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Abstract—We consider an alternative selection process that what is the probability that there is no question-response policy
involves multiple and conflicting objectives. A facilitator asks that will lead to a most preferred alternative? In either case,
a decision-maker (DM), or a decision-making body, questions o, assuming we continue to seek a most preferred alternative,

and obtains responses in order to help the DM select a most hat poli hould > Th to th fi
preferred alternative. The DM responses to these questions do What policy should we use: € answers 1o these questions

not necessarily result in precisely determined parameter values could help a facilitator better manage a group’s time, effort,
(e.g., weights and value scores corresponding to a given model ofand expectations and better determine when to stop a session.
_preferenf:e). The goal (?f this research is to guide _th_e facilitator |n addressing these questions, the research in this paper pro-
in selecting what question to ask next, and determining when to \iqes g priori conditions that guarantee that a most preferred

terminate the gquestion-response process. . . . .
We model the facilitator's question selection problem as a alternative can be found, and for situations where this is not

Markov decision process, and present conditions that guarantee the case, provides techniques for determining the probability
the existence of a question-response policy to identify a mostthat a most preferred alternative cannot be identified. Dynamic
preferred alternative in a finite number of questions. We also programming is used for policy determination.

present conditions that guarantee the existence of a question- |, the gypsection that follows, we describe the alternative
response policy that will identify a most preferred alternative as g

the number of questions asked goes to infinity. Both of these setsS€l€ction process in more detail, and provide both a simple
of conditions are easily identified a priori and may be used to aid €xample that illustrates the aforementioned situation, and a

a facilitator in determining which questions to ask, and when to more specific description of the group alternative selection
terminate the alternative selection process because identification session in which the situation emerged. We then present a
of a most preferred alternative is not possible. literature review and outline the remainder of the paper.

Index Terms— Decision-aiding, ISMAUT, question selection.

A. A model of decision-making and the Question Selection
. INTRODUCTION Problem

The research reported in this paper was motivated by angqr the alternative selection process under consideration
unanticipated situation that first emerged during a real-worlfare is a decision-makébM), or a decision-making body
group alternative selection session. Unknown to either ey j facilitator The facilitator’s goal is to help the DM select
facilitator or the members of the group at the time, it wag o5t preferred alternative from a finite set of alternatives

impossible for a most p.referred alternative to b_e ideptifiqﬁhen multiple and conflicting objectives may be under con-
for the alternative selection problem under consideration. &yjeration. In order to achieve this goal, the facilitator gathers

retrospect, this inability to identify a most preferred alternativigsormation from the DM by asking the DM questiommd

was due to a restriction during the session to assess only tra&?t‘aining responsesor group decision-making, we assume

off Weights and to the_imprecision of some of_the value SCOr8Rroughout that all members of the group agree with the
all of which were previously assessed by individuals not in “T%sponse. The facilitator must decide what question to ask

group. The group was intent on, and expected to, determin@ & \hich we refer to as the Question Selection Problem
most preferred alternative. When a most preferred alternat SP).

was not found after a considerable investment of time an Furthermore, the facilitator may need to decide when to

effort in determining precise trade-off weights, the session waginate the QSP. This decision is trivial once a most pre-

perceived a failure. ferred alternative has been identified, or equivalently, once

This experience raised several questions: Assuming paragjgs QSP has been resolvedowever, there are situations,

ter imprecision is permissible, what are the conditions undg,qirated later, where the question-response process is not
which there exists a question-response policy (i.e., a procedyfge 1 fyrther the search for a most preferred alternative. Once
that determines what question to ask next) that will lead 9,1, 4 sjtuation is identified, then it behooves the facilitator

a most preferred alternative? If these conditions do not ho%, terminate the process in order to save the DM unnecessary
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Specified MAUT (ISMAUT)[2], [3]. In this paper, we consider This third observation motivated the development of IS-
the special case where each alternative results in a singl&UT, which in its simplest form allows for trade-off weights

consequence, and as a result, we refer to a utility functiamd value scores to be described by finite sets of linear
as a valuefunction. The simplest MAUT model under thisinequalities, or more generally by set inclusion as follows.

assumption involves: Assume that all we know abouv = {w;,i € I} and
« a finite number of alternativesy; vi = {vi(a),a € A}, i € I, is thatw is an element of
« a finite number of attributes; some setV, v = {v;} is an element of some s&t = {V},

. atrade-off weight for each attribute; for attributei € I; apd W andV; are given for alli. Then we say alternative
. a value score for each attribute and alternativég) for ¢ 1S at least as preferred as alternativé if and only if

alternativea € A and attributei € I; wu(a’) = wo(a”) for all w € W andv € V. This (very
. the total value of alternativee € A is given by the Cconservative and partial) ordering on the alternatives leads to
weighted sumwo(a) = 3=, w;v;(a). situations where (1) there may be several alternatives that are

candidates for being most preferred and hence where (2) the

Further we assume: . : . . )
DM wishes to continue the alternative selection process until

o foralliel, w; >0, and}_, w; = 1; this set of candidate alternatives, i.e. the non-dominatsi

« foralla € Aandi € I, v;(a) € [0,1], and for eachi € I s reduced further, ideally to problem resolution.
there arer’, a” € A such thaw;(a’) = 1 andv;(a”’) = 0; It is straightforward to show that if¥’ C W and V' C

» alternatived’ is at least as preferred as alternata/eif v/ then the non-dominated set of alternatives generated by
and only ifwv(a’) > wv(a”). (V',W’) will be a (not necessarily strict) subset of the non-

The problem objectivés to find an alternative* € A such dominated set generated by, W). Thus it is usually useful to
that wv(a*) > wv(a) for all @ € A. The problem is said to ask the questions regarding DM preferences in order to obtain

be resolvednce the problem objective is achieved. a more precise understanding of the value scores and trade-
Use of MAUT for this simple model typically involves theoff weights. This discussion suggests the sequential process
following facilitation process: depicted in the flow chart shown in Figure 1, where we let
« Identify A and 1 S = (V,W) and denote the non-dominated set®p(S5).

« For eachi, identify a most preferred alternativé and
a least preferred alternative’, and then determine the
v;(a) for all a € A. Assess §

« ldentify the trade-off weights. l

o Usewuv(a), a € A, to (totally) order the alternatives.

There are three observations that are appropriate to make Determine ND(S) [¢ Set S=S°
at this point. First, the additive value function that is used 7 A
assumes preferential independence between the attributes (se
[1] for definitions and further discussion). Second, the struc-
ture of the above facilitation process is relatively straightfor- Is ND(S) Additional
ward. Third, difficulty may occur in eliciting precise numbers sufficient for \_ p, JS——
for the value scores and trade-off weights from the DM. process — >
As Keeney and Raiffa [1] point out, achieving the precision termination? Ay=hY

in values necessary for identification of a total weighted
value/utility maximizing decision requires asking questions
that DMs are not always comfortable answering. In particular,
DMs are often reluctant to gauge their preferences with precise Terminate
numbers. For example, a hypothetical dialogue from their book
[1, p. 98] involves the DM answering a question with the
words, “I don’t know. | would say about 60. But | feel awfullyFig. 1. Flowchart of the decision process
woozy about that.” The authors point out the discomfort they

have encountered when human DMs have been forced to

commit to a particular number to describe their preferences\yie remark that reducing value score and trade-off weight
(See Bard [4] for a case study and additional illustration f,hrecision can be time consuming and stressful, and can
difficulties encountered using MAUT.) generate conflict within a group. Thus, there may be value in

It has been our experience that DMs are often more COlfiniting the process of imprecision reduction and in identifying
fortable in making natural language statements during thgen no such reduction is useful. With this in mind, we remark
elicitation process tr_]at can be interpreted as linear inequalitigs the facilitation process associated with ISMAUT can be
on the trade-off weights and value scores. Examples of suchhsiderably more complex than that associated with MAUT,
statements are: and hence there may be need to support the ISMAUT facili-

« “The Cadillac is better looking than the Pinto.” tator. We illustrate these issues with the following example.

« “Safety is more important than cost.” EXAMPLE 1. Assume there are three alternativeb,=




{a1,a2,a3}, and two attributes] = {i1,i2}, under consid- attribute is expected to result in extended debate among
eration. Further, assume the elicitation process has thus fambers of the decision-making body.) If the answer to the
produced the matrix of value scores shown in Table |, whegeiestion “Isw; < 0.41?" is “no,” then we note that problem

the value scoren (az) has yet to be elicited. resolution cannot occur by simply asking questions of the
form “Is wy; < 3?". Under these circumstances, there is good
Alternatives | i1 ia reason to stop the facilitation process with the explanation
a Ul(laz) o that it is no longer possible to reduce the non-dominated set
as 0 1 to a single alternative. This tactic would at least minimize

the consternation likely to result from a process of asking
guestions and receiving responses that are guaranteed to result
in no progress toward problem resolution. The intent of the
research presented in this paper is to identify when such a
situation exists and preseatpriori conditions that insure it
The standard MAUT procedure would elioit(a2) and then cannot existll

elicit the trade-off weightw,. Becausew, = 1 —wy, this  gjyyations where problem resolution cannot occur, illus-
would be sufficient to determine a total preference ordering gkied in the example above when questions of the form “Is
the alternatives. ISMAUT can consider several additional ways as) < ?” cannot be asked, have served to motivate
in which the alternative selection process could proceed. Rqi, stud_y of resolvability. Consider the defense communi-
example, letS, = {(v,w) : wv(a) > wv(a')Va" € A}. ThUS, cations problem described in [5]. As part of the problem
(v,w) € S, if and only if the alternative: is a most preferred (o5ojution process, the primary author facilitated a group
alternative. A graphical depiction of,, for all a € A, is  gecision-making session described as follows. Each of the

TABLE |
VALUE SCORES FOR THREE ALTERNATIVES

presented in Figure 2. DMs had used his staff to determine the value scores for one
of the attributes. Several of these value scores were imprecise.
v,(a,) Staff members were not accessible during the decision-making
session. The DMs only felt that they could provide weight
1 information, and hence the session was focused only on weight
Ss, elicitation and, they expected, problem resolution. To avoid

controversy (large dollar amounts were involved and several
of the DMs appeared to have personal stakes in the outcome),
Se, S, the facilitator initially elicited weights imprecisely. This effort

' produced a non-dominated set containing several alternatives.
The group wanted to find a single most preferred alternative.
More precise weight elicitation produced no change in the
non-dominated set. Precise weights were eventually elicited
with considerable time, stress, and effort. This elicitation did
W not remove any of the non-dominated alternatives, the session
0 0.5 1 1 was considered a failure and problem resolution eventually
was achieved through unaided discussion. This experience
identified a real-world situation in which problem resolution
was not attainable and motivated the resolvability research
presented in this paper.

Fig. 2. Sa, a € A for Example 1

Figure 2 illustrates the fact that if we ask “ls, < 0.417?”
and if the answer is “yes,” thens is identified as the most B- Related Work
preferred alternative. Note that only partial information about As we have discussed, a total ordering of alternatives may
the value ofw; and no information about the value of(a2) not be necessary for problem resolution. A substantial body
was required in order to determine the most preferred alterrd- literature exists which seeks to address the problem of
tive. As another example, if the question “s(a2) < 0.7?” generating a partial ordering of alternatives under MAUT,
elicits a response of “yes,” then we can eliminate from which may be sufficient for decision-making. Fishburn [6],
further consideration. Asking the question “ls; < 0.5?” Hannan [7], Kirkwood and Sarin [8], Hazen [9], Weber [10],
would then determine the most preferred alternative. Barron and Barrett [11], Park and Kim [12], and Athanas-

Questions generate not only responses but also tendstpoulos and V. V. Podinovski [13] each outline techniques
raise the DM’s expectations that progress is being mafle generating a partial ordering given linear constraints. The
toward problem resolution. However, assume that for sorpeoposed methods differ in terms of the types of constraints
behavioral or organizational reason, questions of the form “t®nsidered (for example, using ordinal ranking of unknown
v1(az) < ¥?”" cannot be asked. (For example, consider thtguantities [7], [12], bounds [6], or pairwise comparisons of
case where additional information regarding cost attributetternatives [8]) and in the notions of dominance employed
values is not immediately available, or if discussion of afstrict [8], mixed [13], [6], [10], or weak [9]).



Sarin [14], White et al. [3] and Weber [15] recognized the* sufficiently well enough via set inclusion to select a most
need to gather additional information from a DM in thosereferred alternative. Thus; is the state spacef the QSP.
cases where the partial ordering of alternatives is insufficientEXAMPLE 2. For the simplest ISMAUT model described
for problem resolution, although the precise nature of the Section I, letW = {w > 0 : > ;erwi = 1} be the set
additional information sought is defined generally. Guidaneg trade-off weightsV; = [0, 1]/ be the set of value scores
in formulating questions for use in knowledge acquisition igssociated with attributec I, where|A| is the cardinality of
addressed by Rios-Insua and Mateos [16], who present s A, andV = x,c;V; be the set of all value scores. Then
algorithm that indicates “good” pairwise comparisons queS =7 x . R
tions to ask. However, this algorithm does not distinguish
between questions that are “good” and those that might be
better (i.e. optimal in some sense). Chajewska, Koller and PRIT Question Set
[17] select utility elicitation questions such that the expected
value of information is maximized at each stage. Rao [18] We assume( is the (not necessarily finite) set of all
deals directly with a smaller version of this problem, name§uestionsavailable to the facilitator and thag.(S) C Q is
determining an optimal sequence of pairwise comparisofte set of questions permitted to be asked at decision epoch
over a set of alternatives with two attributes. The presewfien the current state iS € S. For eachy € Q, let R(q) be
work extends results from Holloway and White [2], whicthe finite set of all responses questiory. The set(¢,r) € S
utilizes information theory in Support of optima| questior{epresents the set of all parameter values that are consistent
selection for alternative selection; Abbas [19] later applied ith responser € R(q) to questiong € Q. For example, if
similar technique in selecting standard gamble-type questichs ‘IS wi < 0.5?” andr = *“ Yes," then(q, ) = {w; < 0.5}.
for determination of utility values, given a total ordering off hus all answers are assumed truthfith respect tos™.
(uncertain) decision outcomes. EXAMPLE 3. For the simplest ISMAUT model described

We remark that since we assume that a question posed i &ection |, we consider three types of questions. First, let
group of DMs always elicits a unanimous response, Arrow@,. be the set of all pairwise comparisons. Thi,., is
Impossibility Theorem (see, for example, [20]) is not applicasomprised of the collection of questions of the form “ds
ble. Even so, our results will demonstrate that complete aftileast as preferred ag?” for all i = 1,...,|A| — 1, and
precise agreement among the DMs to questions asked may stili = 7 + 1,...,|A|, where|A| is the cardinality of the set
result in an unresolved problem. If our unanimity assumptiof. Thus [Q,.,| = |A[(|A] — 1)/2, and henceR),,, is finite.
is removed, then issues addressed by the Theorem may becb@les € Qpuw, R(q) = {Yes, Ng. If ¢ = “Is a; at least as
applicable and represent a topic for future research. preferred asa; ?” andr = “Yes,” then (¢,7) = {(v,w) :

This paper is organized as follows. We formulate thew(a;) > wv(a;)}.
guestion selection problem as a Markov decision process inSecond, letQ,, be the (uncountable) set of questions of the
Section Il. In Section Il we state preliminary results from théorm “Is w; < ¢?” where for allg € Q.,, R(q) = {Yes, Ng.
dynamic programming literature. In Section IV, we examiné ¢ = “Is w; < ¢ ?” andr = “Yes,” then (¢,7) = {(v,w) :
the issue of resolvability, and present conditions to aid the < ¢}.
facilitator in determining if asking additional questions can Third, let @, be the (uncountable) set of questions of the
possibly lead to problem resolution. We also present conditioftsm, “Is v;(a) < 3?” where for allq € Q.,,, R(q) = {Yes,
that guarantee the existence of a question-response policy We}. If ¢ = ‘Is v;(a) < 3?" andr = “Yes,” then (¢,7) =
will identify a most preferred alternative in a finite number of (v, w) : v;(a) < 5}. B
guestions. Additionally, we present conditions that guarantee
the existence of a question-response policy that will identify a
most preferred alternative as the number of questions askedprobability Measure
goes to infinity. These two sets of conditions are easily _ .
identified a priori and guarantee that at least questions carl-€t > be a given probability measure @ We say that
be asked that lead toward problem resolvability. Conclusiofsfinite collection of subsets of, {Sx,k =1,..., K}, is a
are presented in the final section. (finite) partition of S if and only if UyS, = S, P(Sk) # 0
forall k € {1,...,K}, andP(S, N Sk ) =0 if k # K'. We
assume that for aly € Q, {(¢,7),r € R(q)} is a partition of
S.

A. State Space Conforming to the notation in [2], defirg(r, S, ¢) = P[SN

Let N be the number of imprecise parameters associated”)]/P(S) for all S such thatP(S) > 0, ¢ € @, andr €
with the QSP, leS C RV be the set of all possible parametef?(q). It is easily shown thad, ., 7(r, S,q) = 1 for all
values, and letS be the collection of all subsets of. ¢ < @ andS € S such thatP(S) > 0.

(Technically, we restric§S to be the Borel sets of; however, We provide the following interpretation of these terms and
this technicality is of little consequence in applicationsise this interpretation throughout the remainder of the paper.
We consider each element ifi to be a representation ofLet P(S) be the probability that* is a member ofS. The
preference. Ifs* € S represents the actual, and initiallyterm &(r, S, q) is the probability that- € R(q) will be the
unknown, preference of the DM, then our intent is to knowesponse to questiope @, assumings* € S.

II. THE QSP RROBLEM FORMULATION



D. Dynamics of the Parameter Value Set implications for the QSP. A proof may be found in [21, page

Let S; € S be the parameter value set just before tiHe 84].
question is asked, lej; be the question asked at epoch  Theorem 1:Let

and letr, be the response. Thef,; = S; N (¢, 1) € S 2(S) = inf{e(S. )+ S(r S Vern[S A
with probability & (1, S¢, ;). Note thatS, ., C S, for all , &(5) inf{c(S, q) Z:"(r’ »@)e [0 (0,7}
indicating a learning feature of the model. t=1,....T, @)

era(S) = @(S).

E. Decision Rules and Policies )
Thené, (S) = inf, C™(S). Further, a policy constructed from

We assume that the selection (gﬂs based on knowled_ge decision rules that cause the above infimum to be attained for
of S; andt. LetT < oo be the maximum number of questions

- ) X all t is necessarily and sufficiently an optimal policy.
that can be posed. A decision rukea functiond : S — Q, y y P policy

nd on-r = li n f decision The uncountably infinite cardinality of the state space
and a (question-response) po & a sequence ot deciSIon; a5 that the QSP in general is intractable. A two-step
rules,m = {ds,...,dr}, whered, is the decision rule used to

oy . B procedure and several key assumptions that guarafitee
select thet™ question, and hencé,(S) = q: € Qu(S:). for all ¢, has a finite representation and hence the QSP is

potentially computable is presented in [2] for the case where
F. Cost Structure, Criterion, and Problem Objective value scores are precise. These results are easily extended to

We assume:(S, q) is the cost of asking question € Q, the more general case considered here.
given parameter value séte S. Assumec(.S) is the terminal
cost associated with parameter value Setc S after all IV. RESOLVABILITY
guestions have been asked.

A policy generates an expected c@$t(S), the criterion
where

Example 1 presents a situation where there exists no policy

that can lead to the identification of a most preferred alternative
T if questions are restricted to be of the form ‘ls < 5?” and

o™ () = EE{ZC(St,qt) +2(Sr41)} ) if S1 € {(v,w) Twy > 0.4}}. As indicated e_arl@gr, knowing
P when such a situation exists could be of significant value to

a facilitator. We now determine the probability that such a

situation may exist. We also give conditions guaranteeing the

existence of a policy that will lead to problem resolution with

and whereEg is the expectation operator, conditioned on th
use of policyr and thatS; = S. The problem objectivés

to determine a policyr*, called an optimal policysuch that .
C™ (S) < C7(S) for all 7 and S. probability one.

. . . . Let S’ C S be the collection of sets such théitc S’ if and
An optimal policy represents advice to the facilitator a8 v if there exists am € A such thats C S Then P(S, ¢
to which question to ask next. More specifically, let = y T !

. N . - &') is the probability that the problem is resolved before the
({;*i%’s) +»dp}. Then, if S, =, ¢ should be selected to betfh guestion is asked and hence represents the probability of
L interest.

thé);q((:)(()jl:arISZé%u(s;t)eI;ezgepjig Sthaé %(;)(j):cg\?g;cgff%[eogll{erlaathfﬁwe remark that once a QSP is resolved, it remains resolved.
is is due to the fact tha$,,; C S, for all ¢ and that if

selection process. We remark that the notion of an alternativejs~ , , ; , )

not explicit in the above problem formulation. We now preser‘fl)’ g S :g‘?)s C S, thenS" € &' Thus, P(S; € &) <

an example showing how the alternatives and the ObjeCtiVéOE)Jrslerve tHat if there is a policy such thats, € &) = 1
. =

of the alternative selection process provide a basis for the . T -
d i P _ P Por somet or perhaps in the limit as— oo, then the facilitator
escriptions of the cost structufe, ¢).

EXAMPLE 4. For the simplest ISMAUT model describedcigst;fc)2:33::drg‘s"’t‘:igt‘§ o ;g‘:;”?:;df Eﬁﬁmcrgﬁn];) ¥Vhe”
in Section |, assume we wish to find a most preferred altenq- . N L=

L - ) p appen. However, iP(S; € §') is close to or equal to zero,
native in 4. Let S, = {(v,w) : wv(a) > wo(d’) for all then there is good reason to consider stopping the QSP with
a’ € A}, and note thaf{S,,a € A} is a partition ofS. Let 9 ppINg

e($) = 01f S S, for somea € A ande(S) = 1 otherwise. th?/\/[;r%beleil’: tuhri]sresgtl:\:i%% by applying Theorem 1 to compute
If ¢(S,q) =0, then an optimal policy will select questions so, 9 Y applying P

; . . i I
as to maximize the probability of problem resolution. Assumt]%gt Erfs;ringogilgzgwénteh:t F;?J;:é:;gésvtwi r;%X'Crg'nzveelr;eV!e

c(S,q) =01if S C S, for somea, andc(S, ¢) = 1 otherwise. -
Then an optimal policy will also attempt to minimize theto 1 ast — oo and, better yet, conditions that guarantee

N C
number of questions required for problem resolutillin. P(Sy € 8') = 1 for finite ¢.

I1l. A DYNAMIC PROGRAMMING APPROACH TO A. Determination ofP(S7.41 € ')
QUESTION SELECTION We now present simple iterative procedures for determining:
We now apply dynamic programming to determiné, () P(S; €8'), given.
C™, and the concomitant optimality equation. The following (i) sup, P(S; € S’) and a policy that causes the
well-known result presents an optimality equation and its supremum to be attained, if such a policy exists.



S s,= f(s) P(S,0S)
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Fig. 3. The Partition{Sq, S, } for f(s1) = s3. Fig. 4. P(S3 € &’), as a function ob.

Such information can help the facilitator guide the questiomut not both, then the QSP would be unresolvable and hence
response process, in the case of a given policy, and can provieles, € S’) = 0 for all +.1
guidance to the facilitator regarding whether or not to stop the
process, in the case of the probabilities. Proofs of the foIIowint

corollaries to Theorem 1 follow directly from the proof of Conditions for Finite Resolvability

Theorem 1. We now present conditions guaranteeing that the QSP is
Corollary 1: Leter1(S) = 1(=0) if S ¢ S'(S € &) resolvable in a finite number of questions.
andr = (dy,...,dr). Then P(Sy41 € §'), givenr, equals Definition 1: The question selection problem is said to be
1 — c7(S1) where forq, = d,(Sy), t=1,...,T, finitely resolvablef 37" < co andr such thatP(Sr € S')=1.
Definition 2: For partitionsX = {Xg,6 € B} andY =
F(Se) =Y 6(r,Se,q)cf 1 [Se N (gr,me)] ) {v,,0 € 2}, defineX NY as the collection of all possible
T setsXz NY, for somes € B ando € .
andcf, (St+1) = ery1(Sry1)- Definition 3: For partitionsX = {X3,8 € B} andY =
Corollary 2: Leter1(S) = 1(=0)if S ¢ S'(S € S') {Y,,0€ X}, wesayX is at least as fine ag if and only if
andc(S,q) =0 for all S andg. Then, for everyo € ¥ there is ag € B such thatXz C Y.
. It is easy to show that i andY are patrtitions, then so is
SI}TPP(ST“ €8)=1-ci(5) ¥ X Y. Further, X NY is at least as fine as eithef or Y.

Definition 4: Let P? = Nyeq{(q,7),r € R(q)} be the
artition generated by the question ggt

Theorem 2:Assume3Q’ C @, |Q'| < T < oo, such that
Q' is at least as fine a partition §,,a € A}. Then the
problem is finitely resolvable ifl" questions.

wherec] is given in Theorem 1. Further, a policy constructed
from decision rules that cause the infimum in Equation 2
be attained for alt is necessarily and sufficiently an optimaIP
policy.
Example 5: We now illustrate the use of Corollary 2. Let N=2,
5 _ {g< sn<1,n=12},5 =9, andT = 3 a)?ld assume Proof: Constructr = {ds,...,dr} as follows. Fort < T,
= °n = 4 ’ ’ ’ ’ _ / < /
the solution partition S, S, } is given as described in Figure'€t d¢(5) = ¢: € Q" forall S C 5, where fort, 7 §|Q|,C|9 | ae #
3, wheres, = f(s1) = (s1)? represents the boundary betweefir If ¢ 7 7- Then for anyS, C .S, Siq/j41 = S1 M2y (41, 71)-
S, and S, Let di(S) = “Is s; < 0.5?” and do(S) =“Is By assumption, there exists anc A such thatS|o/ 41 € S,.
s9 < o?" forall 0 < o < 1. AssumeP(S) is the area of

S: i.e. assumeP is a uniform distribution onS. It is then  YWe now present a simple, practical sufficient condition for
straightforward to show that finite resolvability, a corollary to Theorem 2.

Corollary 3: If @, C @, then the problem is finitely

P(S3es) = (1-0)/2 o>1/4 resolvable for anyS; whenT > |A| — 1.
= 1/2 o=1/4 Proof: Consider the following policy. Lef;(S;) = (a;,a;),
= 0/2 o <1/4,

wherei < j, anda;,a; € ND(S,) are such thafla,, €
which is depicted graphically in Figure 4. ND(S;) such thatm < i or i < m < j. After receiving
Thus, an optimal policy is “Iss; < 0.5?” and “Is s < a response, determin¥D(S;;1). If [ND(S:41)] = 1, stop.
f(0.5)?" and the largest probability for problem resolutiorOtherwise, continue asking questions. Because the questions
after two questions is 0.5. We remark that if either questioasked are all comparisons within the non-dominated set, every
of the form “Is s; < a?” or “Is sy < [7?" were allowed, response indicates a new dominance relationship within that



set, and hence reduces the size of the set by 1 each time. Under S,
this policy, IND(Si+1)| = |[IND(S)| — 1. Since|[ND(Sy)| <
|A|, ND(S4)_1)| = 1 under this policym 1

Thus, if all pairwise comparisons are permissible, then the
problem is guaranteed to be finitely resolvable.

We remark that),.,, C Q is a sufficient condition of finite 0.7-=-==-=--
resolvability but is not necessary. Consider Example 1, and let Se,

Q@ be comprised of the following questions: 4s(as) < 0.7
andw; < 0.5? Isvy(az) < 0.7 andw; > 0.57 Isay at least
as preferred as,? Isas at least as preferred ag? We note
that ) does not contain all questions {p,,, yet does satisfy
the conditions in Theorem 2.

It might be claimed that permitting the use of pairwise com-
parisons eliminates the need for eliciting information about
the weights and attribute values. In reality, the use of pairwise
comparisons is always available; however, asking a pairwil§_e 5
comparison question may not promise problem resolution. (g >
has been our experience that pairwise comparisons of alterna-
tives in the non-dominated set can produce discord in a group
alternative selection session if members of the group champion — . .
alternatives. In such situations, we have found it useful to Corollary 4: Let S be the unit cube iRt and letP(S),
ask pairwise comparison questions only involving alternatives€ S P& the volume of5. Assume:
that have been eliminated from the non-dominated set. Suci)  there exists & < oo such thatSy C S,USar,a,a” €

w
o

0 0.41 05 1 S

T=3 Partition ofS;

alternatives are unlikely to retain committed champions, and Asa#d;
the concomitant pairwise comparisons can be quite informative(i) St = {s: 1 < s < u}, wherel = (i1, ..., ly) and
for reducingS and N D(S). u=(ui,...,un);
(i)  the boundary betweert, and S, is described by
sy = f(s1,-..,8n—1) Wheres = (s1,...,sy) and
C. Resolvabi”ty in the lelt Wheref iS monotone; and

We now present assumptions that guarantee the QSP i§V) (s C Q.
resolvable if the facilitator is not limited to a finite number ofThen the QSP is resolvable in the limit.
questions. In reality, the number of questions that a facilitator Proof: Let s, = (u, +1,)/2forn=1,...,N — 1,5y =
can ask is small. However, resolvability in the limit impliesf(s1,...,5y—1) ands = (51,...,5y). By assumptions €
at least the potential for problem resolution and hence thgit. Without loss of generality, assume< s’ implies f(s) <
asking good questions can reduce the non-dominated setf¢§') and that{s € S, : sy < f(s1,...,8ny-1)} C S, and
alternatives. {s€8;:8>f(s1,...,8n-1)} C Sor. Let M = N, and letr
Definition 5: The problem is resolvable in the limift for be such that it asks the followiny questions: “Iss,, <5,,?",
any e > 0, there is a policyr and a timeT < oo such that n = 1,..., N. If the response to these questions is “yes,
P(S;eS)Y>1—cforallt>T. n=1,...,N—1,and “no,’n = N, thenS;,ny ={s: 1, <
Equivalently, the question selection problem is resolvable i, < (un +1,)/2, n=1,...,N — 1, andsy < sy < un}
the limit if there is a policyr such thatthm P(S; € 8’)=1. and has voluméd’; = (uny — 3n) H,J,?:ll(un —1,)/2. Since
The following theorem presents conditions that guarantSer~ S Sar, the problem is resolved.
resolvability in the limit. Similarly, if the question responses are “noj =
Theorem 3:Assume there is a policy, a scalar, where 1:---- N — 1, and *yesn = N, then S,y has volume
0 <4 <1, an integerM < oo and an integefl” < oo, such V2 = (5n—In)I1,,—; (un—1x)/2 and the problem is resolved
that for allt > T, P(Syar € S'|S; ¢ S') > 4. Then the QSP SINCESin C Sa. N
is resolvable in the limit. We note that the volume of; is V' = T[,._,(un —In).
Proof: Assume without loss of generality that ¢ &'. ThUSP(Siin € 8'[S; ¢ &) > (Vi+V5)/V = 1/2¥71, and
Note thatP(S;sar € S') = P(S, € ')+ P(Sisnr € SIS, ¢ hence we can set = 1/2¥~1. The proof then follows from

S)[1 — P(S; € 8)]. It then follows that fort > T, Theorem 38 _ o _
We remark that assumptions (i)-(iii) in Corollary 4 are quite

1—P(Siym€8)<(1-08)1—-P(S; €8] (5) robust. For illustration, consider Figure 5 (associated with
] . Example 1 and utilizing a more general notation). If we ask the
where0 < (1 —0) < L. Thus, lim P(S; € 5")=1. ® questions “Iss; < 0.41?", “Is s; < 0.5?", and “Is s5 < 0.7",

The proof of the following corollary determinesand M then we are guaranteed that assumptions (i)-(iii) of Corollary
and presents an approach for constructing a potigcyas 4 are valid for allS, ¢S, t>3.
required in Theorem 3. LeQs be the set of all questions Furthermore, we remark that there may be no upper bound
of the form “Is s, < a?” foralln=1,...,N and allc. on the number of questions needed for resolvability, given




the strategy constructed in the proof of Corollary 4, thug7] E. L. Hannan, “Obtaining nondominated priority vectors for multiple

justifying the need for resolvability in the limit as a concept. objective decisionmaking problems with different combinations of car-
= | followi h f of C I 4 dinal and ordinal information,IEEE Transactions on Systems, Man,
or example, tollowing the proof of Corollary 4, assume 5,4 cyberneticsvol. 11, no. 8, pp. 538543, 1981.

st =up,—€,n=1,...,N for givene > 0 and thats* € S,.  [8] C. W. Kirkwood and R. K. Sarin, “Ranking with partial information:
Let the integeli be such that < 1/(1_ 1) ande > l/l. Then, A method and an applicationOperations Researchvol. 33, no. 1,

; ! pp. 38-48, 1983.
the QSP will Only be resolved aftérsets of questions of the [9] G. B. Hazen, “Partial information, dominance, and potential optimality

form, “lIs s, < 35,?,n =1,...,N. Sincee > 0 may be in multiattribute utility theory,” Operations Researghvol. 34, no. 2,
arbitrarily small,/ can become arbitrarily large. pp. 296-310, 1986. _ _
[10] M. Weber, “Decision making with incomplete informatiorEuropean
Journal of Operational Researchol. 28, pp. 44-57, 1987.
[11] F. Barron and B. E. Barrett, “Decision quality using ranked attribute
V. CONCLUSIONS weights,” Management Sciencgol. 42, no. 11, pp. 1515-1523, 1996.
. . N I‘P%] K. S. Park and S. H. Kim, “Tools for interactive multiattribute decision-
We presented an example in Section | that indicated tha making with incompletely identified informationEuropean Journal of
there might not exist a question-response policy for the Operational Researchvol. 98, pp. 111-123, 1997.

QSP that can lead to the identification of a most preferré’d"] A. D. Athanassopoulos and V. V. Podinovski, “Dominance and potential

| . K . | of optimality in multiple criteria decision analysis with imprecise informa-
alternative. Based on a Markov decision process model of o> journal of the Operational Research Socjetl. 48, pp. 142-150,

the QSP, we then presented an approach for determining the 1997.

probability that the QSP will be unresolved. Additionally wél4] R. K. Sarin, “Screening of multiattribute alternative@MEGA vol. 5,
o . * T no. 4, pp. 481-489, 1977.
presented conditions that guarantee the existence of a queSt[i)é}' M. Weber, “A method of multiattribute decision making with incomplete

response policy that will identify a most preferred alternative  information,” Management Scienceol. 31, no. 11, pp. 1365-1371,
in a finite number of questions and conditions that guarant@& 1985.

. . . o . S. Rios-Insua and A. Mateos, “The utility efficient set and its interac-
the existence of a question-response policy that will identi tive reduction,” European Journal of Operational Reseayofol. 105,

a most preferred alternative as the number of questions asked pp. 581-593, 1998.

goes to infinity. Both sets of conditions are easily identified?] U. Chajewska, D. Koller, and R. Parr, “Making rational decisions using
adaptive utility elicitation,” inProceedings of the Seventeenth National

a pl’i(?l’i and pertain to the type of question the facilitator is  conference on Artificial Intelligence(Austin, Texas), pp. 363-369,
permitted to ask. American Association for Artificial Intelligence, August 2000.

In the context of the simple ISMAUT model presented in th@g] H. R. Rao, “A choice set sensitive analysis of preference information
acquisition about discrete resourcelZEE Transactions on Systems,

Introd_uction, if a facilitator can ask any pairwise (_:omparison Man, and Cyberneticsvol. 23, no. 4, pp. 1062—1071, 1993.
guestion or ask about the value of any trade-off weight or val{&®] A. E. Abbas, “Entropy methods for adaptive utility elicitationZEE

score, then problem resolution can be achieved. However, if g;a”fg‘gfi’gg ggoiyﬁemsr Man, and Cybemeticsvl. 34, no. 2,

some or all of the pairwise comparison questions are Nng| J. Geanakaplos, “Three brief proofs of Arrow’s Impossibility Theorem.”
permissible and if assessment of some or all of the trade- Tech.Rep. 1123R3, Cowles Foundation for Research in Economics, Yale

off W_eights and value SC.OreS are not allowed, then it may ﬁq] lI\J/Ir.]“I;eurt?almaznoje/lzétlrkov Decision ProcessedViley, 1994.
possible that the QSP will be unresolved.
Thus, in complement with results presented by Holloway
and White [2], we have presented results that represent a
partial basis for a facilitator support system. Such a system
would aid the facilitator in question selection and inform (alert
and warn) the facilitator of the probability of resolvability. This
latter function presumably would allow the facilitator to better
manage the time, effort, and expectations of the DM and better
determine when to stop the alternative selection process.
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