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Abstract 
Time series data is perhaps the most frequently encountered type 
of data examined by the data mining community. Clustering is 
perhaps the most frequently used data mining algorithm, being 
useful in it’s own right as an exploratory technique, and also as a 
subroutine in more complex data mining algorithms such as rule 
discovery, indexing, summarization, anomaly detection, and 
classification. Given these two facts, it is hardly surprising that 
time series clustering has attracted much attention. The data to be 
clustered can be in one of two formats: many individual time 
series, or a single time series, from which individual time series 
are extracted with a sliding window. Given the recent explosion of 
interest in streaming data and online algorithms, the latter case 
has received much attention. 

In this work we make a surprising claim. Clustering of streaming 
time series is completely meaningless. More concretely, clusters 
extracted from streaming time series are forced to obey a certain 
constraint that is pathologically unlikely to be satisfied by any 
dataset, and because of this, the clusters extracted by any 
clustering algorithm are essentially random. While this constraint 
can be intuitively demonstrated with a simple illustration and is 
simple to prove, it has never appeared in the literature.  

We can justify calling our claim surprising, since it invalidates 
the contribution of dozens of previously published papers. We will 
justify our claim with a theorem, illustrative examples, and a 
comprehensive set of experiments on reimplementations of 
previous work. Although the primary contribution of our work is 
to draw attention to the fact that an apparent solution to an 
important problem is incorrect and should no longer be used, we 
also introduce a novel method which, based on the concept of 
time series motifs, is able to meaningfully cluster some streaming 
time series datasets. 
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1. Introduction 
Time series data is perhaps the most commonly encountered kind 
of data explored by data miners [26, 35]. Clustering is perhaps the 
most frequently used data mining algorithm [14], being useful in 
it’s own right as an exploratory technique, and as a subroutine in 
more complex data mining algorithms [3, 5]. Given these two 
facts, it is hardly surprising that time series data mining has 
attracted an extraordinary amount of attention [3, 7, 8, 9, 11, 12, 

15, 16, 17, 18, 20, 21, 24, 25, 27, 28, 29, 30, 31, 32, 33, 36, 38, 
40, 42, 45]. The work in this area can be broadly classified into 
two categories: 

• Whole Clustering: The notion of clustering here is similar 
to that of conventional clustering of discrete objects.  Given 
a set of individual time series data, the objective is to group 
similar time series into the same cluster.   

• Subsequence Clustering: Given a single time series, 
individual time series (subsequences) are extracted with a 
sliding window.  Clustering is then performed on the 
extracted time series.  

Subsequence clustering is commonly used as a subroutine in 
many other algorithms, including rule discovery [9, 11, 15, 16, 
17, 20, 21, 30, 32, 36, 42, 45], indexing [27, 33], classification [7, 
8], prediction [37, 40], and anomaly detection [45]. For clarity, 
we will refer to this type of clustering as STS (Subsequence Time 
Series) clustering.  

In this work we make a surprising claim. Clustering streaming 
time series is meaningless!  More concretely, clusters extracted 
from streaming time series are forced to obey a certain constraint 
that is pathologically unlikely to be satisfied by any dataset, and 
because of this, the clusters extracted by any clustering algorithm 
are essentially random.  

Since we use the word “meaningless” many times in this paper, 
we will take the time to define this term. All useful algorithms 
(with the sole exception of random number generators) produce 
output that depends on the input. For example, a decision tree 
learner will yield very different outputs on, say, a credit 
worthiness domain, a drug classification domain, and a music 
domain. We call an algorithm “meaningless” if the output is 
independent of the input. As we prove in this paper, the output of 
STS clustering does not depend on input, and is therefore 
meaningless. 

Our claim is surprising since it calls into question the 
contributions of dozens of papers. In fact, the existence of so 
much work based on STS clustering offers an obvious counter 
argument to our claim. It could be argued: “Since many papers 
have been published which use time series subsequence clustering 
as a subroutine, and these papers produced successful results, 
time series subsequence clustering must be a meaningful 
operation.” 
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We strongly feel that this is not the case. We believe that in all 
such cases the results are consistent with what one would expect 
from random cluster centers. We recognize that this is a strong 
assertion, so we will demonstrate our claim by reimplementing 
the most successful (i.e. the most referenced) examples of such 
work, and showing with exhaustive experiments that these 
contributions inherit the property of meaningless results from the 
STS clustering subroutine. 

The rest of this paper is organized as follows. In Section 2 we will 
review the necessary background material on time series and 
clustering, then briefly review the body of research that uses STS 
clustering. In Section 3 we will show that STS clustering is 
meaningless with a series of simple intuitive experiments; then in 
Section 4 we will explain why STS clustering cannot produce 
useful results. In Section 5 we show that the many algorithms that 
use STS clustering as a subroutine produce results 
indistinguishable from random clusters. Since the main 
contribution of this paper may be considered “negative,” we 
conclude in Section 6 with the demonstration of a simple 
algorithm that can find clusters in at least some trivial streaming 
datasets. This algorithm is not presented as the best way to find 
clusters in streaming time series; it is simply offered as an 
existence proof that such an algorithm exists, and to pave the way 
for future research.  

2. Background Material 
In order to frame our contribution in the proper context we begin 
with a review of the necessary background material.  

2.1 Notation and Definitions  
We begin with a definition of our data type of interest, time 
series: 

Definition 1. Time Series: A time series T = t1,…,tm is an 
ordered set of m real-valued variables. 

Data miners are typically not interested in any of the global 
properties of a time series; rather, data miners confine their 
interest to subsections of the time series, called subsequences.   

Definition 2. Subsequence: Given a time series T of length m, 
a subsequence Cp of T is a sampling of length w < m of 
contiguous positions from T, that is, C = tp,…,tp+w-1 for  1 ≤ p 
≤ m – w + 1. 

In this work we are interested in the case where all the 
subsequences are extracted, and then clustered. This is achieved 
by use of a sliding window. 

Definition 3. Sliding Windows: Given a time series T of 
length m, and a user-defined subsequence length of w, a 
matrix S of all possible subsequences can be built by “sliding 
a window” across T and placing subsequence Cp  in the pth  
row of S. The size of matrix S is (m – w + 1) by w. 

Figure 1 summarizes all the above definitions and notations. 
 

Figure 1.  An illustration of the notation introduced in this 
section: a time series T of length 128, a subsequence of length w 
= 16, beginning at datapoint 67, and the first 8 subsequences 
extracted by a sliding window.  

Note that while S contains exactly the same information as T, it 
requires significantly more storage space. This is typically not a 
problem, since, as we shall see in the next section, the limiting 
factor tends to be the CPU time for clustering. 

2.2 Background on Clustering 
One of the most widely used clustering approaches is hierarchical 
clustering, due to the great visualization power it offers [26, 29]. 
Hierarchical clustering produces a nested hierarchy of similar 
groups of objects, according to a pairwise distance matrix of the 
objects.  One of the advantages of this method is its generality, 
since the user does not need to provide any parameters such as the 
number of clusters.  However, its application is limited to only 
small datasets, due to its quadratic computational complexity. 
Table 1 outlines the basic hierarchical clustering algorithm. 

Table 1: An outline of hierarchical clustering. 
Algorithm Hierarchical Clustering 

1. Calculate the distance between all objects. Store the 
results in a distance matrix. 

2. Search through the distance matrix and find the two 
most similar clusters/objects. 

3. Join the two clusters/objects to produce a cluster that 
now has at least 2 objects. 

4. Update the matrix by calculating the distances between 
this new cluster and all other clusters. 

5. Repeat step 2 until all cases are in one cluster. 

A faster method to perform clustering is k-means [5].  The basic 
intuition behind k-means (and a more general class of clustering 
algorithms known as iterative refinement algorithms) is shown in 
Table 2:  

Table 2: An outline of the k-means algorithm. 
Algorithm k-means 

1. Decide on a value for k. 
2. Initialize the k cluster centers (randomly, if necessary). 
3. Decide the class memberships of the N objects by 

assigning them to the nearest cluster center. 
4. Re-estimate the k cluster centers, by assuming the 

memberships found above are correct. 
5. If none of the N objects changed membership in the last 

iteration, exit. Otherwise goto 3. 

The k-means algorithm for N objects has a complexity of 
O(kNrD), with k the number of clusters specified by the user, r 
the number of iterations until convergence, and D the 
dimensionality of time series (in the case of STS clustering, D is 
the length of the sliding window, w). While the algorithm is 
perhaps the most commonly used clustering algorithm in the 
literature, it does have several shortcomings, including the fact 
that the number of clusters must be specified in advance [5, 14]. 
It is well understood that some types of high dimensional 
clustering may be meaningless. As noted by [1, 4], in high 
dimensions the very concept of nearest neighbor has little 
meaning, because the ratio of the distance to the nearest neighbor 
over the distance to the average neighbor rapidly approaches one 
as the dimensionality increases. However, time series, while often 
having high dimensionality, typically have a low intrinsic 
dimensionality [25], and can therefore be meaningful candidates 
for clustering. 
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2.3 Background on Time Series Data Mining 
The last decade has seen an extraordinary interest in mining time 
series data, with at least one thousand papers on the subject [26]. 
Tasks addressed by the researchers include segmentation, 
indexing, clustering, classification, anomaly detection, rule 
discovery, and summarization. 
Of the above, a significant fraction use streaming time series 
clustering as a subroutine. Below we will enumerate some 
representative examples. 

• There has been much work on finding association rules in 
time series [9, 11, 15, 16, 20, 21, 30, 32, 26, 42, 45]. 
Virtually all work is based on the classic paper of Das et. al. 
that uses STS clustering to convert real valued time series 
into symbolic values, which can then be manipulated by 
classic rule finding algorithms [9]. 

• The problem of anomaly detection in time series has been 
generalized to include the detection of surprising or 
interesting patterns (which are not necessarily anomalies). 
There are many approaches to this problem, including 
several based on STS clustering [45].  

• Indexing of time series is an important problem that has 
attracted the attention of dozens of researchers. Several of 
the proposed techniques make use of STS clustering [27, 33]. 

• Several techniques for classifying time series make use of 
STS clustering to preprocess the data before passing to a 
standard classification technique such as a decision tree [7, 
8]. 

• Clustering of streaming time series has also been proposed as 
a knowledge discovery tool in its own right. Researchers 
have suggested various techniques to speed up the clustering 
[11]. 

The above is just a small fraction of the work in the area, more 
extensive surveys may be found in [24, 35].  

3. Demonstrations of the Meaninglessness of 
STS Clustering 
In this section we will demonstrate the meaninglessness of STS 
clustering. In order to demonstrate that this meaninglessness is a 
product of the way the data is obtained by sliding windows, and 
not some quirk of the clustering algorithm, we will also do whole 
clustering as a control [12, 31]. 

3.1 K-means Clustering  
Because k-means is a heuristic, hill-climbing algorithm, the 
cluster centers found may not be optimal [14]. That is, the 
algorithm is guaranteed to converge on a local, but not necessarily 
global optimum.  The choices of the initial centers affect the 
quality of results.  One technique to mitigate this problem is to do 
multiple restarts, and choose the best set of clusters [5]. An 
obvious question to ask is how much variability in the shapes of 
cluster centers we get between multiple runs. We can measure this 
variability with the following equation: 

• Let ),...,,( 21 kaaaA= be the cluster centers derived from 
one run of k-means. 

• Let ),...,,( 21 kbbbB=  be the cluster centers derived from a 
different run of k-means. 

• Let ),( ji aadist  be the distance between two cluster 

centers, measured with Euclidean distance.   

Then the distance between two sets of clusters can be defined as: 
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The simple intuition behind the equation is that each individual 
cluster center in A should map on to its closest counterpart in B, 
and the sum of all such distances tells us how similar two sets of 
clusters are.  

An important observation is that we can use this measure not only 
to compare two sets of clusters derived for the same dataset, but 
also two sets of clusters which have been derived from different 
data sources. Given this fact, we propose a simple experiment.  

We performed 3 random restarts of k-means on a stock market 
data set, and saved the 3 resulting sets of cluster centers into set 
X. We also performed 3 random restarts on random walk dataset, 
saving the 3 resulting sets of cluster centers into set Y. 

We then measured the average cluster distance (as defined in 
equation 1), between each set of cluster centers in X, to each other 
set of cluster centers in X. We call this number 
within_set_X_distance. We also measured the average cluster 
distance between each set of cluster centers in X, to cluster 
centers in Y; we call this number 
between_set_X_and_Y_distance. 

We can use these two numbers to create a fraction: 

ancedistYandXsetbetween
ancedistXsetwithin
_____

___
 Y)ness(X,meaningful clustering ≡

 (2) 

We can justify calling this number “clustering meaningfulness” 
since it clearly measures just that. If the clustering algorithm is 
returning the same or similar sets of clusters despite different 
initial seeds, the numerator should be close to zero. In contrast, 
there is no reason why the clusters from two completely different, 
unrelated datasets to be similar.  Therefore, we should expect the 
denominator to be relatively large. So overall we should expect 
that the value of clustering meaningfulness(X,Y) should be close 
to zero when X and Y are sets of cluster centers derived from 
different datasets. 

As a control, we performed the exact same experiment, on the 
same data, but using subsequences that were randomly extracted, 
rather than extracted by a sliding window. We call this whole 
clustering. 

Since it might be argued that any results obtained were the 
consequence of a particular combination of k and w, we tried the 
cross product of k = {3, 5, 7, 11} and w = {8, 16, 32}. For every 
combination of parameters we repeated the entire process 100 
times, and averaged the results. Figure 2 shows the results. 



 

Figure 2.  A comparison of the clustering meaningfulness for 
whole clustering, and STS clustering, using k-means with a 
variety of parameters. The two datasets used were Standard and 
Poor's 500 Index closing values and random walk data. 

The results are astonishing. The cluster centers found by STS 
clustering on any particular run of k-means on stock market 
dataset are not significantly more similar to each other than they 
are to cluster centers taken from random walk data! In other 
words, if we were asked to perform clustering on a particular 
stock market dataset, we could reuse an old clustering obtained 
from random walk data, and no one could tell the difference! 

We reemphasize here that the difference in the results for STS 
clustering and whole clustering in this experiment (and all 
experiments in this work) are due exclusively to the feature 
extraction step. In particular, both are being tested on the same 
dataset, with the same parameters of w and k, using the same 
algorithm. 

We also note that the exact definition of clustering 
meaningfulness is not important to our results. In our definition, 
each cluster center in A maps onto its closest match in B. It is 
possible therefore that two or more cluster centers from A map to 
one center in B, and some clusters in B have no match. However 
we tried other variants of this definition, including pairwise 
matching, minimum matching and maximum matching, together 
with dozens of other measurements of clustering quality 
suggested in the literature [14]; it simply makes no significant 
difference to the results. 

3.2 Hierarchical Clustering 
The previous section suggests that k-means clustering of STS 
time series does not produce meaningful results, at least for stock 
market data. An obvious question to ask is, is this true for STS 
with other clustering algorithms? We will answer the question for 
hierarchical clustering here. 

Hierarchical clustering, unlike k-means, is a deterministic 
algorithm. So we can’t reuse the experimental methodology from 
the previous section exactly, however, we can do something very 
similar.  

First we note that hierarchical clustering can be converted into a 
partitional clustering, by cutting the first k links [29]. Figure 3 
illustrates the idea. The resultant time series in each of the k 
subtrees can then be merged into single cluster prototypes. When 
performing hierarchical clustering, one has to make a choice 

about how to define the distance between two clusters, this choice 
is called the linkage method (cf. line 3 of Table 1). 

 

Figure 3.  A hierarchical clustering of ten time series. The 
clustering can be converted to a k partitional clustering by 
“sliding” a cutting line until it intersects k lines of the 
dendrograms, then averaging the time series in the k subtrees to 
form k cluster centers (gray panel). 

Three popular choices are complete linkage, average linkage and 
Ward’s method [14]. We can use all three methods for the stock 
market dataset, and place the resulting cluster centers into set X. 
We can do the same for random walk data and place the resulting 
cluster centers into set Y. Having done this, we can extend the 
measure of clustering meaningfulness in Eq. 2 to hierarchical 
clustering, and run a similar experiment as in the last section, but 
using hierarchical clustering. The results of this experiment are 
shown in Figure 4. 

 

Figure 4.  A comparison of the clustering meaningfulness for 
whole clustering and STS clustering using hierarchical clustering 
with a variety of parameters. The two datasets used were 
Standard and Poor's 500 Index closing values and random walk 
data. 

Once again, the results are astonishing. While it is well 
understood that the choice of linkage method can have minor 
effects on the clustering found, the results above tell us that when 
doing STS clustering, the choice of linkage method has as much 
effect as the choice of dataset! Another way of looking at the 
results is as follows. If we were asked to perform hierarchical 
clustering on a particular dataset, but we did not have to report 
which linkage method we used, we could reuse an old random 
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walk clustering and no one could tell the difference without 
rerunning the clustering for every possible linkage method.  

3.3 Other Datasets and Algorithms 
The results in the two previous sections are extraordinary, but are 
they the consequence of some properties of stock market data, or 
as we claim, a property of the sliding window feature extraction? 
The latter is the case, which we can simply demonstrate. We 
visually inspected the UCR archive of time series datasets for the 
two time series datasets that appear the least alike [23]. The best 
two candidates we discovered are shown in Figure 5. 
 

Figure 5.  Two subjectively very dissimilar time series from the 
UCR archive. Only the first 1,000 datapoints are shown. The two 
time series have very different properties of stationarity, noise, 
periodicity, symmetry, autocorrelation etc. 

We repeated the experiment of Section 3.2, using these two 
datasets in place of the stock market data and the random walk 
data. The results are shown in Figure 6.  

 

Figure 6.  A comparison of the clustering meaningfulness for 
whole clustering, and STS clustering, using k-means with a 
variety of parameters. The two datasets used were buoy_sensor(1) 
and ocean. 

In our view, this experiment sounds the death knell for clustering 
of STS time series. If we cannot easily differentiate between the 
clusters from these two extremely different time series, then how 
could we possibly find meaningful clusters in any data? 

In fact, the experiments shown in this section are just a tiny subset 
of the experiments we performed. We tested other clustering 
algorithms, including EM and SOMs [43]. We tested on 42 
different datasets [24, 26]. We experimented with other measures 
of clustering quality [14]. We tried other variants of k-means, 
including different seeding algorithms. Although Euclidean 
distance is the most commonly used distance measure for time 
series data mining, we also tried other distance measures from the 
literature, including Manhattan, L∞, Mahalanobis distance and 
dynamic time warping distance [12, 24, 31]. We tried various 
normalization techniques, including Z-normalization, 0-1 
normalization, amplitude only normalization, offset only 
normalization, no normalization etc. In every case we are forced 
to the inescapable conclusion: whole clustering of time series is 

usually a meaningful thing to do, but sliding window time series 
clustering is never meaningful.  

3.4 Why is STS Clustering Meaningless? 
Before explaining why STS clustering is meaningless, it will be 
instructive to visualize the cluster centers produced by both whole 
clustering and STS clustering. We will demonstrate on the classic 
Cylinder-Bell-Funnel data [26]. This dataset consists of random 
instantiations of the eponymous patterns, with Gaussian noise 
added. While each time series is of length 128, the onset and 
duration of the shape is subject to random variability. Figure 7 
shows one instance from each of the three clusters.   

 

Figure 7.  Examples of Cylinder, Bell, and Funnel patterns. 
We generated a dataset of 30 instances of each pattern, and 
performed k-means clustering on it, with k = 3. The resulting 
cluster centers are show in Figure 8. As one might expect, all 
three clusters are successfully found.  The final centers closely 
resemble the three different patterns in the dataset, although the 
sharp edges of the patterns have been somewhat “softened” by the 
averaging of many time series with some variability in the time 
axis. 
 

Figure 8.  The three final centers found by k-means on the 
cylinder-bell-funnel dataset.  The shapes of the centers are close 
approximation of the original patterns. 

To compare the results of whole clustering to STS clustering, we 
took the 90 time series used above and concatenated them into 
one long time series. We then performed STS k-means clustering. 
To make it easy for the algorithm, we use the exact length of the 
patterns (w = 128) as the window length, and k = 3 as the number 
of desired clusters. The cluster centers are shown in Figure 9.  
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Figure 9.  The three final centers found by subsequence 
clustering using the sliding window approach.   

The results are extraordinarily unintuitive! The cluster centers 
look nothing like any of the patterns in the data; what’s more, 
they appear to be perfect sine waves.  
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In fact, for w << m, we get approximate sine waves with STS 
clustering regardless of the clustering algorithm, the number of 
clusters, or the dataset used! Furthermore, although the sine 
waves are always exactly out of phase with each other by 1/k 
period, overall, their joint phase is arbitrary, and will change with 
every random restart of k-means. 
This result completely explains the results from the last section. If 
sine waves appear as cluster centers for every dataset, then clearly 
it will be impossible to distinguish one dataset’s clusters from 
another. Although we have now explained the inability of STS 
clustering to produce meaningful results, we have revealed a new 
question: why do we always get cluster centers with this special 
structure?  

3.5 A Hidden Constraint 
To explain the unintuitive results above, we must introduce a new 
fact.  

Theorem 1: For any time series dataset T with an overall 
trend of zero, if T is clustered using sliding windows, and w 
<< m, then the mean of all the data (i.e. the special case of k = 
1), will be an approximately constant vector. 

In other words, if we run STS k-means on any dataset, with k = 1 
(an unusual case, but perfectly legal), we will always end up with 
a horizontal line as the cluster center. The proof of this fact is 
straightforward but long, so we have elucidated it in a separate 
technical report [41]. Note that the requirement that the overall 
trend be zero can be removed, in which case, the k = 1 cluster 
center is still a straight line, but at some angle. 
We content ourselves here with giving the intuition behind the 
proof, and offering a visual “proof” in Figure 10.  

 

Figure 10: A visual “proof” of Theorem 1. Ten time series of 
vastly different properties of stationarity, noise, periodicity, 
symmetry, autocorrelation etc. The cluster centers for each time 
series, for w = 32, k = 1 are shown at right. Far right shows a 
zoom-in that shows just how close to a straight line the cluster 
centers are. While the objects have been shifted for clarity, they 
have not been rescaled in either axis; note the light gray circle in 
both graphs. The datasets used are, reading from top to bottom: 
Space Shuttle, Flutter, Speech, Power_Data, Koski_ecg, 
Earthquake, Chaotic, Cylinder, Random_Walk, and Balloon. 

The intuition behind Theorem 1 is as follows. Imagine an 
arbitrary datapoint ti somewhere in the time series T, such that w 
≤ i ≤ m – w + 1. If the time series is much longer than the window 
size, then virtually all datapoints are of this type. What 
contribution does this datapoint make to the overall mean of the 
STS matrix S? As the sliding window passes by, the datapoint 

first appears as the rightmost value in the window, then it goes on 
to appear exactly once in every possible location within the 
sliding window. So the ti datapoint contribution to the overall 
shape is the same everywhere and must be a horizontal line. Only 
those points at the very beginning and the very end of the time 
series avoid contributing their value to all w columns of S, but 
these are asymptotically irrelevant. The average of many 
horizontal lines is clearly just another horizontal line. 
The implications of Theorem 1 become clearer when we consider 
the following well documented fact. For any dataset, the weighted 
(by cluster membership) average of k clusters must sum up to the 
global mean. The implication for STS clustering is profound. If 
we hope to discover k clusters in our dataset, we can only do so if 
the weighted average of these clusters happens to sum to a 
constant line! However, there is no reason why we should expect 
this to be true of any dataset, much less every dataset. This hidden 
constraint limits the utility of STS clustering to a vanishing small 
set of subspace of all datasets.  

3.6 The Importance of Trivial Matches  
There are further constraints on the types of datasets where STS 
clustering could possibly work. Consider a subsequence Cp that is 
a member of a cluster. If we examine the entire dataset for similar 
subsequences, we should typically expect to find the best matches 
to Cp to be the subsequences …,Cp-2, Cp-1, Cp+1, Cp+2 ,… In other 
words, the best matches to any subsequence tend to be just 
slightly shifted versions of the subsequence. Figure 11 illustrates 
the idea, and Definition 4 states it more formally.  

Definition 4. Trivial Match: Given a subsequence C 
beginning at position p, a matching subsequence M beginning 
at q, and a distance R, we say that M is a trivial match to C of 
order R, if either p = q or there does not exist a subsequence 
M’ beginning at q’ such that D(C, M’) > R, and either q < q’< 
p or p < q’< q. 

The importance of trivial matches, in a different context, has been 
documented elsewhere [28]  

 

Figure 11: For almost any subsequence C in a time series, the 
closest matching subsequences are the subsequences immediately 
to the left and right of C. 

An important observation is the fact that different subsequences 
can have vastly different numbers of trivial matches. In particular, 
smooth, slowly changing subsequences tend to have many trivial 
matches, whereas subsequences with rapidly changing features 
and/or noise tend to have very few trivial matches. Figure 12 
illustrates the idea. The figure shows a time series that 
subjectively appears to have a cluster of 3 square waves. 
However, the bottom plot shows how many trivial matches each 
subsequence has. Note that the square waves have very few trivial 
matches, so all three taken together sit in a sparsely populated 
region of w-space. In contrast, consider the relatively smooth 
Gaussian bump centered at 125. The subsequences in the smooth 
ascent of this feature have more than 25 trivial matches, and thus 
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sit in a dense region of w-space; the same is true for the 
subsequences in the descent from the peak. So if clustering this 
dataset with k-means, k = 2, the two cluster centers will be 
irresistibly drawn to these two “shapes”, simple ascending and 
descending lines. 

 

Figure 12: A) A time series T that subjectively appears to have a 
cluster of 3 noisy square waves. B) Here the ith value is the 
number of trivial matches for the subsequence Ci in T, where R = 
1, w = 64. 

The importance of this observation for STS clustering is obvious. 
Imagine we have a time series where we subjectively see two 
clusters: equal numbers of a smooth slowing changing pattern, 
and a noisier pattern with many features.                                                                                                                                            
In w-dimensional space, the smooth pattern is surrounded by 
many trivial matches. This dense volume will appear to any 
clustering algorithm an extremely promising cluster center. In 
contrast, the highly featured, noisy pattern has very few trivial 
matches, and thus sits in a relatively sparse space, all but ignored 
by the clustering algorithm. Note that it is not possible to simply 
remove or “factor out” the trivial matches since there is no way to 
know beforehand the true patterns. 
We have not yet fully explained why the cluster centers for STS 
clustering degenerate to sine waves (cf Figure 9). However, we 
have shown that for STS “clustering”, algorithms do not really 
cluster the data. If not clustering, what are the algorithms doing? 
It is instructive to note that if we perform singular value 
decomposition on time series, we also get shapes that seem to 
approximate sine waves [25]. This suggests that STS clustering 
algorithms are simply returning a set of basis functions that can be 
added together in a weighted combination to approximate the 
original data.  
An even more tantalizing piece of evidence exists. In the 1920’s 
“data miners” were excited to find that by preprocessing their data 
with repeated smoothing, they could discover trading cycles. 
Their joy was shattered by a theorem by Evgeny Slutsky  (1880-
1948), who demonstrated that any noisy time series will converge 
to a sine wave after repeated applications of moving window 
smoothing [22]. While STS clustering is not exactly the same as 
repeated moving window smoothing, it is clearly highly related. 
For brevity we will defer future discussion of this point to future 
work. 

3.7 Is there a Simple Fix?  
Having gained an understanding of the fact that STS clustering is 
meaningless, and having developed an intuition as to why this is 
so, it is natural to ask if there is a simple modification to allow it 
to produce meaningful results. We asked this question, not just 
among ourselves, but also to dozens of time series clustering 
researchers with whom we shared our initial results. While we 

considered all suggestions, we discuss only the two most 
promising ones here. 
The first idea is to increment the sliding window by more that one 
unit each time. In fact, this idea was suggest by [9], but only as a 
speed up mechanism. Unfortunately, this idea does not help. If the 
new step size s is much smaller than w, we still get the same 
empirical results. If s is approximately equal to, or larger than w, 
we are no longer doing subsequence clustering, but whole 
clustering. This is not useful, since the choice of the offset for the 
first window is a critical parameter, and choices that differ by just 
one timepoint can give arbitrarily different results. 
The second idea is to set k to be some number much greater than 
the true number of clusters we expect to find, then do some post-
processing to find the real clusters. Empirically, we could not 
make this idea work, even on the trivial dataset introduced at the 
beginning of this section. We found that even if k is extremely 
large, unless it is a significant fraction of T, we still get arbitrary 
sine waves as cluster centers. In addition, we note that the time 
complexity for k-means increases with k.  
It is our belief that there is no simple solution to the problem of 
STS-clustering; the definition of the problem is itself intrinsically 
flawed.     

3.8 Necessary Conditions for STS Clustering to 
Work 
We conclude this section with a summary of the conditions that 
must be satisfied for STS clustering to be meaningful. 
Assume that a time series contains k approximately or exactly 
repeated patterns of length w. Further assume that we happen to 
know k and w in advance. A necessary (but not necessarily                        
sufficient) condition for a clustering algorithm to discover the k 
patterns is that the weighted mean of the patterns must sum to a 
horizontal line, and each of the k patterns must have 
approximately equal numbers of trivial matches.  
It is obvious that the chances of both these conditions being met is 
essentially zero.  

4. A Case Study on Existing Work  
As we noted in the introduction, an obvious counter argument to 
our claim is the following. “Since many papers have been 
published which use time series subsequence clustering as a 
subroutine, and these papers produce successful results, time 
series subsequence clustering must be a meaningful operation.” 
To counter this argument, we have reimplemented the most 
influential such work, the Time Series Rule Finding algorithm of 
Das et. al. [9] (the algorithm is not named in the original work, we 
will call it TSRF here for brevity and clarity). 

4.1 (Not) Finding Rules in Time Series 
The algorithm begins by performing STS clustering. The centers 
of these clusters are then used as primitives that are fed into a 
slightly modified version of a classic association rule algorithm 
[2]. Finally the rules are ranked by their J-measure, an entropy 
based measure of their significance. 
The rule finding algorithm found the rules shown in Figure 13 
using 19 months of NASDAQ data. The high values of support, 
confidence and J-measure are offered as evidence of the 
significance of the rules. The rules are to be interpreted as 
follows. In Figure 13 (b) we see that “if stock rises then falls 
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greatly, follow a smaller rise, then we can expect to see within 20 
time units, a pattern of rapid decrease followed by a leveling out.” 
[9]. 

 

w d Rule Sup % Conf % J-Mea. Fig 
20 5.5 7 ⇒15 8 8.3 73.0 0.0036 (a) 
30 5.5 18 ⇒20 21 1.3 62.7 0.0039 (b)  
Figure 13: Above, two examples of “significant” rules found 
by Das et. al. (This is a capture of Figure 4 from their paper). 
Below, a table of the parameters they used and results they 
found. 

What would happen if we used the TSRF algorithm to try to find 
rules in random walk data, using exactly the same parameters? 
Since no such rules should exist by definition, we should get 
radically different results1. Figure 14 shows one such experiment; 
the support, confidence and J-measure values are essentially the 
same as in Figure 13!  
 

w d Rule Sup % Conf % J-Mea Fig 
20 5.5 11 ⇒15 3 6.9 71.2 0.0042 (a) 
30 5.5 24 ⇒20 19 2.1 74.7 0.0035 (b)  
Figure 14: Above, two examples of “significant” rules found in 
random walk data using the techniques of Das et. al. Below, we 
used identical parameters and found near identical results. 

This one experiment might have been an extraordinary 
coincidence; we might have created a random walk time series 
that happens to have some structure to it. Therefore, for every 
result shown in the original paper we ran 100 recreations using 
different random walk datasets, using quantum mechanically 
generated numbers to insure randomness [44]. In every case the 
results published cannot be distinguished from our results on 
random walk data.  
The above experiment is troublesome, but perhaps there are 
simply no rules to be found in stock market. We devised a simple 
experiment in a dataset that does contain known rules. In 
particular we tested the algorithm on a normal healthy 
electrocardiogram. Here, there is an obvious rule that one 
heartbeat follows another. Surprisingly, even with much tweaking 
of the parameters, the TSRF algorithm cannot find this simple 
rule.  

                                                                 
1 Note that the shapes of the patterns in Figures 13 and 14 are only very 

approximately sinusoidal. This is because the time series are relatively short 
compared to the window length. When the experiments are repeated with longer 
time series, the shapes converge to pure sine waves. 

The TSRF algorithm is based on the classic rule mining work of 
Agrawal et. al. [2]; the only difference is the STS step. Since the 
work of [2] has been carefully vindicated in 100’s of experiments 
on both real and synthetic datasets, it seems reasonable to 
conclude that the STS clustering is at the heart of the problems 
with the TSRF algorithm.  
These results may appear surprising, since they invalidate the 
claims of a highly referenced paper, and many of the dozens of 
extensions researchers have proposed [9, 11, 15, 16, 17, 20, 21, 
30, 32, 36, 42, 45]. However, in retrospect, this result should not 
really be too surprising. Imagine that a researcher claims to have 
an algorithm that can differentiate between three types of Iris 
flowers (Setosa, Virginica and Versicolor) based on petal and 
sepal length and width [10]. This claim is not so extraordinary, 
given that it is well known that even amateur botanists and 
gardeners have this skill [6]. However, the paper in question is 
claiming to introduce an algorithm that can find rules in stock 
market time series. There is simply no evidence that any human 
can do this, in fact, the opposite is true: every indication suggests 
that the patterns much beloved by technical analysts such as the 
“calendar effect” are completely spurious [19, 39].  

5. A Tentative Solution  
The results presented in this paper thus far are somewhat 
downbeat. In this section we modify the tone by introducing an 
algorithm that can find clusters in some streaming time series. 
This algorithm is not presented as the best way to find clusters in 
streaming time series; for one thing, its time complexity is 
untenable for massive datasets. It is simply offered as an existence 
proof that such an algorithm exists, and to pave the way for future 
research. 
Our algorithm is motivated by the two observations in Section 4 
that attempting to cluster every subsequence produces an 
unrealistic constraint, and that considering trivial matches causes 
smooth, low-detail subsequences to form pseudo clusters.  
We begin by considering motifs, a concept highly related to 
clusters. Motifs are overrepresented sequences in discrete strings, 
for example, in musical or DNA sequences [34]. Classic 
definitions of motifs require that the underling data be discrete, 
but in recent work the present authors have extended the 
definitions to real valued time series [28]. Figure 15 illustrates a 
visual intuition of a motif, and Definition 5 defines the concept 
more concretely. 

 

Figure 15: An example of a motif that occurs 4 times in a short 
section of the Winding(4) dataset. 

Definition 5. K-Motifs: Given a time series T, a subsequence 
length n and a distance range R, the most significant motif in 
T (called 1-Motif) is the subsequence C1 that has the highest 
count of non-trivial matches. The Kth most significant motif in 
T (called K-Motif) is the subsequence CK that has the highest 
count of non-trivial matches, and satisfies D(CK, Ci) > 2R, for 
all  1 ≤  i < K . 
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Although motifs may be considered similar to clusters, there are 
several important differences, a few of which we enumerate here. 

• When mining motifs, we must specify an additional 
parameter R. 

• Assuming the distance R is defined as Euclidean, motifs 
always define circular regions in space, whereas clusters may 
have arbitrary shapes2. 

• Motifs generally define a small subset of the data, and not 
the entire dataset. 

• The definition of motifs explicitly eliminates trivial matches.  
Note that while the first two points appear as limitations, the last 
two points explicitly counter the two reasons that STS clustering 
cannot produce meaningful results. 
We cannot simply run a K-motif detection algorithm in place of 
STS clustering, since a subset of the motifs discovered might 
really be a group that should be clustered together.  For example, 
imagine a true cluster that sits in a hyper-ellipsoid.  It might be 
approximated by 2 or 3 motifs that cover approximately the same 
volume. However, we could run a K-motif detection algorithm, 
with K >> k, to extract promising subsequences from the data, 
then use a classic clustering algorithm to cluster only these 
subsequences.  This idea is formalized in Table 3. 

Table 3: An outline of the motif-based-clustering algorithm. 
Algorithm motif-based-clustering 

1. Decide on a value for k. 
2. Discover the K-motifs in the data, for K = k × c  

(c is some constant, in the region of about 2 to 30) 
3. Run k-means, or k partitional hierarchical clustering, or any 

other clustering algorithm on the subsequences covered by K-
motifs 

Line two of the algorithm requires a call to a motif discovery 
algorithm; such an algorithm appears in [28]. 

5.1 Experimental Results 
We have seen in Section 6 that the cluster centers returned by 
STS have been mistaken for meaningful clusters by many 
researchers. To eliminate the possibility of repeating this mistake, 
we will demonstrate the proposed algorithm on the dataset 
introduced in Section 4, which consists of the concatenation of 30 
examples each of the Cylinder, Bell, Funnel shapes, in random 
order. We would like our clustering algorithm to be able to find 
clusters centers similar to the ones shown in Figure 8. 
We ran the motif based clustering algorithm with w = 128, and k 
= 3, which is fair since we also gave these two correct parameters 
to all the algorithms above. We needed to specify the value of R, 
we did this by simply examining a fraction of our dataset, finding 
ten pairs of subsequences we found to be similar, measuring the 
Euclidean distance between these pairs, and averaging the results. 
The cluster centers found are shown in Figure 16. 
These results tell use that on at least some datasets, we can do 
meaningful streaming clustering. The fact that this is achieved by 
working with only a subset of the data, and explicitly excluding 

                                                                 
2 It is true that k-means favors circular clusters, but more generally, 

clustering algorithms can define arbitrary spaces.   

trivial matches, further supports our explanations in Sections 4.1 
and 4.2, of why STS clustering is meaningless. 

 

Figure 16: The cluster centers found by the motif-based-
clustering algorithm on the concatenated Cylinder-Bell-Funnel 
dataset. Note the results are very similar to the prototype shapes 
shown in Figure 7, and the cluster centers found by the whole 
matching case, shown in Figure 8.  

6. Conclusions 
We have shown that a popular technique for data mining does not 
produce meaningful results. We have further explained the 
reasons why this is so.  
Although our work may be viewed as negative, we have shown 
that a reformulation of the problem can allow clusters to be 
extracted from streaming time series. In future work we intend to 
consider several related questions; for example, whether or not 
the weaknesses of STS clustering described here have any 
implications for model-based, streaming clustering of time series, 
or streaming clustering of nominal data [13]. 
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