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Resolvability for Imprecise Multi-attribute
Alternative Selection
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Abstract— We consider an alternative selection process that
involves multiple and conflicting objectives. A facilitator asks
a decision-maker (DM), or a decision-making body, questions
and obtains responses in order to help the DM select a most
preferred alternative. The DM responses to these questions do
not necessarily result in precisely determined parameter values
(e.g., weights and value scores corresponding to a given model of
preference). The goal of this research is to guide the facilitator
in selecting what question to ask next, and determining when to
terminate the question-response process.

We model the facilitator’s question selection problem as a
Markov decision process, and present conditions that guarantee
the existence of a question-response policy to identify a most
preferred alternative in a finite number of questions. We also
present conditions that guarantee the existence of a question-
response policy that will identify a most preferred alternative as
the number of questions asked goes to infinity. Both of these sets
of conditions are easily identified a priori and may be used to aid
a facilitator in determining which questions to ask, and when to
terminate the alternative selection process because identification
of a most preferred alternative is not possible.

Index Terms— Decision-aiding, ISMAUT, question selection.

I. I NTRODUCTION

The research reported in this paper was motivated by an
unanticipated situation that first emerged during a real-world
group alternative selection session. Unknown to either the
facilitator or the members of the group at the time, it was
impossible for a most preferred alternative to be identified
for the alternative selection problem under consideration. In
retrospect, this inability to identify a most preferred alternative
was due to a restriction during the session to assess only trade-
off weights and to the imprecision of some of the value scores,
all of which were previously assessed by individuals not in the
group. The group was intent on, and expected to, determine a
most preferred alternative. When a most preferred alternative
was not found after a considerable investment of time and
effort in determining precise trade-off weights, the session was
perceived a failure.

This experience raised several questions: Assuming parame-
ter imprecision is permissible, what are the conditions under
which there exists a question-response policy (i.e., a procedure
that determines what question to ask next) that will lead to
a most preferred alternative? If these conditions do not hold,
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what is the probability that there is no question-response policy
that will lead to a most preferred alternative? In either case,
and assuming we continue to seek a most preferred alternative,
what policy should we use? The answers to these questions
could help a facilitator better manage a group’s time, effort,
and expectations and better determine when to stop a session.
In addressing these questions, the research in this paper pro-
vides a priori conditions that guarantee that a most preferred
alternative can be found, and for situations where this is not
the case, provides techniques for determining the probability
that a most preferred alternative cannot be identified. Dynamic
programming is used for policy determination.

In the subsection that follows, we describe the alternative
selection process in more detail, and provide both a simple
example that illustrates the aforementioned situation, and a
more specific description of the group alternative selection
session in which the situation emerged. We then present a
literature review and outline the remainder of the paper.

A. A model of decision-making and the Question Selection
Problem

For the alternative selection process under consideration
there is a decision-maker(DM), or a decision-making body,
and a facilitator. The facilitator’s goal is to help the DM select
a most preferred alternative from a finite set of alternatives
when multiple and conflicting objectives may be under con-
sideration. In order to achieve this goal, the facilitator gathers
information from the DM by asking the DM questionsand
obtaining responses. For group decision-making, we assume
throughout that all members of the group agree with the
response. The facilitator must decide what question to ask
next, which we refer to as the Question Selection Problem
(QSP).

Furthermore, the facilitator may need to decide when to
terminate the QSP. This decision is trivial once a most pre-
ferred alternative has been identified, or equivalently, once
the QSP has been resolved. However, there are situations,
illustrated later, where the question-response process is not
able to further the search for a most preferred alternative. Once
such a situation is identified, then it behooves the facilitator
to terminate the process in order to save the DM unnecessary
time and effort. Such situations are said to leave the QSP
unresolved.

The underlying model of alternative selection that serves as
a basis for our research is an extension of Multi-Attribute Util-
ity Theory (MAUT; Keeney & Raiffa [1]), called Imprecisely
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Specified MAUT (ISMAUT)[2], [3]. In this paper, we consider
the special case where each alternative results in a single
consequence, and as a result, we refer to a utility function
as a valuefunction. The simplest MAUT model under this
assumption involves:

• a finite number of alternatives,A;
• a finite number of attributes,I;
• a trade-off weight for each attribute,wi for attributei ∈ I;
• a value score for each attribute and alternative,vi(a) for

alternativea ∈ A and attributei ∈ I;
• the total value of alternativea ∈ A is given by the

weighted sumwv(a) =
∑

i wivi(a).

Further we assume:

• for all i ∈ I, wi ≥ 0, and
∑

i wi = 1;
• for all a ∈ A andi ∈ I, vi(a) ∈ [0, 1], and for eachi ∈ I

there area′, a′′ ∈ A such thatvi(a′) = 1 andvi(a′′) = 0;
• alternativea′ is at least as preferred as alternativea′′ if

and only ifwv(a′) ≥ wv(a′′).

The problem objectiveis to find an alternativea∗ ∈ A such
that wv(a∗) ≥ wv(a) for all a ∈ A. The problem is said to
be resolvedonce the problem objective is achieved.

Use of MAUT for this simple model typically involves the
following facilitation process:

• Identify A andI.
• For eachi, identify a most preferred alternativea′ and

a least preferred alternativea′′, and then determine the
vi(a) for all a ∈ A.

• Identify the trade-off weights.
• Usewv(a), a ∈ A, to (totally) order the alternatives.

There are three observations that are appropriate to make
at this point. First, the additive value function that is used
assumes preferential independence between the attributes (see
[1] for definitions and further discussion). Second, the struc-
ture of the above facilitation process is relatively straightfor-
ward. Third, difficulty may occur in eliciting precise numbers
for the value scores and trade-off weights from the DM.
As Keeney and Raiffa [1] point out, achieving the precision
in values necessary for identification of a total weighted
value/utility maximizing decision requires asking questions
that DMs are not always comfortable answering. In particular,
DMs are often reluctant to gauge their preferences with precise
numbers. For example, a hypothetical dialogue from their book
[1, p. 98] involves the DM answering a question with the
words, “I don’t know. I would say about 60. But I feel awfully
woozy about that.” The authors point out the discomfort they
have encountered when human DMs have been forced to
commit to a particular number to describe their preferences.
(See Bard [4] for a case study and additional illustration of
difficulties encountered using MAUT.)

It has been our experience that DMs are often more com-
fortable in making natural language statements during the
elicitation process that can be interpreted as linear inequalities
on the trade-off weights and value scores. Examples of such
statements are:

• “The Cadillac is better looking than the Pinto.”
• “Safety is more important than cost.”

This third observation motivated the development of IS-
MAUT, which in its simplest form allows for trade-off weights
and value scores to be described by finite sets of linear
inequalities, or more generally by set inclusion as follows.
Assume that all we know aboutw = {wi, i ∈ I} and
vi = {vi(a), a ∈ A}, i ∈ I, is that w is an element of
some setW , v = {vi} is an element of some setV = {Vi},
andW and Vi are given for alli. Then we say alternative
a′ is at least as preferred as alternativea′′ if and only if
wv(a′) ≥ wv(a′′) for all w ∈ W and v ∈ V . This (very
conservative and partial) ordering on the alternatives leads to
situations where (1) there may be several alternatives that are
candidates for being most preferred and hence where (2) the
DM wishes to continue the alternative selection process until
this set of candidate alternatives, i.e. the non-dominatedset,
is reduced further, ideally to problem resolution.

It is straightforward to show that ifW ′ ⊆ W and V ′ ⊆
V , then the non-dominated set of alternatives generated by
(V ′,W ′) will be a (not necessarily strict) subset of the non-
dominated set generated by(V,W ). Thus it is usually useful to
ask the questions regarding DM preferences in order to obtain
a more precise understanding of the value scores and trade-
off weights. This discussion suggests the sequential process
depicted in the flow chart shown in Figure 1, where we let
S = (V,W ) and denote the non-dominated set byND(S).

Assess S

Determine ND(S) Set S=S’

Yes

Is ND(S)
sufficient for 

process 
termination?

Terminate

Additional 
Assessment

S’⊆ S

No

Fig. 1. Flowchart of the decision process

We remark that reducing value score and trade-off weight
imprecision can be time consuming and stressful, and can
generate conflict within a group. Thus, there may be value in
limiting the process of imprecision reduction and in identifying
when no such reduction is useful. With this in mind, we remark
that the facilitation process associated with ISMAUT can be
considerably more complex than that associated with MAUT,
and hence there may be need to support the ISMAUT facili-
tator. We illustrate these issues with the following example.

EXAMPLE 1. Assume there are three alternatives,A =
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{a1, a2, a3}, and two attributes,I = {i1, i2}, under consid-
eration. Further, assume the elicitation process has thus far
produced the matrix of value scores shown in Table I, where
the value scorev1(a2) has yet to be elicited.

Alternatives i1 i2
a1 1 0
a2 v1(a2) 0.3
a3 0 1

TABLE I

VALUE SCORES FOR THREE ALTERNATIVES

The standard MAUT procedure would elicitv1(a2) and then
elicit the trade-off weightw1. Becausew2 = 1 − w1, this
would be sufficient to determine a total preference ordering of
the alternatives. ISMAUT can consider several additional ways
in which the alternative selection process could proceed. For
example, letSa = {(v, w) : wv(a) ≥ wv(a′)∀a′ ∈ A}. Thus,
(v, w) ∈ Sa if and only if the alternativea is a most preferred
alternative. A graphical depiction ofSa, for all a ∈ A, is
presented in Figure 2.

w10.5 10

Sa3

Sa2

1

v1(a2)

Sa1

Fig. 2. Sa, a ∈ A for Example 1

Figure 2 illustrates the fact that if we ask “Isw1 ≤ 0.41?”
and if the answer is “yes,” thena3 is identified as the most
preferred alternative. Note that only partial information about
the value ofw1 and no information about the value ofv1(a2)
was required in order to determine the most preferred alterna-
tive. As another example, if the question “Isv1(a2) ≤ 0.7?”
elicits a response of “yes,” then we can eliminatea2 from
further consideration. Asking the question “Isw1 ≤ 0.5?”
would then determine the most preferred alternative.

Questions generate not only responses but also tend to
raise the DM’s expectations that progress is being made
toward problem resolution. However, assume that for some
behavioral or organizational reason, questions of the form “Is
v1(a2) ≤ ψ?” cannot be asked. (For example, consider the
case where additional information regarding cost attributes
values is not immediately available, or if discussion of an

attribute is expected to result in extended debate among
members of the decision-making body.) If the answer to the
question “Isw1 ≤ 0.41?” is “no,” then we note that problem
resolution cannot occur by simply asking questions of the
form “Is w1 ≤ β?”. Under these circumstances, there is good
reason to stop the facilitation process with the explanation
that it is no longer possible to reduce the non-dominated set
to a single alternative. This tactic would at least minimize
the consternation likely to result from a process of asking
questions and receiving responses that are guaranteed to result
in no progress toward problem resolution. The intent of the
research presented in this paper is to identify when such a
situation exists and presenta priori conditions that insure it
cannot exist.�

Situations where problem resolution cannot occur, illus-
trated in the example above when questions of the form “Is
v1(a2) ≤ ψ?” cannot be asked, have served to motivate
our study of resolvability. Consider the defense communi-
cations problem described in [5]. As part of the problem
resolution process, the primary author facilitated a group
decision-making session described as follows. Each of the
DMs had used his staff to determine the value scores for one
of the attributes. Several of these value scores were imprecise.
Staff members were not accessible during the decision-making
session. The DMs only felt that they could provide weight
information, and hence the session was focused only on weight
elicitation and, they expected, problem resolution. To avoid
controversy (large dollar amounts were involved and several
of the DMs appeared to have personal stakes in the outcome),
the facilitator initially elicited weights imprecisely. This effort
produced a non-dominated set containing several alternatives.
The group wanted to find a single most preferred alternative.
More precise weight elicitation produced no change in the
non-dominated set. Precise weights were eventually elicited
with considerable time, stress, and effort. This elicitation did
not remove any of the non-dominated alternatives, the session
was considered a failure and problem resolution eventually
was achieved through unaided discussion. This experience
identified a real-world situation in which problem resolution
was not attainable and motivated the resolvability research
presented in this paper.

B. Related Work

As we have discussed, a total ordering of alternatives may
not be necessary for problem resolution. A substantial body
of literature exists which seeks to address the problem of
generating a partial ordering of alternatives under MAUT,
which may be sufficient for decision-making. Fishburn [6],
Hannan [7], Kirkwood and Sarin [8], Hazen [9], Weber [10],
Barron and Barrett [11], Park and Kim [12], and Athanas-
sopoulos and V. V. Podinovski [13] each outline techniques
for generating a partial ordering given linear constraints. The
proposed methods differ in terms of the types of constraints
considered (for example, using ordinal ranking of unknown
quantities [7], [12], bounds [6], or pairwise comparisons of
alternatives [8]) and in the notions of dominance employed
(strict [8], mixed [13], [6], [10], or weak [9]).
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Sarin [14], White et al. [3] and Weber [15] recognized the
need to gather additional information from a DM in those
cases where the partial ordering of alternatives is insufficient
for problem resolution, although the precise nature of the
additional information sought is defined generally. Guidance
in formulating questions for use in knowledge acquisition is
addressed by Rios-Insua and Mateos [16], who present an
algorithm that indicates “good” pairwise comparisons ques-
tions to ask. However, this algorithm does not distinguish
between questions that are “good” and those that might be
better (i.e. optimal in some sense). Chajewska, Koller and Parr
[17] select utility elicitation questions such that the expected
value of information is maximized at each stage. Rao [18]
deals directly with a smaller version of this problem, namely
determining an optimal sequence of pairwise comparisons
over a set of alternatives with two attributes. The present
work extends results from Holloway and White [2], which
utilizes information theory in support of optimal question
selection for alternative selection; Abbas [19] later applied a
similar technique in selecting standard gamble-type questions
for determination of utility values, given a total ordering of
(uncertain) decision outcomes.

We remark that since we assume that a question posed to a
group of DMs always elicits a unanimous response, Arrow’s
Impossibility Theorem (see, for example, [20]) is not applica-
ble. Even so, our results will demonstrate that complete and
precise agreement among the DMs to questions asked may still
result in an unresolved problem. If our unanimity assumption
is removed, then issues addressed by the Theorem may become
applicable and represent a topic for future research.

This paper is organized as follows. We formulate the
question selection problem as a Markov decision process in
Section II. In Section III we state preliminary results from the
dynamic programming literature. In Section IV, we examine
the issue of resolvability, and present conditions to aid the
facilitator in determining if asking additional questions can
possibly lead to problem resolution. We also present conditions
that guarantee the existence of a question-response policy that
will identify a most preferred alternative in a finite number of
questions. Additionally, we present conditions that guarantee
the existence of a question-response policy that will identify a
most preferred alternative as the number of questions asked
goes to infinity. These two sets of conditions are easily
identified a priori and guarantee that at least questions can
be asked that lead toward problem resolvability. Conclusions
are presented in the final section.

II. T HE QSP PROBLEM FORMULATION

A. State Space

Let N be the number of imprecise parameters associated
with the QSP, letS ⊆ <N be the set of all possible parameter
values, and letS be the collection of all subsets ofS.
(Technically, we restrictS to be the Borel sets ofS; however,
this technicality is of little consequence in applications.)
We consider each element inS to be a representation of
preference. Ifs∗ ∈ S represents the actual, and initially
unknown, preference of the DM, then our intent is to know

s∗ sufficiently well enough via set inclusion to select a most
preferred alternative. Thus,S is the state spaceof the QSP.

EXAMPLE 2. For the simplest ISMAUT model described
in Section I, letW = {w ≥ 0 :

∑
i∈I wi = 1} be the set

of trade-off weights, Vi = [0, 1]|A| be the set of value scores
associated with attributei ∈ I, where|A| is the cardinality of
setA, andV = ×i∈IVi be the set of all value scores. Then
S = V ×W . �

B. Question Set

We assumeQ is the (not necessarily finite) set of all
questionsavailable to the facilitator and thatQt(S) ⊆ Q is
the set of questions permitted to be asked at decision epocht
when the current state isS ∈ S. For eachq ∈ Q, let R(q) be
the finite set of all responsesto questionq. The set(q, r) ∈ S
represents the set of all parameter values that are consistent
with responser ∈ R(q) to questionq ∈ Q. For example, if
q = “Is wi ≤ 0.5?” andr = “ Yes,” then(q, r) = {wi ≤ 0.5}.
Thus all answers are assumed truthfulwith respect tos∗.

EXAMPLE 3. For the simplest ISMAUT model described
in Section I, we consider three types of questions. First, let
Qpw be the set of all pairwise comparisons. Thus,Qpw is
comprised of the collection of questions of the form “ Isai

at least as preferred asaj?” for all i = 1, . . . , |A| − 1, and
j, j = i + 1, . . . , |A|, where |A| is the cardinality of the set
A. Thus |Qpw| = |A|(|A| − 1)/2, and henceQpw is finite.
For q ∈ Qpw, R(q) = {Yes, No}. If q = “Is ai at least as
preferred asaj ?” and r = “Yes,” then (q, r) = {(v, w) :
wv(ai) ≥ wv(aj)}.

Second, letQw be the (uncountable) set of questions of the
form “Is wi ≤ ψ?” where for allq ∈ Qw, R(q) = {Yes, No}.
If q = “Is wi ≤ ψ ?” and r = “Yes,” then (q, r) = {(v, w) :
wi ≤ ψ}.

Third, let Qv be the (uncountable) set of questions of the
form, “Is vi(a) ≤ β?” where for allq ∈ Qv, R(q) = {Yes,
No}. If q = ‘Is vi(a) ≤ β?” and r = “Yes,” then (q, r) =
{(v, w) : vi(a) ≤ β}. �

C. Probability Measure

Let P be a given probability measure onS. We say that
a finite collection of subsets ofS, {Sk, k = 1, . . . ,K}, is a
(finite) partition ofS if and only if ∪kSk = S, P (Sk) 6= 0
for all k ∈ {1, . . . ,K}, andP (Sk ∩ Sk′) = 0 if k 6= k′. We
assume that for allq ∈ Q, {(q, r), r ∈ R(q)} is a partition of
S.

Conforming to the notation in [2], definẽσ(r, S, q) = P [S∩
(q, r)]/P (S) for all S such thatP (S) > 0, q ∈ Q, and r ∈
R(q). It is easily shown that

∑
r∈R(q) σ̃(r, S, q) = 1 for all

q ∈ Q andS ∈ S such thatP (S) > 0.
We provide the following interpretation of these terms and

use this interpretation throughout the remainder of the paper.
Let P (S) be the probability thats∗ is a member ofS. The
term σ̃(r, S, q) is the probability thatr ∈ R(q) will be the
response to questionq ∈ Q, assumings∗ ∈ S.
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D. Dynamics of the Parameter Value Set

Let St ∈ S be the parameter value set just before thetth

question is asked, letqt be the question asked at epocht,
and let rt be the response. ThenSt+1 = St ∩ (qt, rt) ∈ S
with probability σ̃(rt, St, qt). Note thatSt+1 ⊆ St, for all t,
indicating a learning feature of the model.

E. Decision Rules and Policies

We assume that the selection ofqt is based on knowledge
of St andt. Let T <∞ be the maximum number of questions
that can be posed. A decision ruleis a functiond : S → Q,
and a (question-response) policyis a sequence of decision
rules,π = {d1, . . . , dT }, wheredt is the decision rule used to
select thetth question, and hencedt(St) = qt ∈ Qt(St).

F. Cost Structure, Criterion, and Problem Objective

We assumec(S, q) is the cost of asking questionq ∈ Q,
given parameter value setS ∈ S. Assumec(S) is the terminal
cost associated with parameter value setS ∈ S after all
questions have been asked.

A policy generates an expected costCπ(S), the criterion,
where

Cπ(S) = Eπ
S{

T∑
t=1

c(St, qt) + c(ST+1)} (1)

and whereEπ
S is the expectation operator, conditioned on the

use of policyπ and thatS1 = S. The problem objectiveis
to determine a policyπ∗, called an optimal policy, such that
Cπ∗

(S) ≤ Cπ(S) for all π andS.
An optimal policy represents advice to the facilitator as

to which question to ask next. More specifically, letπ∗ =
{d∗1, . . . , d∗T }. Then, if St = S, qt should be selected to be
d∗t (S).

Of course,d∗t (St) represents a good choice forqt only if
the model accurately depicts the objectives of the alternative
selection process. We remark that the notion of an alternative is
not explicit in the above problem formulation. We now present
an example showing how the alternatives and the objective
of the alternative selection process provide a basis for the
descriptions of the cost structure(c, c).

EXAMPLE 4. For the simplest ISMAUT model described
in Section I, assume we wish to find a most preferred alter-
native in A. Let Sa = {(v, w) : wv(a) ≥ wv(a′) for all
a′ ∈ A}, and note that{Sa, a ∈ A} is a partition ofS. Let
c(S) = 0 if S ⊆ Sa for somea ∈ A andc(S) = 1 otherwise.
If c(S, q) = 0, then an optimal policy will select questions so
as to maximize the probability of problem resolution. Assume
c(S, q) = 0 if S ⊆ Sa for somea, andc(S, q) = 1 otherwise.
Then an optimal policy will also attempt to minimize the
number of questions required for problem resolution.�

III. A D YNAMIC PROGRAMMING APPROACH TO

QUESTION SELECTION

We now apply dynamic programming to determineπ∗,
Cπ∗

, and the concomitant optimality equation. The following
well-known result presents an optimality equation and its

implications for the QSP. A proof may be found in [21, page
84].

Theorem 1:Let

c̃t(S) = inf
q
{c(S, q) +

∑
r

σ̃(r, S, q)c̃t+1[S ∩ (q, r)]},

t = 1, . . . , T, (2)

c̃T+1(S) = c(S).

Then c̃1(S) = infπ C
π(S). Further, a policy constructed from

decision rules that cause the above infimum to be attained for
all t is necessarily and sufficiently an optimal policy.

The uncountably infinite cardinality of the state space
insures that the QSP in general is intractable. A two-step
procedure and several key assumptions that guaranteec̃t,
for all t, has a finite representation and hence the QSP is
potentially computable is presented in [2] for the case where
value scores are precise. These results are easily extended to
the more general case considered here.

IV. RESOLVABILITY

Example 1 presents a situation where there exists no policy
that can lead to the identification of a most preferred alternative
if questions are restricted to be of the form “Isw1 ≤ β?” and
if S1 ⊆ {(v, w) : w1 ≥ 0.41}. As indicated earlier, knowing
when such a situation exists could be of significant value to
a facilitator. We now determine the probability that such a
situation may exist. We also give conditions guaranteeing the
existence of a policy that will lead to problem resolution with
probability one.

Let S ′ ⊆ S be the collection of sets such thatS ∈ S ′ if and
only if there exists ana ∈ A such thatS ⊆ Sa. ThenP (St ∈
S ′) is the probability that the problem is resolved before the
tth question is asked and hence represents the probability of
interest.

We remark that once a QSP is resolved, it remains resolved.
This is due to the fact thatSt+1 ⊆ St for all t and that if
S ∈ S ′ and S′ ⊆ S, then S′ ∈ S ′. Thus,P (St ∈ S ′) ≤
P (St+1 ∈ S ′).

Observe that if there is a policy such thatP (St ∈ S ′) = 1
for somet or perhaps in the limit ast→∞, then the facilitator
can be assured that the situation illustrated in Example 1 when
questions are restricted to the form “Isw1 ≤ β?” cannot
happen. However, ifP (St ∈ S ′) is close to or equal to zero,
then there is good reason to consider stopping the QSP with
the problem unresolved.

We begin this section by applying Theorem 1 to compute
P (St ∈ S ′) and determine a policy that will maximize it. We
then present conditions that guaranteeP (St ∈ S ′) converges
to 1 as t → ∞ and, better yet, conditions that guarantee
P (St ∈ S ′) = 1 for finite t.

A. Determination ofP (ST+1 ∈ S ′)
We now present simple iterative procedures for determining:

(i) P (St ∈ S ′), givenπ.
(ii) supπ P (St ∈ S ′) and a policy that causes the

supremum to be attained, if such a policy exists.
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s1

s2

Sa Sa’

s2 = f(s1)

10.50

σ

Fig. 3. The Partition{Sa, Sa′} for f(s1) = s2
1.

Such information can help the facilitator guide the question-
response process, in the case of a given policy, and can provide
guidance to the facilitator regarding whether or not to stop the
process, in the case of the probabilities. Proofs of the following
corollaries to Theorem 1 follow directly from the proof of
Theorem 1.

Corollary 1: Let cT+1(S) = 1(= 0) if S /∈ S ′( S ∈ S ′)
andπ = (d1, . . . , dT ). ThenP (ST+1 ∈ S ′), given π, equals
1− cπ1 (S1) where forqt = dt(St), t = 1, . . . , T ,

cπt (St) =
∑

r

σ̃(r, St, qt)cπt+1[St ∩ (qt, rt)] (3)

andcπT+1(ST+1) = cT+1(ST+1).
Corollary 2: Let cT+1(S) = 1(= 0) if S /∈ S ′( S ∈ S ′)

andc(S, q) = 0 for all S andq. Then,

sup
π
P (ST+1 ∈ S ′) = 1− c∗1(S1) (4)

wherec∗1 is given in Theorem 1. Further, a policy constructed
from decision rules that cause the infimum in Equation 2 to
be attained for allt is necessarily and sufficiently an optimal
policy.
Example 5:We now illustrate the use of Corollary 2. Let N=2,
S = {0 ≤ sn ≤ 1, n = 1, 2}, S1 = S, andT = 3, and assume
the solution partition{Sa, Sa′} is given as described in Figure
3, wheres2 = f(s1) = (s1)2 represents the boundary between
Sa and Sa′ . Let d1(S) = “Is s1 ≤ 0.5?” and d2(S) =“Is
s2 ≤ σ?” for all 0 ≤ σ ≤ 1. AssumeP (S) is the area of
S; i.e. assumeP is a uniform distribution onS. It is then
straightforward to show that

P (S3 ∈ S ′) = (1− σ)/2 σ > 1/4
= 1/2 σ = 1/4
= σ/2 σ < 1/4,

which is depicted graphically in Figure 4.
Thus, an optimal policy is “Iss1 ≤ 0.5?” and “Is s2 ≤

f(0.5)?” and the largest probability for problem resolution
after two questions is 0.5. We remark that if either questions
of the form “Is s1 ≤ α?” or “Is s2 ≤ β?” were allowed,

10 σ

)( 3 SSP ′∈
1

Fig. 4. P (S3 ∈ S′), as a function ofσ.

but not both, then the QSP would be unresolvable and hence
P (St ∈ S ′) = 0 for all t.�

B. Conditions for Finite Resolvability

We now present conditions guaranteeing that the QSP is
resolvable in a finite number of questions.

Definition 1: The question selection problem is said to be
finitely resolvableif ∃T <∞ andπ such thatP (ST ∈ S ′)=1.

Definition 2: For partitionsX = {Xβ , β ∈ B} and Y =
{Yσ, σ ∈ Σ}, defineX ∩ Y as the collection of all possible
setsXβ ∩ Yσ for someβ ∈ B andσ ∈ Σ.

Definition 3: For partitionsX = {Xβ , β ∈ B} and Y =
{Yσ, σ ∈ Σ}, we sayX is at least as fine asY if and only if
for everyσ ∈ Σ there is aβ ∈ B such thatXβ ⊆ Yσ.

It is easy to show that ifX andY are partitions, then so is
X ∩ Y . Further,X ∩ Y is at least as fine as eitherX or Y .

Definition 4: Let PQ = ∩q∈Q{(q, r), r ∈ R(q)} be the
partition generated by the question setQ.

Theorem 2:Assume∃Q′ ⊆ Q, |Q′| ≤ T < ∞, such that
PQ′

is at least as fine a partition as{Sa, a ∈ A}. Then the
problem is finitely resolvable inT questions.

Proof: Constructπ = {d1, . . . , dT } as follows. Fort ≤ T ,
let dt(S) = qt ∈ Q′ for all S ⊆ S, where fort, τ ≤ |Q′|, qt 6=
qτ if t 6= τ . Then for anyS1 ⊆ S, S|Q′|+1 = S1 ∩|Q

′|
t=1 (qt, rt).

By assumption, there exists ana ∈ A such thatS|Q′|+1 ⊆ Sa.
�

We now present a simple, practical sufficient condition for
finite resolvability, a corollary to Theorem 2.

Corollary 3: If Qpw ⊆ Q, then the problem is finitely
resolvable for anyS1 whenT ≥ |A| − 1.

Proof: Consider the following policy. Letdt(St) = (ai, aj),
where i < j, and ai, aj ∈ ND(St) are such that@am ∈
ND(St) such thatm < i or i < m < j. After receiving
a response, determineND(St+1). If |ND(St+1)| = 1, stop.
Otherwise, continue asking questions. Because the questions
asked are all comparisons within the non-dominated set, every
response indicates a new dominance relationship within that
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set, and hence reduces the size of the set by 1 each time. Under
this policy, |ND(St+1)| = |ND(St)| − 1. Since|ND(S1)| ≤
|A|, |ND(S|A|−1)| = 1 under this policy.�

Thus, if all pairwise comparisons are permissible, then the
problem is guaranteed to be finitely resolvable.

We remark thatQpw ⊆ Q is a sufficient condition of finite
resolvability but is not necessary. Consider Example 1, and let
Q be comprised of the following questions: Isv1(a2) ≤ 0.7
andw1 ≤ 0.5? Is v1(a2) ≤ 0.7 andw1 ≥ 0.5? Is a2 at least
as preferred asa1? Is a2 at least as preferred asa3? We note
thatQ does not contain all questions inQpw yet does satisfy
the conditions in Theorem 2.

It might be claimed that permitting the use of pairwise com-
parisons eliminates the need for eliciting information about
the weights and attribute values. In reality, the use of pairwise
comparisons is always available; however, asking a pairwise
comparison question may not promise problem resolution. It
has been our experience that pairwise comparisons of alterna-
tives in the non-dominated set can produce discord in a group
alternative selection session if members of the group champion
alternatives. In such situations, we have found it useful to
ask pairwise comparison questions only involving alternatives
that have been eliminated from the non-dominated set. Such
alternatives are unlikely to retain committed champions, and
the concomitant pairwise comparisons can be quite informative
for reducingS andND(S).

C. Resolvability in the Limit

We now present assumptions that guarantee the QSP is
resolvable if the facilitator is not limited to a finite number of
questions. In reality, the number of questions that a facilitator
can ask is small. However, resolvability in the limit implies
at least the potential for problem resolution and hence that
asking good questions can reduce the non-dominated set of
alternatives.

Definition 5: The problem is resolvable in the limitif for
any ε > 0, there is a policyπ and a timeT < ∞ such that
P (St ∈ S ′) ≥ 1− ε for all t ≥ T .

Equivalently, the question selection problem is resolvable in
the limit if there is a policyπ such that lim

t→∞
P (St ∈ S ′) = 1.

The following theorem presents conditions that guarantee
resolvability in the limit.

Theorem 3:Assume there is a policyπ, a scalarδ, where
0 < δ ≤ 1, an integerM < ∞ and an integerT < ∞, such
that for all t ≥ T , P(St+M ∈ S ′|St /∈ S ′) ≥ δ. Then the QSP
is resolvable in the limit.

Proof: Assume without loss of generality thatS1 /∈ S ′.
Note thatP (St+M ∈ S ′) = P (St ∈ S ′)+P (St+M ∈ S ′|St /∈
S ′)[1− P (St ∈ S ′)]. It then follows that fort ≥ T ,

1− P (St+M ∈ S ′) ≤ (1− δ)[1− P (St ∈ S ′)] (5)

where0 ≤ (1− δ) < 1. Thus, lim
t→∞

P (St ∈ S ′′) = 1. �

The proof of the following corollary determinesδ andM
and presents an approach for constructing a policyπ, as
required in Theorem 3. LetQS be the set of all questions
of the form “Is sn ≤ α?” for all n = 1, . . . , N and allα.

s10.5 10

Sa2

1

s2

Sa3 Sa1

0.41

0.7

Fig. 5. T=3 Partition ofS1

Corollary 4: Let S be the unit cube in<N and letP (S),
S ∈ S be the volume ofS. Assume:

(i) there exists aT <∞ such thatST ⊆ Sa∪Sa′ , a, a′ ∈
A, a 6= a′;

(ii) ST = {s : l ≤ s ≤ u}, wherel = (l1, . . . , lN ) and
u = (u1, . . . , uN );

(iii) the boundary betweenSa and Sa′ is described by
sN = f(s1, . . . , sN−1) wheres = (s1, . . . , sN ) and
wheref is monotone; and

(iv) QS ⊆ Q.
Then the QSP is resolvable in the limit.

Proof: Let sn = (un + ln)/2 for n = 1, . . . , N − 1, sN =
f(s1, . . . , sN−1) and s = (s1, . . . , sN ). By assumption,s ∈
St. Without loss of generality, assumes ≤ s′ implies f(s) ≤
f(s′) and that{s ∈ St : sN ≤ f(s1, . . . , sN−1)} ⊆ Sa and
{s ∈ St : s ≥ f(s1, . . . , sN−1)} ⊆ Sa′ . LetM = N , and letπ
be such that it asks the followingN questions: “Issn ≤ sn?”,
n = 1, . . . , N . If the response to these questions is “yes,”
n = 1, . . . , N − 1, and “no,” n = N , thenSt+N = {s : ln ≤
sn ≤ (un + ln)/2, n = 1, . . . , N − 1, andsN ≤ sN ≤ uN}
and has volumeV1 = (uN − sN )

∏N−1
n=1 (un − ln)/2. Since

St+N ⊆ Sa′ , the problem is resolved.
Similarly, if the question responses are “no,”n =

1, . . . , N − 1, and “yes,” n = N , then St+N has volume
V2 = (sN−lN )

∏N−1
n=1 (un−ln)/2 and the problem is resolved

sinceSt+N ⊆ Sa.
We note that the volume ofSt is V =

∏N
n=1(un − ln).

ThusP (St+N ∈ S ′|St /∈ S ′) ≥ (V1 + V2)/V = 1/2N−1, and
hence we can setδ = 1/2N−1. The proof then follows from
Theorem 3.�

We remark that assumptions (i)-(iii) in Corollary 4 are quite
robust. For illustration, consider Figure 5 (associated with
Example 1 and utilizing a more general notation). If we ask the
questions “Iss1 ≤ 0.41?”, “Is s1 ≤ 0.5?”, and “Is s2 ≤ 0.7”,
then we are guaranteed that assumptions (i)-(iii) of Corollary
4 are valid for allSt /∈ S ′, t ≥ 3.

Furthermore, we remark that there may be no upper bound
on the number of questions needed for resolvability, given
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the strategy constructed in the proof of Corollary 4, thus
justifying the need for resolvability in the limit as a concept.
For example, following the proof of Corollary 4, assume
s∗n = un − ε, n = 1, . . . , N for given ε > 0 and thats∗ ∈ Sa.
Let the integerl be such thatε ≤ 1/(l−1) andε > 1/l. Then,
the QSP will only be resolved afterl sets of questions of the
form, “ Is sn ≤ sn?”, n = 1, . . . , N . Since ε > 0 may be
arbitrarily small,l can become arbitrarily large.

V. CONCLUSIONS

We presented an example in Section I that indicated that
there might not exist a question-response policy for the
QSP that can lead to the identification of a most preferred
alternative. Based on a Markov decision process model of
the QSP, we then presented an approach for determining the
probability that the QSP will be unresolved. Additionally, we
presented conditions that guarantee the existence of a question-
response policy that will identify a most preferred alternative
in a finite number of questions and conditions that guarantee
the existence of a question-response policy that will identify
a most preferred alternative as the number of questions asked
goes to infinity. Both sets of conditions are easily identified
a priori and pertain to the type of question the facilitator is
permitted to ask.

In the context of the simple ISMAUT model presented in the
Introduction, if a facilitator can ask any pairwise comparison
question or ask about the value of any trade-off weight or value
score, then problem resolution can be achieved. However, if
some or all of the pairwise comparison questions are not
permissible and if assessment of some or all of the trade-
off weights and value scores are not allowed, then it may be
possible that the QSP will be unresolved.

Thus, in complement with results presented by Holloway
and White [2], we have presented results that represent a
partial basis for a facilitator support system. Such a system
would aid the facilitator in question selection and inform (alert
and warn) the facilitator of the probability of resolvability. This
latter function presumably would allow the facilitator to better
manage the time, effort, and expectations of the DM and better
determine when to stop the alternative selection process.
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