising or
interesting patterns (which are not necessarily anomalies).
There are many approaches to this problem, including
several based on STS clustering [45].

• Indexing of time series is an important problem that has
attracted the attention of dozens of researchers. Several of
the proposed techniques make use of STS clustering [27, 33].

• Several techniques for classifying time series make use of
STS clustering to preprocess the data before passing to a
standard classification technique such as a decision tree [7,
8].

• Clustering of streaming time series has also been proposed as
a knowledge discovery tool in its own right. Researchers
have suggested various techniques to speed up the clustering
[11].

The above is just a small fraction of the work in the area, more
extensive surveys may be found in [24, 35].

3. Demonstrations of the Meaninglessness of
STS Clustering
In this section we will demonstrate the meaninglessness of STS
clustering. In order to demonstrate that this meaninglessness is a
product of the way the data is obtained by sliding windows, and
not some quirk of the clustering algorithm, we will also do whole
clustering as a control [12, 31].

3.1 K-means Clustering
Because k-means is a heuristic, hill-climbing algorithm, the
cluster centers found may not be optimal [14]. That is, the
algorithm is guaranteed to converge on a local, but not necessarily
global optimum. The choices of the initial centers affect the
quality of results. One technique to mitigate this problem is to do
multiple restarts, and choose the best set of clusters [5]. An
obvious question to ask is how much variability in the shapes of
cluster centers we get between multiple runs. We can measure this
variability with the following equation:

• Let),...,,(21 kaaaA= be the cluster centers derived from
one run of k-means.

• Let),...,,(21 kbbbB= be the cluster centers derived from a
different run of k-means.

• Let),(ji aadist be the distance between two cluster

centers, measured with Euclidean distance.

Then the distance between two sets of clusters can be defined as:

[] kjbadistBAncedistacluster
k

i
ji ≤≤≡∑

=

1,),(min),(_
1

 (1)

The simple intuition behind the equation is that each individual
cluster center in A should map on to its closest counterpart in B,
and the sum of all such distances tells us how similar two sets of
clusters are.

An important observation is that we can use this measure not only
to compare two sets of clusters derived for the same dataset, but
also two sets of clusters which have been derived from different
data sources. Given this fact, we propose a simple experiment.

We performed 3 random restarts of k-means on a stock market
data set, and saved the 3 resulting sets of cluster centers into set
X. We also performed 3 random restarts on random walk dataset,
saving the 3 resulting sets of cluster centers into set Y.

We then measured the average cluster distance (as defined in
equation 1), between each set of cluster centers in X, to each other
set of cluster centers in X. We call this number
within_set_X_distance. We also measured the average cluster
distance between each set of cluster centers in X, to cluster
centers in Y; we call this number
between_set_X_and_Y_distance.

We can use these two numbers to create a fraction:

ancedistYandXsetbetween
ancedistXsetwithin

 Y)ness(X,meaningful clustering ≡

 (2)

We can justify calling this number “clustering meaningfulness”
since it clearly measures just that. If the clustering algorithm is
returning the same or similar sets of clusters despite different
initial seeds, the numerator should be close to zero. In contrast,
there is no reason why the clusters from two completely different,
unrelated datasets to be similar. Therefore, we should expect the
denominator to be relatively large. So overall we should expect
that the value of clustering meaningfulness(X,Y) should be close
to zero when X and Y are sets of cluster centers derived from
different datasets.

As a control, we performed the exact same experiment, on the
same data, but using subsequences that were randomly extracted,
rather than extracted by a sliding window. We call this whole
clustering.

Since it might be argued that any results obtained were the
consequence of a particular combination of k and w, we tried the
cross product of k = {3, 5, 7, 11} and w = {8, 16, 32}. For every
combination of parameters we repeated the entire process 100
times, and averaged the results. Figure 2 shows the results.

Figure 2. A comparison of the clustering meaningfulness for
whole clustering, and STS clustering, using k-means with a
variety of parameters. The two datasets used were Standard and
Poor's 500 Index closing values and random walk data.

The results are astonishing. The cluster centers found by STS
clustering on any particular run of k-means on stock market
dataset are not significantly more similar to each other than they
are to cluster centers taken from random walk data! In other
words, if we were asked to perform clustering on a particular
stock market dataset, we could reuse an old clustering obtained
from random walk data, and no one could tell the difference!

We reemphasize here that the difference in the results for STS
clustering and whole clustering in this experiment (and all
experiments in this work) are due exclusively to the feature
extraction step. In particular, both are being tested on the same
dataset, with the same parameters of w and k, using the same
algorithm.

We also note that the exact definition of clustering
meaningfulness is not important to our results. In our definition,
each cluster center in A maps onto its closest match in B. It is
possible therefore that two or more cluster centers from A map to
one center in B, and some clusters in B have no match. However
we tried other variants of this definition, including pairwise
matching, minimum matching and maximum matching, together
with dozens of other measurements of clustering quality
suggested in the literature [14]; it simply makes no significant
difference to the results.

3.2 Hierarchical Clustering
The previous section suggests that k-means clustering of STS
time series does not produce meaningful results, at least for stock
market data. An obvious question to ask is, is this true for STS
with other clustering algorithms? We will answer the question for
hierarchical clustering here.

Hierarchical clustering, unlike k-means, is a deterministic
algorithm. So we can’t reuse the experimental methodology from
the previous section exactly, however, we can do something very
similar.

First we note that hierarchical clustering can be converted into a
partitional clustering, by cutting the first k links [29]. Figure 3
illustrates the idea. The resultant time series in each of the k
subtrees can then be merged into single cluster prototypes. When
performing hierarchical clustering, one has to make a choice

about how to define the distance between two clusters, this choice
is called the linkage method (cf. line 3 of Table 1).

Figure 3. A hierarchical clustering of ten time series. The
clustering can be converted to a k partitional clustering by
“sliding” a cutting line until it intersects k lines of the
dendrograms, then averaging the time series in the k subtrees to
form k cluster centers (gray panel).

Three popular choices are complete linkage, average linkage and
Ward’s method [14]. We can use all three methods for the stock
market dataset, and place the resulting cluster centers into set X.
We can do the same for random walk data and place the resulting
cluster centers into set Y. Having done this, we can extend the
measure of clustering meaningfulness in Eq. 2 to hierarchical
clustering, and run a similar experiment as in the last section, but
using hierarchical clustering. The results of this experiment are
shown in Figure 4.

Figure 4. A comparison of the clustering meaningfulness for
whole clustering and STS clustering using hierarchical clustering
with a variety of parameters. The two datasets used were
Standard and Poor's 500 Index closing values and random walk
data.

Once again, the results are astonishing. While it is well
understood that the choice of linkage method can have minor
effects on the clustering found, the results above tell us that when
doing STS clustering, the choice of linkage method has as much
effect as the choice of dataset! Another way of looking at the
results is as follows. If we were asked to perform hierarchical
clustering on a particular dataset, but we did not have to report
which linkage method we used, we could reuse an old random

8
16

32
8

16
3211

7
5

3

0

0.5

1

w
Whole Clustering

w
STS Clustering k

(number of
clusters)

8
16

32
8

16
3211

7
5

3

0

0.5

1

w
Whole Clustering

w
STS Clustering k

(number of
clusters)

0 10 20 30 40

a1

a2

a3

walk clustering and no one could tell the difference without
rerunning the clustering for every possible linkage method.

3.3 Other Datasets and Algorithms
The results in the two previous sections are extraordinary, but are
they the consequence of some properties of stock market data, or
as we claim, a property of the sliding window feature extraction?
The latter is the case, which we can simply demonstrate. We
visually inspected the UCR archive of time series datasets for the
two time series datasets that appear the least alike [23]. The best
two candidates we discovered are shown in Figure 5.

Figure 5. Two subjectively very dissimilar time series from the
UCR archive. Only the first 1,000 datapoints are shown. The two
time series have very different properties of stationarity, noise,
periodicity, symmetry, autocorrelation etc.

We repeated the experiment of Section 3.2, using these two
datasets in place of the stock market data and the random walk
data. The results are shown in Figure 6.

Figure 6. A comparison of the clustering meaningfulness for
whole clustering, and STS clustering, using k-means with a
variety of parameters. The two datasets used were buoy_sensor(1)
and ocean.

In our view, this experiment sounds the death knell for clustering
of STS time series. If we cannot easily differentiate between the
clusters from these two extremely different time series, then how
could we possibly find meaningful clusters in any data?

In fact, the experiments shown in this section are just a tiny subset
of the experiments we performed. We tested other clustering
algorithms, including EM and SOMs [43]. We tested on 42
different datasets [24, 26]. We experimented with other measures
of clustering quality [14]. We tried other variants of k-means,
including different seeding algorithms. Although Euclidean
distance is the most commonly used distance measure for time
series data mining, we also tried other distance measures from the
literature, including Manhattan, L∞, Mahalanobis distance and
dynamic time warping distance [12, 24, 31]. We tried various
normalization techniques, including Z-normalization, 0-1
normalization, amplitude only normalization, offset only
normalization, no normalization etc. In every case we are forced
to the inescapable conclusion: whole clustering of time series is

usually a meaningful thing to do, but sliding window time series
clustering is never meaningful.

3.4 Why is STS Clustering Meaningless?
Before explaining why STS clustering is meaningless, it will be
instructive to visualize the cluster centers produced by both whole
clustering and STS clustering. We will demonstrate on the classic
Cylinder-Bell-Funnel data [26]. This dataset consists of random
instantiations of the eponymous patterns, with Gaussian noise
added. While each time series is of length 128, the onset and
duration of the shape is subject to random variability. Figure 7
shows one instance from each of the three clusters.

Figure 7. Examples of Cylinder, Bell, and Funnel patterns.
We generated a dataset of 30 instances of each pattern, and
performed k-means clustering on it, with k = 3. The resulting
cluster centers are show in Figure 8. As one might expect, all
three clusters are successfully found. The final centers closely
resemble the three different patterns in the dataset, although the
sharp edges of the patterns have been somewhat “softened” by the
averaging of many time series with some variability in the time
axis.

Figure 8. The three final centers found by k-means on the
cylinder-bell-funnel dataset. The shapes of the centers are close
approximation of the original patterns.

To compare the results of whole clustering to STS clustering, we
took the 90 time series used above and concatenated them into
one long time series. We then performed STS k-means clustering.
To make it easy for the algorithm, we use the exact length of the
patterns (w = 128) as the window length, and k = 3 as the number
of desired clusters. The cluster centers are shown in Figure 9.

0 20 40 60 80 100 120 140-0.8
-0.6
-0.4
-0.2
0
0.2
0.4
0.6
0.8

Figure 9. The three final centers found by subsequence
clustering using the sliding window approach.

The results are extraordinarily unintuitive! The cluster centers
look nothing like any of the patterns in the data; what’s more,
they appear to be perfect sine waves.

8
16

32
8

16
3211

7
5

3

0

0.5

1

w
Whole Clustering

w
STS Clustering k

(number of
clusters)

0 2 0 0 4 0 0 6 0 0 8 0 0 1 0 0 0

b u o y _ s e n s o r (1)

o c e a n

0 20 40 60 80 100 120 140
-5

0

5

10

C
yl

in
de

r

0 20 40 60 80 100 120 140
-5

0

5

10

B
el

l

0 20 40 60 80 100 120 140
-5

0

5

10

Fu
nn

el

0 20 40 60 80 100 120 140

In fact, for w << m, we get approximate sine waves with STS
clustering regardless of the clustering algorithm, the number of
clusters, or the dataset used! Furthermore, although the sine
waves are always exactly out of phase with each other by 1/k
period, overall, their joint phase is arbitrary, and will change with
every random restart of k-means.
This result completely explains the results from the last section. If
sine waves appear as cluster centers for every dataset, then clearly
it will be impossible to distinguish one dataset’s clusters from
another. Although we have now explained the inability of STS
clustering to produce meaningful results, we have revealed a new
question: why do we always get cluster centers with this special
structure?

3.5 A Hidden Constraint
To explain the unintuitive results above, we must introduce a new
fact.

Theorem 1: For any time series dataset T with an overall
trend of zero, if T is clustered using sliding windows, and w
<< m, then the mean of all the data (i.e. the special case of k =
1), will be an approximately constant vector.

In other words, if we run STS k-means on any dataset, with k = 1
(an unusual case, but perfectly legal), we will always end up with
a horizontal line as the cluster center. The proof of this fact is
straightforward but long, so we have elucidated it in a separate
technical report [41]. Note that the requirement that the overall
trend be zero can be removed, in which case, the k = 1 cluster
center is still a straight line, but at some angle.
We content ourselves here with giving the intuition behind the
proof, and offering a visual “proof” in Figure 10.

Figure 10: A visual “proof” of Theorem 1. Ten time series of
vastly different properties of stationarity, noise, periodicity,
symmetry, autocorrelation etc. The cluster centers for each time
series, for w = 32, k = 1 are shown at right. Far right shows a
zoom-in that shows just how close to a straight line the cluster
centers are. While the objects have been shifted for clarity, they
have not been rescaled in either axis; note the light gray circle in
both graphs. The datasets used are, reading from top to bottom:
Space Shuttle, Flutter, Speech, Power_Data, Koski_ecg,
Earthquake, Chaotic, Cylinder, Random_Walk, and Balloon.

The intuition behind Theorem 1 is as follows. Imagine an
arbitrary datapoint ti somewhere in the time series T, such that w
≤ i ≤ m – w + 1. If the time series is much longer than the window
size, then virtually all datapoints are of this type. What
contribution does this datapoint make to the overall mean of the
STS matrix S? As the sliding window passes by, the datapoint

first appears as the rightmost value in the window, then it goes on
to appear exactly once in every possible location within the
sliding window. So the ti datapoint contribution to the overall
shape is the same everywhere and must be a horizontal line. Only
those points at the very beginning and the very end of the time
series avoid contributing their value to all w columns of S, but
these are asymptotically irrelevant. The average of many
horizontal lines is clearly just another horizontal line.
The implications of Theorem 1 become clearer when we consider
the following well documented fact. For any dataset, the weighted
(by cluster membership) average of k clusters must sum up to the
global mean. The implication for STS clustering is profound. If
we hope to discover k clusters in our dataset, we can only do so if
the weighted average of these clusters happens to sum to a
constant line! However, there is no reason why we should expect
this to be true of any dataset, much less every dataset. This hidden
constraint limits the utility of STS clustering to a vanishing small
set of subspace of all datasets.

3.6 The Importance of Trivial Matches
There are further constraints on the types of datasets where STS
clustering could possibly work. Consider a subsequence Cp that is
a member of a cluster. If we examine the entire dataset for similar
subsequences, we should typically expect to find the best matches
to Cp to be the subsequences …,Cp-2, Cp-1, Cp+1, Cp+2 ,… In other
words, the best matches to any subsequence tend to be just
slightly shifted versions of the subsequence. Figure 11 illustrates
the idea, and Definition 4 states it more formally.

Definition 4. Trivial Match: Given a subsequence C
beginning at position p, a matching subsequence M beginning
at q, and a distance R, we say that M is a trivial match to C of
order R, if either p = q or there does not exist a subsequence
M’ beginning at q’ such that D(C, M’) > R, and either q < q’<
p or p < q’< q.

The importance of trivial matches, in a different context, has been
documented elsewhere [28]

Figure 11: For almost any subsequence C in a time series, the
closest matching subsequences are the subsequences immediately
to the left and right of C.

An important observation is the fact that different subsequences
can have vastly different numbers of trivial matches. In particular,
smooth, slowly changing subsequences tend to have many trivial
matches, whereas subsequences with rapidly changing features
and/or noise tend to have very few trivial matches. Figure 12
illustrates the idea. The figure shows a time series that
subjectively appears to have a cluster of 3 square waves.
However, the bottom plot shows how many trivial matches each
subsequence has. Note that the square waves have very few trivial
matches, so all three taken together sit in a sparsely populated
region of w-space. In contrast, consider the relatively smooth
Gaussian bump centered at 125. The subsequences in the smooth
ascent of this feature have more than 25 trivial matches, and thus

0 20 40 60 80 100 120

T

C 68

C 66

C 67

0 500 1000 0 10 20 30

Cluster centers, k =1

Cluster centers, k =1

sit in a dense region of w-space; the same is true for the
subsequences in the descent from the peak. So if clustering this
dataset with k-means, k = 2, the two cluster centers will be
irresistibly drawn to these two “shapes”, simple ascending and
descending lines.

Figure 12: A) A time series T that subjectively appears to have a
cluster of 3 noisy square waves. B) Here the ith value is the
number of trivial matches for the subsequence Ci in T, where R =
1, w = 64.

The importance of this observation for STS clustering is obvious.
Imagine we have a time series where we subjectively see two
clusters: equal numbers of a smooth slowing changing pattern,
and a noisier pattern with many features.
In w-dimensional space, the smooth pattern is surrounded by
many trivial matches. This dense volume will appear to any
clustering algorithm an extremely promising cluster center. In
contrast, the highly featured, noisy pattern has very few trivial
matches, and thus sits in a relatively sparse space, all but ignored
by the clustering algorithm. Note that it is not possible to simply
remove or “factor out” the trivial matches since there is no way to
know beforehand the true patterns.
We have not yet fully explained why the cluster centers for STS
clustering degenerate to sine waves (cf Figure 9). However, we
have shown that for STS “clustering”, algorithms do not really
cluster the data. If not clustering, what are the algorithms doing?
It is instructive to note that if we perform singular value
decomposition on time series, we also get shapes that seem to
approximate sine waves [25]. This suggests that STS clustering
algorithms are simply returning a set of basis functions that can be
added together in a weighted combination to approximate the
original data.
An even more tantalizing piece of evidence exists. In the 1920’s
“data miners” were excited to find that by preprocessing their data
with repeated smoothing, they could discover trading cycles.
Their joy was shattered by a theorem by Evgeny Slutsky (1880-
1948), who demonstrated that any noisy time series will converge
to a sine wave after repeated applications of moving window
smoothing [22]. While STS clustering is not exactly the same as
repeated moving window smoothing, it is clearly highly related.
For brevity we will defer future discussion of this point to future
work.

3.7 Is there a Simple Fix?
Having gained an understanding of the fact that STS clustering is
meaningless, and having developed an intuition as to why this is
so, it is natural to ask if there is a simple modification to allow it
to produce meaningful results. We asked this question, not just
among ourselves, but also to dozens of time series clustering
researchers with whom we shared our initial results. While we

considered all suggestions, we discuss only the two most
promising ones here.
The first idea is to increment the sliding window by more that one
unit each time. In fact, this idea was suggest by [9], but only as a
speed up mechanism. Unfortunately, this idea does not help. If the
new step size s is much smaller than w, we still get the same
empirical results. If s is approximately equal to, or larger than w,
we are no longer doing subsequence clustering, but whole
clustering. This is not useful, since the choice of the offset for the
first window is a critical parameter, and choices that differ by just
one timepoint can give arbitrarily different results.
The second idea is to set k to be some number much greater than
the true number of clusters we expect to find, then do some post-
processing to find the real clusters. Empirically, we could not
make this idea work, even on the trivial dataset introduced at the
beginning of this section. We found that even if k is extremely
large, unless it is a significant fraction of T, we still get arbitrary
sine waves as cluster centers. In addition, we note that the time
complexity for k-means increases with k.
It is our belief that there is no simple solution to the problem of
STS-clustering; the definition of the problem is itself intrinsically
flawed.

3.8 Necessary Conditions for STS Clustering to
Work
We conclude this section with a summary of the conditions that
must be satisfied for STS clustering to be meaningful.
Assume that a time series contains k approximately or exactly
repeated patterns of length w. Further assume that we happen to
know k and w in advance. A necessary (but not necessarily
sufficient) condition for a clustering algorithm to discover the k
patterns is that the weighted mean of the patterns must sum to a
horizontal line, and each of the k patterns must have
approximately equal numbers of trivial matches.
It is obvious that the chances of both these conditions being met is
essentially zero.

4. A Case Study on Existing Work
As we noted in the introduction, an obvious counter argument to
our claim is the following. “Since many papers have been
published which use time series subsequence clustering as a
subroutine, and these papers produce successful results, time
series subsequence clustering must be a meaningful operation.”
To counter this argument, we have reimplemented the most
influential such work, the Time Series Rule Finding algorithm of
Das et. al. [9] (the algorithm is not named in the original work, we
will call it TSRF here for brevity and clarity).

4.1 (Not) Finding Rules in Time Series
The algorithm begins by performing STS clustering. The centers
of these clusters are then used as primitives that are fed into a
slightly modified version of a classic association rule algorithm
[2]. Finally the rules are ranked by their J-measure, an entropy
based measure of their significance.
The rule finding algorithm found the rules shown in Figure 13
using 19 months of NASDAQ data. The high values of support,
confidence and J-measure are offered as evidence of the
significance of the rules. The rules are to be interpreted as
follows. In Figure 13 (b) we see that “if stock rises then falls

0 50 100 150 200 250 300 350 400 450

0 50 100 150 200 250 300 350 400 4500
10
20
30

w = 64

A)

B)

greatly, follow a smaller rise, then we can expect to see within 20
time units, a pattern of rapid decrease followed by a leveling out.”
[9].

w d Rule Sup % Conf % J-Mea. Fig
20 5.5 7 ⇒15 8 8.3 73.0 0.0036 (a)
30 5.5 18 ⇒20 21 1.3 62.7 0.0039 (b)
Figure 13: Above, two examples of “significant” rules found
by Das et. al. (This is a capture of Figure 4 from their paper).
Below, a table of the parameters they used and results they
found.

What would happen if we used the TSRF algorithm to try to find
rules in random walk data, using exactly the same parameters?
Since no such rules should exist by definition, we should get
radically different results1. Figure 14 shows one such experiment;
the support, confidence and J-measure values are essentially the
same as in Figure 13!

w d Rule Sup % Conf % J-Mea Fig
20 5.5 11 ⇒15 3 6.9 71.2 0.0042 (a)
30 5.5 24 ⇒20 19 2.1 74.7 0.0035 (b)
Figure 14: Above, two examples of “significant” rules found in
random walk data using the techniques of Das et. al. Below, we
used identical parameters and found near identical results.

This one experiment might have been an extraordinary
coincidence; we might have created a random walk time series
that happens to have some structure to it. Therefore, for every
result shown in the original paper we ran 100 recreations using
different random walk datasets, using quantum mechanically
generated numbers to insure randomness [44]. In every case the
results published cannot be distinguished from our results on
random walk data.
The above experiment is troublesome, but perhaps there are
simply no rules to be found in stock market. We devised a simple
experiment in a dataset that does contain known rules. In
particular we tested the algorithm on a normal healthy
electrocardiogram. Here, there is an obvious rule that one
heartbeat follows another. Surprisingly, even with much tweaking
of the parameters, the TSRF algorithm cannot find this simple
rule.

1 Note that the shapes of the patterns in Figures 13 and 14 are only very

approximately sinusoidal. This is because the time series are relatively short
compared to the window length. When the experiments are repeated with longer
time series, the shapes converge to pure sine waves.

The TSRF algorithm is based on the classic rule mining work of
Agrawal et. al. [2]; the only difference is the STS step. Since the
work of [2] has been carefully vindicated in 100’s of experiments
on both real and synthetic datasets, it seems reasonable to
conclude that the STS clustering is at the heart of the problems
with the TSRF algorithm.
These results may appear surprising, since they invalidate the
claims of a highly referenced paper, and many of the dozens of
extensions researchers have proposed [9, 11, 15, 16, 17, 20, 21,
30, 32, 36, 42, 45]. However, in retrospect, this result should not
really be too surprising. Imagine that a researcher claims to have
an algorithm that can differentiate between three types of Iris
flowers (Setosa, Virginica and Versicolor) based on petal and
sepal length and width [10]. This claim is not so extraordinary,
given that it is well known that even amateur botanists and
gardeners have this skill [6]. However, the paper in question is
claiming to introduce an algorithm that can find rules in stock
market time series. There is simply no evidence that any human
can do this, in fact, the opposite is true: every indication suggests
that the patterns much beloved by technical analysts such as the
“calendar effect” are completely spurious [19, 39].

5. A Tentative Solution
The results presented in this paper thus far are somewhat
downbeat. In this section we modify the tone by introducing an
algorithm that can find clusters in some streaming time series.
This algorithm is not presented as the best way to find clusters in
streaming time series; for one thing, its time complexity is
untenable for massive datasets. It is simply offered as an existence
proof that such an algorithm exists, and to pave the way for future
research.
Our algorithm is motivated by the two observations in Section 4
that attempting to cluster every subsequence produces an
unrealistic constraint, and that considering trivial matches causes
smooth, low-detail subsequences to form pseudo clusters.
We begin by considering motifs, a concept highly related to
clusters. Motifs are overrepresented sequences in discrete strings,
for example, in musical or DNA sequences [34]. Classic
definitions of motifs require that the underling data be discrete,
but in recent work the present authors have extended the
definitions to real valued time series [28]. Figure 15 illustrates a
visual intuition of a motif, and Definition 5 defines the concept
more concretely.

Figure 15: An example of a motif that occurs 4 times in a short
section of the Winding(4) dataset.

Definition 5. K-Motifs: Given a time series T, a subsequence
length n and a distance range R, the most significant motif in
T (called 1-Motif) is the subsequence C1 that has the highest
count of non-trivial matches. The Kth most significant motif in
T (called K-Motif) is the subsequence CK that has the highest
count of non-trivial matches, and satisfies D(CK, Ci) > 2R, for
all 1 ≤ i < K .

0 2 4 6 8 10 12 14 16 18 20
-2

-1.5

-1

-0.5

0

0.5

1

1.5

2

0 5 10 15 20 25 30
-2

-1.5

-1

-0.5

0

0.5

1

1.5

2

(a) (b)

50 100 150 200 250 300 350
-2
-1

0
1

Although motifs may be considered similar to clusters, there are
several important differences, a few of which we enumerate here.

• When mining motifs, we must specify an additional
parameter R.

• Assuming the distance R is defined as Euclidean, motifs
always define circular regions in space, whereas clusters may
have arbitrary shapes2.

• Motifs generally define a small subset of the data, and not
the entire dataset.

• The definition of motifs explicitly eliminates trivial matches.
Note that while the first two points appear as limitations, the last
two points explicitly counter the two reasons that STS clustering
cannot produce meaningful results.
We cannot simply run a K-motif detection algorithm in place of
STS clustering, since a subset of the motifs discovered might
really be a group that should be clustered together. For example,
imagine a true cluster that sits in a hyper-ellipsoid. It might be
approximated by 2 or 3 motifs that cover approximately the same
volume. However, we could run a K-motif detection algorithm,
with K >> k, to extract promising subsequences from the data,
then use a classic clustering algorithm to cluster only these
subsequences. This idea is formalized in Table 3.

Table 3: An outline of the motif-based-clustering algorithm.
Algorithm motif-based-clustering

1. Decide on a value for k.
2. Discover the K-motifs in the data, for K = k × c

(c is some constant, in the region of about 2 to 30)
3. Run k-means, or k partitional hierarchical clustering, or any

other clustering algorithm on the subsequences covered by K-
motifs

Line two of the algorithm requires a call to a motif discovery
algorithm; such an algorithm appears in [28].

5.1 Experimental Results
We have seen in Section 6 that the cluster centers returned by
STS have been mistaken for meaningful clusters by many
researchers. To eliminate the possibility of repeating this mistake,
we will demonstrate the proposed algorithm on the dataset
introduced in Section 4, which consists of the concatenation of 30
examples each of the Cylinder, Bell, Funnel shapes, in random
order. We would like our clustering algorithm to be able to find
clusters centers similar to the ones shown in Figure 8.
We ran the motif based clustering algorithm with w = 128, and k
= 3, which is fair since we also gave these two correct parameters
to all the algorithms above. We needed to specify the value of R,
we did this by simply examining a fraction of our dataset, finding
ten pairs of subsequences we found to be similar, measuring the
Euclidean distance between these pairs, and averaging the results.
The cluster centers found are shown in Figure 16.
These results tell use that on at least some datasets, we can do
meaningful streaming clustering. The fact that this is achieved by
working with only a subset of the data, and explicitly excluding

2 It is true that k-means favors circular clusters, but more generally,

clustering algorithms can define arbitrary spaces.

trivial matches, further supports our explanations in Sections 4.1
and 4.2, of why STS clustering is meaningless.

Figure 16: The cluster centers found by the motif-based-
clustering algorithm on the concatenated Cylinder-Bell-Funnel
dataset. Note the results are very similar to the prototype shapes
shown in Figure 7, and the cluster centers found by the whole
matching case, shown in Figure 8.

6. Conclusions
We have shown that a popular technique for data mining does not
produce meaningful results. We have further explained the
reasons why this is so.
Although our work may be viewed as negative, we have shown
that a reformulation of the problem can allow clusters to be
extracted from streaming time series. In future work we intend to
consider several related questions; for example, whether or not
the weaknesses of STS clustering described here have any
implications for model-based, streaming clustering of time series,
or streaming clustering of nominal data [13].

Acknowledgments: We gratefully acknowledge the following
people who looked at an early draft of this paper and made useful
comments and suggestions: Christos Faloutsos, Michalis Vlachos,
Frank Höppner, Howard Hamilton, Daniel Barbara, Magnus Lie
Hetland, Hongyuan Zha, Sergio Focardi, Xiaoming Jin, Shoji
Hirano, Shusaku Tsumoto, Mark Last, and Zbigniew Struzik.

7. References
[1] Aggarwal, C., Hinneburg, A., & Keim, D. A. (2001). On the

Surprising Behavior of Distance Metrics in High
Dimensional Space. In proceedings of the 8th Int’l
Conference on Database Theory. London, UK, Jan 4-6. pp
420-434.

[2] Agrawal, R., Imielinski, T. & Swami, A. (1993). Mining
Association Rules Between Sets of Items in Large
Databases. In proceedings of the 1993 ACM SIGMOD
International Conference on Management of Data.
Washington, D.C., May 26-28. pp. 207-216.

[3] Bar-Joseph, Z., Gerber, G., Gifford, D., Jaakkola, T. &
Simon, I. (2002). A New Approach to Analyzing Gene
Expression Time Series Data. In proceedings of the 6th
Annual Int’l Conference on Research in Computational
Molecular Biology. Washington, D.C., Apr 18-21. pp 39-48.

[4] Beyer, K., Goldstein, J., Ramakrishnan, R. & Shaft, U.
(1999). When is Nearest Neighbor Meaningful? In
proceedings of the 7th Int’l Conference on Database Theory.
Jerusalem, Israel, Jan 10-12. pp 217-235.

[5] Bradley, P. S. & Fayyad, U.M. (1998). Refining Initial
Points for K--Means Clustering. In proceedings of the 15th
Int’l Conference on Machine Learning. Madison, WI, July
24-27. pp. 91-99.

[6] British Iris Society, Species Group Staff. (1997). A Guide to
Species Irises: Their Identification and Cultivation.
Cambridge University Press. March, 1997.

[7] Cotofrei, P. (2002). Statistical Temporal Rules. In
proceedings of the 15th Conference on Computational
Statistics - Short Communications and Posters. Berlin,
Germany, Aug 24-28.

0 20 40 60 80 100 120 140

[8] Cotofrei, P. & Stoffel, K (2002). Classification Rules + Time
= Temporal Rules. In proceedings of the 2002 Int’l
Conference on Computational Science. Amsterdan,
Netherlands, Apr 21-24. pp 572-581.

[9] Das, G., Lin, K., Mannila, H., Renganathan, G. & Smyth, P.
(1998). Rule Discovery from Time Series. In proceedings of
the 4th Int'l Conference on Knowledge Discovery and Data
Mining. New York, NY, Aug 27-31. pp 16-22.

[10] Fisher, R. A. (1936). The Use of Multiple Measures in
Taxonomic Problems. Annals of Eugenics. Vol. 7, No. 2, pp
179-188.

[11] Fu, T. C., Chung, F. L., Ng, V. & Luk, R. (2001). Pattern
Discovery from Stock Time Series Using Self-Organizing
Maps. Workshop Notes of KDD2001 Workshop on Temporal
Data Mining. San Francisco, CA, Aug 26-29. pp 27-37.

[12] Gavrilov, M., Anguelov, D., Indyk, P. & Motwani, R.
(2000). Mining the Stock Market: Which Measure is Best? In
proceedings of the 6th ACM Int'l Conference on Knowledge
Discovery and Data Mining. Boston, MA, Aug 20-23. pp
487-496.

[13] Guha, S. Mishra, N. Motwani, R. & O'Callaghan, L (2000).
Clustering Data Streams. In Proceedings of the 41st Annual
Symposium on Foundations of Computer Science. Redondo
Beach, CA. Nov 12-14. pp. 359-366.

[14] Halkidi, M., Batistakis, Y. & Vazirgiannis, M. (2001). On
Clustering Validation Techniques. Journal of Intelligent
Information Systems (JIIS), Vol. 17, No. 2-3. pp. 107-145.

[15] Harms, S. K., Deogun, J. & Tadesse, T. (2002). Discovering
Sequential Association Rules with Constraints and Time
Lags in Multiple Sequences. In proceedings of the 13th Int’l
Symposium on Methodologies for Intelligent Systems. Lyon,
France, June 27-29. pp 432-441.

[16] Harms, S. K., Reichenbach, S. Goddard, S. E., Tadesse, T. &
Waltman, W. J. (2002). Data Mining in a Geospatial
Decision Support system for Drought Risk Management. In
proceedings of the 1st National Conference on Digital
Government. Los Angeles, CA, May 21-23. pp. 9-16.

[17] Hetland, M. L. & Sætrom, P. (2002). Temporal Rules
Discovery Using Genetic Programming and Specialized
Hardware. In proceedings of the 4th Int’l Conference on
Recent Advances in Soft Computing. Nottingham, UK, Dec
12-13.

[18] Honda, R., Wang, S., Kikuchi, T. & Konishi, O. (2002).
Mining of Moving Objects from Time-Series Images and its
Application to Satellite Weather Imagery. The Journal of
Intelligent Information Systems, Vol. 19, No. 1, pp. 79-93.

[19] Jensen, D. (2000). Data Snooping, Dredging and Fishing:
The dark Side of Data Mining. SIGKDD99 panel report.
ACM SIGKDD Explorations, Vol. 1, No. 2. pp. 52-54.

[20] Jin, X., Lu, Y. & Shi, C. (2002). Distribution Discovery:
Local Analysis of Temporal Rules. In proceedings of the 6th
Pacific-Asia Conference on Knowledge Discovery and Data
Mining. Taipei, Taiwan, May 6-8. pp 469-480.

[21] Jin, X., Wang, L., Lu, Y. & Shi, C. (2002). Indexing and
Mining of the Local Patterns in Sequence Database. In
proceedings of the 3rd International Conference on
Intelligent Data Engineering and Automated Learning.
Manchester, UK, Aug 12-14. pp 68-73.

[22] Kendall, M. (1976) Time-Series. 2nd Edition. Charles Griffin
and Company, Ltd., London.

[23] Keogh, E. (2002). The UCR Time Series Data Mining
Archive
[http://www.cs.ucr.edu/~eamonn/TSDMA/index.html].
Riverside CA. University of California - Computer Science
& Engineering Department

[24] Keogh, E. (2002). Exact Indexing of Dynamic Time
Warping. In proceedings of the 28th International
Conference on Very Large Data Bases. Hong Kong, Aug 20-
23. pp 406-417.

[25] Keogh, E. Chakrabarti, K. Pazzani, M & Mehrotra, S.
(2001). Dimensionality Reduction for Fast Similarity Search
in Large Time Series Databases. Journal of Knowledge and
Information Systems. Vol. 3, No. 3, pp. 263-286.

[26] Keogh, E. & Kasetty, S. (2002). On the Need for Time
Series Data Mining Benchmarks: A Survey and Empirical
Demonstration. In proceedings of the 8th ACM SIGKDD
International Conference on Knowledge Discovery and Data
Mining. July 23 - 26, 2002. Edmonton, Alberta, Canada. pp
102-111.

[27] Li, C., Yu, P. S. & Castelli, V. (1998). MALM: A
Framework for Mining Sequence Database at Multiple
Abstraction Levels. In proceedings of the 7th ACM CIKM
Int'l Conference on Information and Knowledge
Management. Bethesda, MD, Nov 3-7. pp 267-272.

[28] Lin, J. Keogh, E. Patel, P. & Lonardi, S. (2002). Finding
motifs in time series. In the 2nd Workshop on Temporal Data
Mining, at the 8th ACM SIGKDD International Conference
on Knowledge Discovery and Data Mining. July 23 - 26,
2002. Edmonton, Alberta, Canada.

[29] Mantegna., R. N. (1999). Hierarchical Structure in Financial
Markets. European. Physical Journal. B11, pp. 193-197.

[30] Mori, T. & Uehara, K. (2001). Extraction of Primitive
Motion and Discovery of Association Rules from Human
Motion. In proceedings of the 10th IEEE Int’l Workshop on
Robot and Human Communication, Bordeaux-Paris, France,
Sept 18-21. pp 200-206.

[31] Oates, T. (1999). Identifying Distinctive Subsequences in
Multivariate Time Series by Clustering. In proceedings of
the 5th International Conference on Knowledge Discovery
and Data Mining. San Diego, CA, Aug 15-18. pp 322-326.

[32] Osaki, R., Shimada, M. & Uehara, K. (2000). A Motion
Recognition Method by Using Primitive Motions, Arisawa,
H. and Catarci, T. (eds.) Advances in Visual Information
Management, Visual Database Systems, Kluwer Academic
Pub. pp 117-127.

[33] Radhakrishnan, N., Wilson, J. D. & Loizou, P. C. (2000). An
Alternate Partitioning Technique to Quantify the Regularity
of Complex Time Series. International Journal of
Bifurcation and Chaos, Vol. 10, No. 7. World Scientific
Publishing. pp 1773-1779.

[34] Reinert, G., Schbath, S. & Waterman, M. S. (2000).
Probabilistic and statistical properties of words: An
overview. J. Comput. Bio., Vol. 7, pp 1-46.

[35] Roddick, J. F. & Spiliopoulou, M. (2002). A Survey of
Temporal Knowledge Discovery Paradigms and Methods.
Transactions on Data Engineering. Vol. 14, No. 4, pp 750-
767.

[36] Sarker, B. K., Mori, T. & Uehara, K. (2002). Parallel
Algorithms for Mining Association Rules in Time Series
Data. CS24-2002-1 Tech report.

[37] Schittenkopf, C., Tino, P. & Dorffner, G. (2000). The
Benefit of Information Reduction for Trading Strategies.
Report Series for Adaptive Information Systems and
Management in Economics and Management Science, July.
Report #45.

[38] Steinback, M., Tan, P.N., Kumar, V., Klooster, S. & Potter,
C. (2002). Temporal Data Mining for the Discovery and
Analysis of Ocean Climate Indices. In the 2nd Workshop on
Temporal Data Mining, at the 8th ACM SIGKDD
International Conference on Knowledge Discovery and Data
Mining. Edmonton, Alberta, Canada. July 23.

[39] Timmermann, A., Sullivan, R. & White, H. (1998). The
Dangers of Data-Driven Inference: The Case of Calendar
Effects in Stock Returns. FMG Discussion Papers dp0304,
Financial Markets Group and ESRC.

[40] Tino, P., Schittenkopf, C. & Dorffner, G. (2000). Temporal
Pattern Recognition in Noisy Non-stationary Time Series
Based on Quantization into Symbolic Streams: Lessons
Learned from Financial Volatility Trading. Report Series for

Adaptive Information Systems and Management in
Economics and Management Science, July. Report #46.

[41] Truppel, Keogh, Lin (2003). A Hidden Constraint When
Clustering Streaming Time Series. UCR Tech Report.

[42] Uehara, K. & Shimada, M. (2002). Extraction of Primitive
Motion and Discovery of Association Rules from Human
Motion Data. Progress in Discovery Science 2002, Lecture
Notes in Artificial Intelligence, Vol. 2281. Springer-Verlag.
pp 338-348.

[43] Van Laerhoven, K. (2001). Combining the Kohonen Self-
Organizing Map and K-Means for On-line Classification of
Sensor data. Artificial Neural Networks, Dorffner, G.,
Bischof, H. & Hornik, K. (Eds.), Vienna, Austria; Lecture
Notes in Artificial Intelligence. Vol. 2130, Springer Verlag,
pp.464-470.

[44] Walker, J. (2001). HotBits: Genuine Random Numbers
Generated by Radioactive Decay. www.fourmilab.ch/hotbits/

[45] Yairi, T., Kato, Y. & Hori, K. (2001). Fault Detection by
Mining Association Rules in House-keeping Data. In
proceedings of the 6th International Symposium on Artificial
Intelligence, Robotics and Automation in Space. Montreal,
Canada, June 18-21.

