
Appears in: Advances in Neural Information Processing Systems 18 (NIPS), MIT Press, 2006

Spectral Bounds for Sparse PCA:
Exact and Greedy Algorithms

Baback Moghaddam
MERL

Cambridge MA, USA
baback@merl.com

Yair Weiss
Hebrew University
Jerusalem, Israel
yweiss@cs.huji.ac.il

Shai Avidan
MERL

Cambridge MA, USA
avidan@merl.com

Abstract
Sparse PCA seeks approximate sparse “eigenvectors” whose projections
capture the maximal variance of data. As a cardinality-constrained and
non-convex optimization problem, it is NP-hard and yet it is encountered
in a wide range of applied fields, from bio-informatics to finance. Recent
progress has focused mainly on continuous approximation and convex
relaxation of the hard cardinality constraint. In contrast, we consider an
alternative discrete spectral formulation based on variational eigenvalue
bounds and provide an effective greedy strategy as well as provably
optimal solutions using branch-and-bound search. Moreover, the exact
methodology used reveals a simple renormalization step that improves
approximate solutions obtained by any continuous method. The resulting
performance gain of discrete algorithms is demonstrated on real-world
benchmark data and in extensive Monte Carlo evaluation trials.

1 Introduction
PCA is indispensable as a basic tool for factor analysis and modeling of data. But despite
its power and popularity, one key drawback is its lack of sparseness (i.e., factor loadings
are linear combinations of all the input variables). Yet sparse representations are generally
desirable since they aid human understanding (e.g., with gene expression data), reduce
computational costs and promote better generalization in learning algorithms. In machine
learning, input sparseness is closely related to feature selection and automatic relevance
determination, problems of enduring interest to the learning community.
The earliest attempts at ”sparsifying” PCA in the statistics literature consisted of simple
axis rotations and component thresholding [1] with the underlying goal being essentially
that of subset selection, often based on the identification of principal variables [8]. The
first true computational technique, called SCoTLASS by Jolliffe & Uddin [6], provided
a proper optimization framework using Lasso [12] but it proved to be computationally
impractical. Recently, Zou et al. [14] proposed an elegant algorithm (SPCA) using their
“Elastic Net” framework forL1-penalized regression on regular PCs, solved very efficiently
using least angle regression (LARS). Subsequently, d’Aspremont et al. [3] relaxed the
“hard” cardinality constraint and solved for a convex approximation using semi-definite
programming (SDP). Their “direct” formulation for sparse PCA (called DSCPA) has
yielded promising results that are comparable to (if not better than) Zou et al.’s Lasso-based
method, as demonstrated on the standard “Pit Props” benchmark dataset, known in the
statistics community for its lack of sparseness and subsequent difficulty of interpretation.

We pursued an alternative approach using a spectral formulation based on the variational
principle of the Courant-Fischer “Min-Max” theorem for solving maximal eigenvalue
problems in dimensionality-constrained subspaces. By its very nature, the discrete view
leads to a simple post-processing (renormalization) step that improves any approximate
solution (e.g., those given in [6, 14, 3]), and also provides bounds on (sub)optimality.
More importantly, it points the way towards exact and provably optimal solutions
using branch-and-bound search [9]. Our exact computational strategy parallels that of
Ko et al. [7] who solved a different optimization problem (maximizing entropy with bounds
on determinants). In the experiments we demonstrate the power of greedy and exact
algorithms by first solving for the optimal sparse factors of the real-world “Pit Props” data,
a de facto benchmark used by [6, 14, 3], and then present summary findings from a large
comparative study using extensive Monte Carlo evaluation of the leading algorithms.

2 Sparse PCA Formulation
Sparse PCA can be cast as a cardinality-constrained quadratic program (QP): given a
symmetric positive-definite (covariance) matrix A ∈ Sn

+, maximize the quadratic form
x′Ax (variance) with a sparse vector x ∈ Rn having no more than k non-zero elements:

max x′A x (1)
subject to x′x = 1

card(x) ≤ k

where card(x) denotes the L0 norm. This optimization problem is non-convex, NP-hard
and therefore intractable. Assuming we can solve for the optimal vector x̂, subsequent
sparse factors can be obtained using recursive deflation of A, as in standard numerical
routines. The sparseness is controlled by the value(s) of k (in different factors) and can be
viewed as a design parameter or as an unknown quantity itself (known only to the oracle).
Alas, there are currently no guidelines for setting k, especially with multiple factors (e.g.,
orthogonality is often relaxed) and unlike ordinary PCA some decompositions may not be
unique.1 Indeed, one of the contributions of this paper is in providing a sound theoretical
basis for selecting k, thus clarifying the “art” of crafting sparse PCA factors.
Note that without the cardinality constraint, the quadratic form in Eq.(1) is a
Rayleigh-Ritz quotient obeying the analytic bounds λmin(A) ≤ x′Ax/x′x ≤ λmax(A)
with corresponding unique eigenvector solutions. Therefore, the optimal objective value
(variance) is simply the maximum eigenvalue λn(A) of the principal eigenvector x̂ = un

— Note: throughout the paper the rank of all (λi, ui) is in increasing order of magnitude,
hence λmin = λ1 and λmax = λn. With the (nonlinear) cardinality constraint however,
the optimal objective value is strictly less than λmax(A) for k < n and the principal
eigenvectors are no longer instrumental in the solution. Nevertheless, we will show that the
eigenvalues of A continue to play a key role in the analysis and design of exact algorithms.

2.1 Optimality Conditions

First, let us consider what conditionsmust be true if the oracle revealed the optimal solution
to us: a unit-norm vector x̂ with cardinality k yielding the maximum objective value v∗.
This would necessarily imply that x̂′A x̂ = z′Akz where z ∈ Rk contains the same k
non-zero elements in x̂ and Ak is the k × k principal submatrix of A obtained by deleting
the rows and columns corresponding to the zero indices of x̂ (or equivalently, by extracting
the rows and columns of non-zero indices). Like x̂, the k-vector z will be unit norm and
z′Akz is then equivalent to a standard unconstrained Rayleigh-Ritz quotient. Since this
subproblem’s maximum variance is λmax(Ak), then this must be the optimal objective v∗.
We will now summarize this important observation with the following proposition.

1 We should note that the multi-factor version of Eq.(1) is ill-posed without additional constraints
on basis orthogonality, cardinality, variable redundancy, ordinal rank and allocation of variance.

Proposition 1. The optimal value v∗ of the sparse PCA optimization problem in Eq.(1)
is equal to λmax(A∗

k), where A∗
k is the k × k principal submatrix of A with the largest

maximal eigenvalue. In particular, the non-zero elements of the optimal sparse factor x̂ are
exactly equal to the elements of u∗

k, the principal eigenvector of A∗
k.

This underscores the inherent combinatorial nature of sparse PCA and the equivalent
class of cardinality-constrained optimization problems. However, despite providing an
exact formulation and revealing necessary conditions for optimality (and in such simple
matrix terms), this proposition does not suggest an efficient method for actually finding the
principal submatrix A∗

k — short of an enumerative exhaustive search, which is impractical
for n > 30 due to the exponential growth of possible submatrices. Still, exhaustive search
is a viable method for small n which guarantees optimality for “toy problems” and small
real-world datasets, thus calibrating the quality of approximations (via the optimality gap).

2.2 Variational Renormalization

Proposition 1 immediately suggests a rather simple but (as it turns out) quite effective
computational “fix” for improving candidate sparse PC factors obtained by any continuous
algorithm (e.g., the various solutions found in [6, 14, 3]).
Proposition 2. Let x̃ be a unit-norm candidate factor with cardinality k as found by any
(approximation) technique. Let z̃ be the non-zero subvector of x̃ and uk be the principal
(maximum) eigenvector of the submatrix Ak defined by the same non-zero indices of x̃. If
z̃ $= uk(Ak), then x̃ is not the optimal solution. Nevertheless, by replacing x̃’s nonzero
elements with those of uk we guarantee an increase in the variance, from ṽ to λk(Ak).

This variational renormalization suggests (somewhat ironically) that given a continuous
(approximate) solution, it is almost certainly better to discard the loadings and keep only
the sparsity pattern with which to solve the smaller unconstrained subproblem for the
indicated submatrix Ak. This simple procedure (or “fix” as referred to herein) can never
decrease the variance and will surely improve any continuous algorithm’s performance.
In particular, the rather expedient but ad-hoc technique of “simple thresholding” (ST) [1]
— i.e., setting n − k of the smallest absolute value loadings of un(A) to zero and then
normalizing to unit-norm — is therefore not recommended for sparse PCA. In Section 3,
we illustrate how this “straw-man” algorithm can be enhanced with proper renormalization.
Consequently, past performance benchmarks using this simple technique may need revision
— e.g., previous results on the “Pit Props” dataset (Section 3). Indeed, most of the sparse
PCA factors published in the literature can be readily improved (almost by inspection) with
the proper renormalization, and at the mere cost of a single k-by-k eigen-decomposition.

2.3 Eigenvalue Bounds

Recall that the objective value v∗ in Eq.(1) is bounded by the spectral radius λmax(A)
(by the Rayleigh-Ritz theorem). Furthermore, the spectrum of A’s principal submatrices
was shown to play a key role in defining the optimal solution. Not surprisingly, the two
eigenvalue spectra are related by an inequality known as the Inclusion Principle.
Theorem 1 Inclusion Principle. Let A be a symmetric n × n matrix with spectrum λi(A)
and let Ak be any k × k principal submatrix of A for 1 ≤ k ≤ n with eigenvalues λi(Ak).
For each integer i with 1 ≤ i ≤ k

λi(A) ≤ λi(Ak) ≤ λi+n−k(A) (2)
Proof. The proof, which we omit, is a rather straightforward consequence of imposing a
sparsity pattern of cardinality k as an additional orthogonality constraint in the variational
inequality of the Courant-Fischer “Min-Max” theorem (see [13] for example).

In other words, the eigenvalues of a symmetric matrix form upper and lower bounds for the
eigenvalues of all its principal submatrices. A special case of Eq.(2) with k = n − 1 leads
to the well-known eigenvalue interlacing property of symmetric matrices:

λ1(An) ≤ λ1(An−1) ≤ λ2(An) ≤ . . . ≤ λn−1(An) ≤ λn−1(An−1) ≤ λn(An) (3)

Hence, the spectra of An and An−1 interleave or interlace each other, with the eigenvalues
of the larger matrix “bracketing” those of the smaller one. Note that for positive-definite
symmetric matrices (covariances), augmenting Am to Am+1 (adding a new variable) will
always expand the spectral range: reducing λmin and increasing λmax. Thus for eigenvalue
maximization, the inequality constraint card(x) ≤ k in Eq.(1) is a tight equality at the
optimum. Therefore, the maximum variance is achieved at the preset upper limit k of
cardinality. Moreover, the function v∗(k), the optimal variance for a given cardinality, is
monotone increasing with range [σ2

max(A),λmax(A)], where σ2
max is the largest diagonal

element (variance) inA. Hence, a concise and informative way to quantify the performance
of an algorithm is to plot its variance curve ṽ(k) and compare it with the optimal v∗(k).
Since we seek to maximize variance, the relevant inclusion bound is obtained by setting
i = k in Eq.(2), which yields lower and upper bounds for λk(Ak) = λmax(Ak),

λk(A) ≤ λmax(Ak) ≤ λmax(A) (4)
This shows that the k-th smallest eigenvalue of A is a lower bound for the maximum
variance possible with cardinality k. The utility of this lower bound is in doing away with
the “guesswork” (and the oracle) in setting k. Hence, we can now see that the spectrum of
A which has traditionally guided the selection of eigenvectors for dimensionality reduction
(e.g., in classical PCA), can also be consulted in sparse PCA to help pick the cardinality
required to capture the desired (minimum) variance. The lower bound λk(A) is also useful
for speeding up branch-and-bound search (see next Section). Note that if λk(A) is close to
λmax(A) then practically any principal submatrix Ak can yield a near-optimal solution.
The right-hand inequality in Eq.(4) is a fixed (loose) upper bound λmax(A) for all k.
But in branch-and-bound search, any intermediate subproblem Am, with k ≤ m ≤ n,
yields a new and tighter bound λmax(Am) for the objective v∗(k). Therefore, all bound
computations are efficient and relatively inexpensive (e.g., using the power method).
The inclusion principle also leads to some interesting constraints on nested submatrices.
For example, among all m possible (m − 1) × (m − 1) principal submatrices of Am

obtained by deleting the j-th row and column, there is at least one submatrix Am−1 = A\j

whose maximal eigenvalue is a major fraction of its parent (e.g., see p. 189 in [4])

∃ j : λm−1(A\j) ≥
m − 1

m
λm(Am) (5)

The implication of this inequality for search algorithms is that it is simply not possible for
the spectral radius of every submatrix A\j to be arbitrarily small, especially for large m.
Hence, with large matrices (or large cardinality) nearly all the variance λn(A) is captured.

2.4 Combinatorial Optimization

Given Propositions 1 and 2, the inclusion principle, the interlacing property and especially
the monotonic nature of the variance curves v(k), a general class of (binary) integer
programming (IP) optimization techniques [9] seem ideally suited for sparse PCA. Indeed,
a greedy technique like backward elimination is already suggested by the bound in
Eq.(5): start with the full index set I = {1, 2, . . . , n} and sequentially delete the variable
j which yields the maximum λmax(A\j) until only k elements remain. However, for
small cardinalities k << n, the computational cost of backward search can grow to near

maximum complexity ≈ O(n4). Hence its counterpart forward selection is preferred:
start with the null index set I = {} and sequentially add the variable j which yields the
maximum λmax(A+j) until k elements are selected. Forward greedy search has worst-
case complexity < O(n3). The best overall strategy for this problem was empirically
found to be a bi-directional greedy search: run a forward pass (from 1 to n) plus a second
(independent) backward pass (from n to 1) and pick the better solution at each k. This
proved to be remarkably effective under extensive Monte Carlo evaluation and with real-
world datasets. We refer to this discrete algorithm as greedy sparse PCA or GSPCA.
Despite the expediency of near-optimal greedy search, it is nevertheless worthwhile to
invest in optimal solution strategies, especially if the sparse PCA problem is in the
application domain of finance or engineering, where even a small optimality gap can
accrue substantial losses over time. As with Ko et al. [7], our branch-and-bound relies
on computationally efficient bounds — in our case, the upper bound in Eq.(4), used on all
active subproblems in a (FIFO) queue for depth-first search. The lower bound in Eq.(4)
can be used to sort the queue for a more efficient best-first search [9]. This exact algorithm
(referred to as ESPCA) is guaranteed to terminate with the optimal solution. Naturally,
the search time depends on the quality (variance) of initial candidates. The solutions found
by dual-pass greedy search (GSPCA) were found to be ideal for initializing ESPCA, as
their quality was typically quite high. Note however, that even with good initializations,
branch-and-bound search can take a long time (e.g. 1.5 hours for n = 40, k = 20). In
practice, early termination with set thresholds based on eigenvalue bounds can be used.
In general, a cost-effective strategy that we can recommend is to first run GSPCA (or at
least the forward pass) and then either settle for its (near-optimal) variance or else use it
to initialize ESPCA for finding the optimal solution. A full GSPCA run has the added
benefit of giving near-optimal solutions for all cardinalities at once, with run-times that are
typically O(102) faster than a single approximation with a continuous method.

3 Experiments

We evaluated the performance of GSPCA (and validated ESPCA) on various synthetic
covariance matrices with 10 ≤ n ≤ 40 as well as real-world datasets from the UCI ML
repository with excellent results. We present few typical examples in order to illustrate the
advantages and power of discrete algorithms. In particular, we compared our performance
against 3 continuous techniques: simple thresholding (ST) [1], SPCA using an “Elastic
Net” L1-regression [14] and DSPCA using semidefinite programming [3].
We first revisited the “Pit Props” dataset [5] which has become a standard benchmark and
a classic example of the difficulty of interpreting fully loaded factors with standard PCA.
The first 6 ordinary PCs capture 87% of the total variance, so following the methodology in
[3], we compared the explanatory power of our exact method (ESPCA) using 6 sparse PCs.
Table 1 shows the first 3 PCs and their loadings. SPCA captures 75.8% of the variance with
a cardinality pattern of 744111 (the k’s for the 6 PCs) thus totaling 18 non-zero loadings
[14] whereas DSPCA captures 77.3% with a sparser cardinality pattern 623111 totaling 14
non-zero loadings [3]. We aimed for an even sparser 522111 pattern (with only 12 non-zero
loadings) yet captured nearly the same variance: 75.9% — i.e., more than SPCA with 18
loadings and slightly less than DSPCA with 14 loadings.
Using the evaluation protocol in [3], we compared the cumulative variance and cumulative
cardinality with the published results of SPCA and DSPCA in Figure 1. Our goal was to
match the explained variance but do so with a sparser representation. The ESPCA loadings
in Table 1 are optimal under the definition given in Section 2. The run-time of ESPCA,
including initialization with a bi-directional pass of GSPCA, was negligible for this dataset
(n = 13). Computing each factor took less than 50 msec in Matlab 7.0 on a 3GHz P4.

x1 x2 x3 x4 x5 x6 x7 x8 x9 x10 x11 x12 x13

SPCA : PC1 -.477 -.476 0 0 .177 0 -.250 -.344 -.416 -.400 - 0 0
PC2 0 0 .785 .620 0 0 0 -.021 0 0 0 .013 0
PC3 0 0 0 0 .640 .589 .492 0 0 0 0 0 -.015

DSPCA : PC1 -.560 -.583 0 0 0 0 -.263 -.099 -.371 -.362 0 0 0
PC2 0 0 .707 .707 0 0 0 0 0 0 0 0 0
PC3 0 0 0 0 0 -.793 -.610 0 0 0 0 0 .012

ESPCA : PC1 -.480 -.491 0 0 0 0 -.405 0 -.423 -.431 0 0 0
PC2 0 0 .707 .707 0 0 0 0 0 0 0 0 0
PC3 0 0 0 0 0 -.814 -.581 0 0 0 0 0 0

Table 1: Loadings for first 3 sparse PCs of the Pit Props data. See Figure 1(a) for plots of the
corresponding cumulative variances. Original SPCA and DSPCA loadings taken from [14, 3].

1 2 3 4 5 6
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Cu
m

ul
at

ive
 V

ar
ia

nc
e

of PCs

SPCA
DSPCA
ESPCA

1 2 3 4 5 6
4

6

8

10

12

14

16

18

of PCs

Cu
m

ul
at

ive
 C

ar
di

na
lity

SPCA
DSPCA
ESPCA

(a) (b)
Figure 1: Pit Props: (a) cumulative variance and (b) cumulative cardinality for first 6 sparse PCs.
Sparsity patterns (cardinality ki for PCi, with i = 1, 2, . . . , 6) are 744111 for SPCA (magenta !),
623111 for DSPCA (green !) and an optimal 522111 for ESPCA (red ◦). The factor loadings for the
first 3 sparse PCs are shown in Table 1. Original SPCA and DSPCA results taken from [14, 3].

To specifically demonstrate the benefits of the variational renormalization of Section 2.2,
consider SPCA’s first sparse factor in Table 1 (the 1st row of SPCA block) found by iterative
(L1-penalized) optimization and unit-norm scaling. It captures 28% of the total data
variance, but after the variational renormalization the variance increases to 29%. Similarily,
the first sparse factor of DSPCA in Table 1 (1st row of DSPCA block) captures 26.6% of
the total variance, whereas after variational renormalization it captures 29% — a gain of
2.4% for the mere additional cost of a 7-by-7 eigen-decomposition. Given that variational
renormalization results in the maximum variance possible for the indicated sparsity pattern,
omitting such a simple post-processing step is counter-productive, since otherwise the
approximations would be, in a sense, doubly sub-optimal: both globally and “locally” in
the subspace (subset) of the sparsity pattern found.
We now give a representative summary of our extensive Monte Carlo (MC) evaluation
of GSPCA and the 3 continuous algorithms. To show the most typical or average-case
performance, we present results with random covariance matrices from synthetic stochastic
Brownian processes of various degrees of smoothness, ranging from sub-Gaussian to super-
Gaussian. Every MC run consisted of 50,000 covariance matrices and the (normalized)
variance curves ṽ(k). For each matrix, ESPCA was used to find the optimal solution as
“ground truth” for subsequent calibration, analysis and performance evaluation.
For SPCA we used the LARS-based “Elastic Net” SPCA Matlab toolbox of Sjöstrand [10]
which is equivalent to Zou et al.’s SPCA source code, which is also freely available in R.
For DSPCA we used the authors’ own Matlab source code [2] which uses the SDP toolbox
SeDuMi1.0x [11]. The main DSPCA routine PrimalDec(A, k) was called with k − 1
instead of k, for all k > 2, by the recommended calibration (see documentation in [3, 2]).
In our MC evaluations, all continuous methods (ST, SPCA and DSPCA) had variational
renormalization post-processing (applied to their “declared” solution). Note that comparing
GSPCA with the raw output of these algorithms would be rather pointless, since without

1 2 3 4 5 6 7 8 9 10
0

1

2

3

4

5

6

7

8

9

10

11

cardinality (k)

va
ria

nc
e

 v
(k

)

DSPCA (original)
DSPCA + Fix
Optimal

0.85 0.9 0.95 1
10−4

10−3

10−2

10−1

100

optimality ratio

lo
g
−

fre
qu

en
cy

ST
SPCA
DSPCA
GSPCA

(a) (b)
Figure 2: (a) Typical variance curve v(k) for a continuous algorithm without post-processing
(original: dash green) and with variational renormalization (+ Fix: solid green). Optimal variance
(black ◦) by ESPCA. At k = 4 optimality ratio increases from 0.65 to 0.86 (a 21% gain). (b)Monte
Carlo study: log-likelihood of optimality ratio at max-complexity (k = 8, n = 16) for ST (blue !),
DSPCA (green !), SPCA (magenta !) and GSPCA (red ◦). Continuous methods were “fixed” in (b).

2 4 6 8 10 12 14 16
0.92

0.93

0.94

0.95

0.96

0.97

0.98

0.99

1

cardinality (k)

m
ea

n
op

tim
al

ity
 ra

tio

ST
SPCA
DSPCA
GSPCA

2 4 6 8 10 12 14 16
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

cardinality (k)

fre
qu

en
cy

ST
SPCA
DSPCA
GSPCA

(a) (b)
Figure 3: Monte Carlo summary statistics: (a) means of the distributions of optimality ratio (in
Figure 2(b)) for all k and (b) estimated probability of finding the optimal solution for each cardinality.

the “fix” their variance curves are markedly diminished, as in Figure 2(a).
Figure 2(b) shows the histogram of the optimality ratio — i.e., ratio of the captured to
optimal variance — shown here at “half-sparsity” (k = 8, n = 16) from a typical MC
run of 50,000 different covariances matrices. In order to view the (one-sided) tails of
the distributions we have plotted the log of the histogram values. Figure 3(a) shows the
corresponding mean values of the optimality ratio for all k. Among continuous algorithms,
the SDP-based DSPCA was generally more effective (almost comparable to GSPCA). For
the smaller matrices (n < 10), LARS-based SPCA matched DSPCA for all k. In terms of
complexity and speed however, SPCA was about 40 times faster than DSPCA. But GSPCA
was 30 times faster than SPCA. Finally, we note that even simple thresholding (ST),
once enhanced with the variational renormalization, performs quite adequately despite its
simplicity, as it captures at least 92% of the optimal variance, as seen in Figure 3(a).
Figure 3(b) shows an alternative but more revealing performance summary: the fraction
of the (50,000) trials in which the optimal solution was actually found (essentially,
the likelihood of “success”). This all-or-nothing performance measure elicits important
differences between the algorithms. In practical terms, only GSPCA is capable of finding
the optimal factor more than 90% of the time (vs. 70% for DSPCA). Naturally, without the
variational “fix” (not shown) continuous algorithms rarely ever found the optimal solution.

4 Discussion
The contributions of this paper can be summarized as: (1) an exact variational formulation
of sparse PCA, (2) requisite eigenvalue bounds, (3) a principled choice of k, (4) a simple
renormalization “fix” for any continuous method, (5) fast and effective greedy search
(GSPCA) and (6) a less efficient but optimal method (ESPCA). Surprisingly, simple
thresholding of the principal eigenvector (ST) was shown to be rather effective, especially
given the perceived “straw-man” it was considered to be. Naturally, its performance will
vary with the effective rank (or “eigen-gap”) of the covariance matrix. In fact, it is not
hard to show that if A is exactly rank-1, then ST is indeed an optimal strategy for all k.
However, beyond such special cases, continuous methods can not ultimately be competitive
with discrete algorithms without the variational renormalization “fix” in Section 2.2.
We should note that the somewhat remarkable effectiveness of GSPCA is not entirely
unexpected and is supported by empirical observations in the combinatorial optimization
literature: that greedy search with (sub)modular cost functions having the monotonicity
property (e.g., the variance curves ṽ(k)) is known to produce good results [9]. In terms of
quality of solutions, GSPCA consistently out-performed continuous algorithms, with run-
times that were typicallyO(102) faster than LARS-based SPCA and roughlyO(103) faster
than SDP-based DSPCA (Matlab CPU times averaged over all k).
Nevertheless, we view discrete algorithms as complementary tools, especially since the
leading continuous algorithms have distinct advantages. For example, with very high-
dimensional datasets (e.g., n = 10, 000), Zou et al.’s LARS-based method is currently the
only viable option, since it does not rely on computing or storing a huge covariance matrix.
Although d’Aspremont et al. mention the possibility of solving “larger” systems much
faster (using Nesterov’s 1st-order method [3]), this would require a full matrix in memory
(same as discrete algorithms). Still, their SDP formulation has an elegant robustness
interpretation and can also be applied to non-square matrices (i.e., for a sparse SVD).

Acknowledgments
The authors would like to thank Karl Sjöstrand (DTU) for his customized code and helpful advice in
using the LARS-SPCA toolbox [10] and Gert Lanckriet (Berkeley) for providing the Pit Props data.

References
[1] J. Cadima and I. Jolliffe. Loadings and correlations in the interpretation of principal
components. Applied Statistics, 22:203–214, 1995.

[2] A. d’Aspremont. DSPCA Toolbox. http://www.princeton.edu/∼aspremon/DSPCA.htm.
[3] A. d’Aspremont, L. El Ghaoui, M. I. Jordan, and G. R. G. Lanckriet. A Direct Formulation for
Sparse PCA using Semidefinite Programming. In Advances in Neural Information Processing
Systems (NIPS). Vancouver, BC, December 2004.

[4] R. A. Horn and C. R. Johnson. Matrix Analysis. Cambridge Press, Cambridge, England, 1985.
[5] J. Jeffers. Two cases studies in the application of principal components. Applied Statistics,
16:225–236, 1967.

[6] I. T. Jolliffe and M. Uddin. A Modified Principal Component Technique based on the Lasso.
Journal of Computational and Graphical Statistics, 12:531–547, 2003.

[7] C. Ko, J. Lee, and M. Queyranne. An Exact Algorithm for Maximum Entropy Sampling.
Operations Research, 43(4):684–691, July-August 1995.

[8] G. McCabe. Principal variables. Technometrics, 26:137–144, 1984.
[9] G. L. Nemhauser and L. A. Wolsey. Integer and Combinatorial Optimization. John Wiley, New
York, 1988.

[10] K. Sjöstrand. Matlab implementation of LASSO, LARS, the Elastic Net and SPCA. Informatics
and Mathematical Modelling, Technical University of Denmark (DTU), 2005.

[11] J. F. Sturm. SeDuMi1.0x, a MATLAB Toolbox for Optimization over Symmetric Cones.
Optimization Methods and Software, 11:625–653, 1999.

[12] R. Tibshirani. Regression shrinkage and selection via Lasso. Journal of the Royal Statistical
Society B, 58:267–288, 1995.

[13] J. H. Wilkinson. The Algebraic Eigenvalue Problem. Clarendon Press, Oxford, England, 1965.
[14] H. Zou, T. Hastie, and R. Tibshirani. Sparse Principal Component Analysis. Technical Report,

Statistics Department, Stanford University, 2004.

