
Multiple-Goal Reinforcement Learning with Modular Sarsa(0)

Nathan Sprague
Computer Science Department

University of Rochester
Rochester, NY 14627

sprague@cs.rochester.edu

Dana Ballard
Computer Science Department

University of Rochester
Rochester, NY 14627

dana@cs.rochester.edu

Abstract

We present a new algorithm, GM-Sarsa(0), for find-
ing approximate solutions to multiple-goal rein-
forcement learning problems that are modeled as
composite Markov decision processes. According
to our formulation different sub-goals are modeled
as MDPs that are coupled by the requirement that
they share actions. Existing reinforcement learning
algorithms address similar problem formulations
by first finding optimal policies for the component
MDPs, and then merging these into a policy for the
composite task. The problem with such methods is
that policies that are optimized separately may or
may not perform well when they are merged into a
composite solution. Instead of searching for opti-
mal policies for the component MDPs in isolation,
our approach finds good policies in the context of
the composite task.

keywords: reinforcement learning

1 Introduction
Traditional reinforcement learning algorithms can success-
fully solve small, single-goal tasks. The main challenge in
the area of reinforcement learning is scaling up to larger and
more complex problems. The scaling problem takes a num-
ber of forms. We may have a problem that has a very large
state space, a problem that is best described as a set of hi-
erarchically organized goals and subgoals, or a problem that
requires the learning agent to address several tasks at once. It
is the last form of scaling that this paper is concerned with.

The naive approach to learning to solve composite tasks is
to create a state space that includes all of the information that
is relevant to each sub-task. The agent would then learn in
this joint space, receiving reward when any of the sub-goals
are accomplished. The problem with this approach is that it
suffers from the curse of dimensionality; as additional state
dimensions are added for each new sub-task, the size of the
joint state space grows exponentially.

A more promising approach to this sort of multiple-goal
problem is to use the well known Q-learning algorithm to
train one learning module to handle each of the sub-goals.
The internal Q-values of the different learning modules can

then be used to fairly distribute control among the mod-
ules. This approach has been independently explored in
[Humphrys, 1996] and [Karlsson, 1997]. It is attractive in
its simplicity, and it has shown good empirical performance
in a number of domains.

In this paper we will highlight a previously unrecognized
problem with existing modular Q-learning algorithms. Exist-
ing algorithms learn component policies that may be highly
sub-optimal in the context of the composite task, because they
do not take into account the fact that the component mod-
ules are forced to share control. We will show how to fix
this problem by replacing the Q-learning with the closely re-
lated Sarsa(0) learning rule. The resulting algorithm shows
improved performance on a large sample problem.

2 The problem formalized
The underlying formalism for many reinforcement learning
algorithms is the Markov decision process. An MDP, denoted
M is described by a 4-tuple (S,A, T,R), where S is the state
space, A is the action space, and T (s, a, s′) is the transition
function that indicates the probability of arriving in state s′

when action a is taken in state s. The reward function R(s, a)
denotes the expected one-step payoff for taking action a in
state s. The goal of reinforcement learning algorithms is to
discover an optimal policy π∗(s) that maps states to actions
so as to maximize discounted long term reward.

Here we consider the problem of discovering a joint pol-
icy for a set of N MDP’s {Mi}

N

1
. Throughout we will use

subscripts to distinguish the MDPs. These MDP’s each have
a distinct state space, but they share a common action space,
and are required to execute the same action on each time step.
This model is intended to map to the case of a single agent
that is simultaneously faced with a set of different goals.

The N component MDPs implicitly define a larger com-
posite MDP. Formally, the goal is to find the optimal policy
for this composite MDP. The optimal composite policy is de-
fined as the policy that maximizes summed discounted reward
across the component MDPs.

The state space of the composite MDP is the cross prod-
uct of the state spaces of the component MDPs: S = S1 ×
S2 × ...× SN . The composite reward function is defined as:
R(s, a) =

∑
N

i=1
Ri(si, a). In the case where the component

MDPs are independent, the composite transition function can



be written as: T (s, a, s′) =
∏

N

i=1
Ti(si, a, s′

i
). In the case

where the component MDPs are not independent, the exact
composite transition function will depend on on the particu-
lar dependencies between the models.

In theory, there is no reason that the composite MDP could
not be solved directly using the traditional Q-learning algo-
rithm. However, this is generally not practical because the
size of the composite state space may grow exponentially
with the number of component MDPs.

3 Modular Q-Learning
Humphrys and Karlsson [Humphrys, 1996; Karlsson, 1997]
independently developed similar approaches to the problem
of multiple-goal reinforcement learning. The idea is that a
separate learning module is created for each component MDP.
The agent takes actions in the environment, and each module
i is trained with the standard Q-learning update rule:
Qi(si, a)← (1−α)Qi(si, a)+α(ri+γ max

a′

Qi(s
′

i
, a′)) (1)

Where ri is the immediate reward, α is the learning rate
parameter, and γ is a discount factor applied to future re-
wards. In single goal reinforcement learning problems, these
Q-values are used only to rank order the actions in a given
state. The key observation here is that the Q-values can also
be used in multiple-goal problems to indicate the degree of
preference that modules have for different actions. There are
several possible ways these values can be used to select a
compromise action to execute. The different approaches will
be referred to as action selection mechanisms.

Karlsson’s suggestion, which he calls “greatest mass”, is to
generate an overall Q-value as a simple sum of the Q-values
of the individual modules: Q(s, a) =

∑
n

i=1
Qi(si, a). The

action with the maximum summed value is then chosen to
execute. We will refer to this approach as GM-Q for greatest
mass Q-learning.

Humphrys considers the greatest mass approach, but raises
the objection that the action with the highest sum may not
be particularly good for any of the modules, with the result
that no module is able to reach its goal. He explores several
winner-take-all alternatives that constrain the chosen action
to be optimal for at least one module. For a given state s
each of the N modules promotes its own action with a value
Wi(si). The module with the largest W value is then allowed
to execute its preferred action.

The simplest method for generating the W -values, which
we will refer to as Top-Q, is to set Wi(si) = maxa Qi(si, a),
thus giving control to the module with the highest Q-value
in the current state. This method suffers from the draw-
back that the module with the highest Q-value may have no
preference over what action is chosen, while another module
stands to lose a great deal if its action is not selected. The
method sometimes exhibits reasonable performance, but this
is strongly dependent on the structure of the reward functions.

A better alternative, referred to as negotiated W-learning,
is to grant control to the module that stands to lose the most
long term reward if it is not selected. This module can be
discovered by examining the Q-values for the current state.
Refer to [Humphrys, 1996] for a detailed description of the
algorithm.

0 0.5 1 1.5 2 2.5 3

x 10
5

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

trial number

av
er

ag
e 

re
w

ar
d 

pe
r 

st
ep

GM−Sarsa(0)
Negotiated−W
GM−Q
Top−Q

Figure 1: Results of one training run for GM-Sarsa(0) and
three Q-learning based algorithms on a food gathering task.
Training is divided into trials lasting 100 time steps. Data
points are generated by suspending training every 10000 tri-
als and computing the mean performance for 1000 trials with-
out exploration. Each algorithm uses an ε-greedy exploration
policy with ε linearly reduced from .4 to 0 during the first half
of trials. All algorithms use a fixed learning rate of .05, and a
discount factor of .9.

3.1 The problem with modular Q-learning
Q-learning has some attractive qualities as a basis for
multiple-goal reinforcement learning. Chief of these is the
fact that it is an off-policy learning method. This means that
Q-learning for a single MDP is guaranteed to converge to the
optimal solution regardless of what policy is followed during
training, as long as each state-action pair is visited infinitely
often in the limit. This fact makes it easy to prove conver-
gence results for the composite reinforcement learning algo-
rithms introduced above. In particular, it is easy to see that
each module is guaranteed to converge to the optimal policy
and value function for its own MDP. Since the action selec-
tion mechanisms generate a policy deterministically from the
component value functions, the composite policy is also guar-
anteed to converge, although there is no guarantee concerning
the quality of the composite solution.

Unfortunately, the off-policy character of Q-learning is
also a serious limitation. The difficulty is that the one-step
value updates for each module are computed under the as-
sumption that all future actions will be chosen optimally for
that MDP. This assumption is not valid under the action selec-
tion mechanisms described above; future actions will repre-
sent some compromise policy in which the different modules
share control. This means that the computed Q-values do not
converge to the actual expected return under the composite
policy. Instead, the max in equation (1) results in Q-values
with a positive bias.

4 Modular Sarsa(0)
A possible solution is to the problem of positive bias is to
replace Q-learning with an on-policy learning algorithm. In
particular we will explore the use of Sarsa(0) [Rummery and



Niranjan, 1994; Singh and Sutton, 1996; Sutton, 1996]. The
update rule for Sarsa(0) is:

Qi(si, a)← (1− α)Qi(si, a) + α(ri + γQi(s
′

i
, a′)) (2)

This update rule is virtually identical to that for Q-learning
except that the max over Q-values on the right has been re-
placed with the Q-value of the state action pair that is actu-
ally observed on the next step. For the case of single MDPs
Sarsa(0) has been proved to converge to the optimal policy
as long as the exploration rate is asymptotically decayed to-
ward zero according to an appropriate schedule [Singh et al.,
2000].

The key observation for our purposes is that, since Sarsa(0)
is an on-policy method, it does not suffer from the problem
of positive bias. Since updates are based on the actions that
are actually taken, rather than on the best possible action, we
expect Sarsa(0) based modules to discover Q-values that are
closer to the true expected return under the composite policy.

Any of the action selection mechanisms from Section 3
could be recast to use Sarsa(0) rather than Q-learning to train
the modules. However, we focus on the method of greatest
mass. We refer to the resulting algorithm as GM-Sarsa(0).
Recall that the goal is to maximize the summed reward across
all of the component MDPs. Assuming that we have trust-
worthy utility estimates from each of the modules, it makes
sense to choose the action that has the highest summed util-
ity across all of the modules. By definition, this is the action
that will lead to the greatest summed long term reward. This
reasoning did not hold under Q-learning, because the utility
estimates were inaccurate under the composite policy.

Thus far we have no convergence proof for the GM-
Sarsa(0) algorithm. Refer to the associated technical report
[Sprague and Ballard, 2003] for a discussion of the possible
convergence characteristics.

5 Examples
Figure 1 demonstrates the performance of GM-Sarsa(0) on a
sample composite task (the task is adapted from [Singh and
Cohn, 1998]). The goal of the agent in this task is to gather
stationary food items while avoiding a predator in a 5×5 grid.
There are three food items present at all times.

The agent moves in any of the eight possible directions at
each time step. A random move is made with a probability
of .1. If the agent contacts any of the food items it receives a
reward of 1.0, and the item is randomly moved to a new posi-
tion. The agent receives a reward of .5 for every time step that
it avoids the predator. The predator moves deterministically
one position toward the agent on every other time step.

The positions of the food items as well as the positions
of the agent and predator result in 255 ≈ 10 million distinct
states. This is too large for a monolithic tabular learning al-
gorithm to be practical. The task is a good candidate for a
modular reinforcement learning algorithm because it can be
decomposed into several small MDPs. One MDP describes
the agent’s interaction with the predator, and three MDPs
describe the interaction with the food items. Each of these
component MDPs has 252 = 625 states. Figure 1 shows the
performance of GM-Sarsa(0) as well as the three Q-learning

based algorithms from Section 3 on this task. Of the four
algorithms, GM-Sarsa(0) exhibits the best performance.

6 Conclusion
We have presented a method for learning approximately opti-
mal policies for a certain class of composite Markov decision
processes. Empirical results demonstrate that our approach
performs better than a number of existing algorithms. Future
work will focus on proving convergence results for our algo-
rithm. A longer version of this paper, including a discussion
of related work is available as [Sprague and Ballard, 2003].

Acknowledgments
This material is based upon work supported by a grant
from the Department of Education under grant number
P200A000306, a grant from the National Institutes of Health
under grant number 5P41RR09283 and a grant from the Na-
tional Science Foundation under grant number E1A-0080124.
Any opinions, findings, and conclusions or recommendations
expressed in this material are those of the authors and do not
necessarily reflect the views of the above mentioned institu-
tions.

References
[Humphrys, 1996] M. Humphrys. Action selection methods

using reinforcement learning. In From Animals to Animats
4: Proceedings of the Fourth International Conference on
Simulation of Adaptive Behavior, pages 135–144, Cam-
bridge, MA, 1996.

[Karlsson, 1997] J. Karlsson. Learning to Solve Multiple
Goals. PhD thesis, University of Rochester, 1997.

[Rummery and Niranjan, 1994] G. A. Rummery and M. Ni-
ranjan. On-line Q-learning using connectionist systems.
Technical Report CUED/F-INFENG/TR 166, Cambridge
University Engineering Department, 1994.

[Singh and Cohn, 1998] S. Singh and D. Cohn. How to dy-
namically merge markov decision processes. In Advances
in Neural Information Processing Systems, volume 10,
1998.

[Singh and Sutton, 1996] S. Singh and R. Sutton. Reinforce-
ment learning with replacing eligibility traces. Machine
Learning, 22(1-3), 1996.

[Singh et al., 2000] S. Singh, T. Jaakkola, M. L. Littman,
and C. Szepesvari. Convergence results for single-step
on-policy reinforcement-learning algorithms. Machine
Learning, 2000.

[Sprague and Ballard, 2003] N. Sprague and D. Ballard.
Multiple-goal reinforcement learning with modular
sarsa(0). Technical Report 798, University of Rochester
Computer Science Department, 2003.

[Sutton, 1996] R. Sutton. Generalization in reinforcement
learning: Successful examples using sparse coarse cod-
ing. In Advances in Neural Information Processing Sys-
tems, volume 8, 1996.


