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Abstract

| consider the problem of learning concepts from small numbers of pos-
itive examples, a feat which humans perform routinely but which com-
puters are rarely capable of. Bridging machine learning and cognitive
science perspectives, | present both theoretical analysisand an empirical
study with human subjects for the simple task of |earning concepts corre-
sponding to axis-aligned rectangles in a multidimensional feature space.
Existing learning models, when applied to thistask, cannot explain how
subjects generalize from only a few examples of the concept. | propose
a principled Bayesian model based on the assumption that the examples
are a random sample from the concept to be learned. The model gives
precisefitsto human behavior on thissimpletask and providesqualitative
insights into more complex, realistic cases of concept learning.

1 Introduction

Theahility to learn conceptsfrom exampl esisone of the core capacitiesof human cognition.
From a computational point of view, human concept learning is remarkable for the fact that
very successful generalizationsareoften produced after experiencewith only asmall number
of positive examples of a concept (Feldman, 1997). While negative examples are no doubt
useful to human learners in refining the boundaries of concepts, they are not necessary
in order to make reasonable generalizations of word meanings, perceptual categories, and
other natural concepts. In contrast, most machine learning algorithms require examples of
both positive and negative instances of a concept in order to generalize at al, and many
examples of both kinds in order to generalize successfully (Mitchell, 1997).

This paper attempts to close the gap between human and machine concept learning by
developing a rigorous theory for concept learning from limited positive evidence and
testing it against real behavioral data. | focus on a simple abstract task of interest to
both cognitive science and machine learning: learning axis-parallel rectanglesin ™. We
assume that each object x in our world can be described by itsvalues (z1, ..., z,) On m
real-valued observable dimensions, and that each concept C' to be learned correspondsto a
conjunction of independent intervals (min;(C') < z; < maz;(C')) along each dimension
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Figure1: (a) A rectangle concept C'. (b-c) The size principlein Bayesian concept learning:
of the many hypotheses consi stent with the observed positive examples, the smallest rapidly
become more likely (indicated by darker lines) as more examples are observed.

i. For example, the objects might be people, the dimensions might be “cholesterol level”
and “insulin level”, and the concept might be “healthy levels’. Suppose that “healthy
levels’ appliesto any individual whose cholesterol and insulin levels are each greater than
some minimum healthy level and lessthan some maximum healthy level. Then the concept
“healthy levels’ correspondsto arectanglein thetwo-dimensional cholesterol/insulin space.

The problem of generalization in this setting is to infer, given a set of positive (+) and
negative (-) examples of a concept C', which other points belong inside the rectangle
correspondingto C' (Fig. 1a.). Thispaper considersthe question most relevant for cognitive
modeling: how to generalize from just afew positive examples?

In machine learning, the problem of learning rectangles is a common textbook example
used to illustrate models of concept learning (Mitchell, 1997). It isaso the focus of state-
of-the-art theoretical work and applications (Dietterich et al., 1997). Therectanglelearning
task isnot well known in cognitive psychology, but many studies have investigated human
learning in similar tasks using simple concepts defined over two perceptually separable
dimensions such as size and color (Shepard, 1987). Such impoverished tasks are worth
our attention because they isolate the essential inductive challenge of concept learningin a
form that is analytically tractable and amenable to empirical study in human subjects.

This paper consists of two main contributions. | first present a new theoretical analysis
of the rectangle learning problem based on Bayesian inference and contrast this model’s
predictions with standard learning frameworks (Section 2). | then describe an experiment
with human subjects on the rectangle task and show that, of the models considered, the
Bayesian approach provides by far the best description of how people actually generalize
on this task when given only limited positive evidence (Section 3). These results suggest
an explanation for some aspects of the ubiquotous human ability to learn conceptsfrom just
afew positive examples.

2 Theoretical analysis

Computational approaches to concept learning. Depending on how they model a con-
cept, different approaches to concept learning differ in their ability to generalize meaning-
fully from only limited positive evidence. Discriminative approaches embody no explicit
model of aconcept, but only a procedure for discriminating category members from mem-
bers of mutually exclusive contrast categories. Most backprop-style neural networks and
exemplar-based techniques (e.g. K-nearest neighbor classification) fall into this group,
along with hybrid modelslike ALCOVE (Kruschke, 1992). These approachesare ruled out
by definition; they cannot learn to discriminate positive and negative instancesif they have
seen only positive examples. Distributional approaches model a concept as a probability
distribution over some feature space and classify new instances z as members of C' if their



estimated probability p(z|C') exceeds athreshold #. This group includes “novelty detec-
tion” techniques based on Bayesian nets (Jaakkola et a., 1996) and, loosely, autoencoder
networks (Japkowicz et a., 1995). While p(z|C') can be estimated from only positive ex-
amples, novelty detection also requires negative examples for principled generalization, in
order to set an appropriate threshold & which may vary over many orders of magnitude for
different concepts. For learning from positive evidence only, our best hope are algorithms
that treat anew concept C' as an unknown subset of the universe of objects and decide how
to generalize C by finding “good” subsets in a hypothesis space H of possible concepts.

TheBayesian framework. For thistask, the natural hypothesis space H correspondsto all
rectanglesin the plane. The central challenge in generalizing using the subset approach is
that any small set of exampleswill typically be consistent with many hypotheses (Fig. 1b).
This problem is not unique to learning rectangles, but is a universal dilemnawhen trying to
generalize concepts from only limited positive data. The Bayesian solution isto embed the
hypothesis space in a probabilistic model of our observations, which allows us to weight
different consistent hypotheses as more or less likely to be the true concept based on the
particular examples observed. Specifically, we assume that the examples are generated by
random sampling from thetrue concept. Thisleadstothesizeprinciple: smaller hypotheses
become more likely than larger hypotheses (Fig. 1b — darker rectangles are more likely),
and they become exponentially morelikely as the number of consistent examplesincreases
(Fig. 1c). The size principle isthe key to understanding how we can learn concepts from
only afew positive examples.

Formal treatment. We observe n positive examples X = {«%), ... 2(™)} of concept C
and want to compute the generalization function p(y € C'|X), i.e. the probability that some
new object y belongs to C given the observations X. Let each rectangle hypothesis 2 be
denoted by aquadruple ({1, Iz, s1, s2), wherel; € [—oo, oo] isthe location of h’slower-|eft
corner and s; € [0, co] isthe size of h aong dimension i.

Our probabilistic model consists of a prior density p(#) and alikelihood function p(X |h)
for each hypothesis h € H. Thelikelihood is determined by our assumption of randomly
sampled positive examples. In the simplest case, each example in X is assumed to be
independently sampled from a uniform density over the concept C'. For n examples we
then have:

p(X|h) = L/[p" if Vj,2U) eh (1)
= 0 otherwise,

where || denotes the size of h. For rectangle (11, {2, s1, s2), |h| isSimply s1s2. Note that
because each hypothesi s must distribute oneunit massof likelihood over itsvolumefor each
example (f, ., p(z|h)dh = 1), the probability density for smaller consistent hypothesesis
greater than for larger hypotheses, and exponentially greater as afunction of n. Figs. 1b,c
illustrate this size principle for scoring hypotheses (darker rectangles are more likely).

The appropriate choice of p(h) depends on our background knowledge. If we have no a
priori reason to prefer any rectangle hypothesis over any other, we can choose the scale-
and location-invariant uninformative prior, p(h) = p(l1,l2, s1,s2) = 1/(s1,s2). Inany
realistic application, however, we will have some prior information. For example, we may
know the expected size o; of rectangle concepts along dimension i in our domain, and then
use the associated maximum entropy prior p(l1, Iz, s1, s2) = exp{—(s1/01+ s2/02)}.

The generalization function p(y € C|X) is computed by integrating the predictions of all
hypotheses, weighted by their posterior probabilities p(h| X ):

p(y € CIX) = / M € CIRp(IX) dh 2

where from Bayes theorem p(h|X) o« p(X|h)p(h) (normalized such that
Jyen P(A|X)dh = 1), and p(y € Clh) = 1if y € h and O otherwise. Under the



uninformative prior, this becomes:

1 n—1
(1+ d1/r1)(1+ da/r2)

Here r; is the maximum distance between the examples in X along dimension ¢, and
d; equals 0 if y falls inside the range of values spanned by X aong dimension ¢, and
otherwise equals the distance from y to the nearest example in X aong dimension i.
Under the expected-size prior, p(y € C|X) has no closed form solution valid for all n.
However, except for very small valuesof n (e.g. < 3) and r; (e.g. < ¢;/10), thefollowing
approximation holds to within 10% (and usually much less) error:

ply € ClX) = 3)

exp{—(di/o1+ da/02)} . (4)
[(1 + d~1/7'1)(1 + d~2/7’2)] et

ply € C|X) ~

Fig. 2 (left column) illustrates the Bayesian learner’s contours of equal probability of
generdization (at p = 0.1 intervals), for different values of n and r;. The bold curve
corresponds to p(y € C|X) = 0.5, a natural boundary for generalizing the concept.
Integrating over all hypotheses weighted by their size-based probabilities yields a broad
gradient of generalization for small n (row 1) that rapidly sharpens up to the smallest
consistent hypothesisasn increases (rows2-3), and that extendsfurther along thedimension
with a broader range r; of observations. This figure reflects an expected-size prior with
o1 = 0o = axiswidth/2; using an uninformative prior produces aqualitatively similar plot.

Related work: MIN and Weak Bayes. Two existing subset approachesto concept learning
can be seen asvariants of this Bayesian framework. Theclassic MIN algorithm generalizes
no further than the smallest hypothesisin H that includesall the positive examples (Bruner
et a., 1956; Feldman, 1997). MIN isa PAC learning algorithm for the rectangles task, and
also correspondsto the maximum likelihood estimatein the Bayesian framework (Mitchell,
1997). However, while it converges to the true concept as n becomeslarge (Fig. 2, row 3),
it appears extremely conservative in generalizing from very limited data (Fig. 2, row 1).

An earlier approach to Bayesian concept learning, developed independently in cognitive
psychology (Shepard, 1987) and machine learning (Haussler et al., 1994; Mitchell, 1997),
was an important inspiration for the framework of this paper. | call the earlier approach
weak Bayes, because it embodies a different generative model that leadsto a much weaker
likelihood function than Eq. 1. While Eq. 1 came from assuming examples sampled
randomly from the true concept, weak Bayes assumes the examples are generated by an
arbitrary processindependent of the true concept. Asaresult, the size principlefor scoring
hypotheses does not apply; all hypotheses consistent with the examplesreceive alikelihood
of 1, instead of thefactor of 1/|h|" inEq. 1. Theextent of generalizationisthen determined
solely by the prior; for example, under the expected-size prior,

p(y € C|X) = exp{—(di/o1 + d2/02)}. (5)

Weak Bayes, unlike MIN, generalizes reasonably from just a few examples (Fig. 2, row 1).
However, because Eq. 5 is independent of »n or r;, weak Bayes does not converge to the
true concept as the number of examplesincreases (Fig. 2, rows 2-3), nor doesit generalize
further along axes of greater variability. While weak Bayes is a natural model when the
examplesreally are generated independently of the concept (e.g. when the learner himself
or arandom process chooses objectsto be labeled “ positive” or “negative’ by ateacher), it
isclearly limited as amodel of learning from deliberately provided positive examples.

In sum, previous subset approaches each appear to capture adifferent aspect of how humans
generalize concepts from positive examples. The broad similarity gradients that emerge



from weak Bayes seem most applicable when only a few broadly spaced examples have
been observed (Fig. 2, row 1), while the sharp boundaries of the MIN rule appear more
reasonable as the number of examplesincreases or their range narrows (Fig. 2, rows 2-3).
In contrast, the Bayesian framework guided by the size principle automatically interpol ates
between these two regimes of similarity-based and rule-based generalization, offering the
best hope for a complete model of human concept learning.

3 Experimental datafrom human subjects

This section presents empirical evidence that our Bayesian model — but neither MIN nor
weak Bayes— can explain human behavior on the simple rectangle learning task. Subjects
were giventhetask of guessing 2-dimensional rectangular conceptsfrom positive examples
only, under the cover story of learning about the range of healthy levels of insulin and
cholesterol, as described in Section 1. On each trial of the experiment, severa dots
appeared on a blank computer screen. Subjects were told that these dots were randomly
chosen examples from some arbitrary rectangle of “healthy levels,” and their job was to
guess that rectangle as nearly as possible by clicking on-screen with the mouse. The dots
werein fact randomly generated on each trial, subject to the constraintsof threeindependent
variablesthat were systematically varied acrosstrialsin a (6 x 6 x 6) factorial design. The
three independent variables were the horizontal range spanned by the dots (.25, .5, 1, 2, 4,
8 unitsin a 24-unit-wide window), vertical range spanned by the dots (same), and number
of dots (2, 3, 4, 6, 10, 50). Subjects thus completed 216 trials in random order. To ensure
that subjects understood the task, they first completed 24 practice trialsin which they were
shown, after entering their guess, the “true” rectangle that the dots were drawn from. *

The data from 6 subjects is shown in Fig. 3a, averaged across subjects and across the two
directions (horizontal and vertical). The extent d of subjects’ rectangles beyond r, the
range spanned by the observed examples, is plotted as a function of » and n, the number
of examples. Two patterns of generalization are apparent. First, d increases monotonically
with 7 and decreases with n. Second, the rate of increase of d as a function of r is much
dower for larger values of n.

Fig. 3b shows that neither MIN nor weak Bayes can explain these patterns. MIN always
predicts zero generalization beyond the examples—ahorizontal lineat d = 0—for all values
of r and n. The predictions of weak Bayes are also independent of » and n: d = o log2,
assuming subjects givethetightest rectangle enclosing all pointsy withp(y € C|X) > 0.5.

Under the same assumption, Figs. 3c,d show our Bayesian model’s predicted bounds on
generalization using uninformative and expected-size priors, respectively. Both versions of
the model capture the qualitative dependence of d on r and n, confirming the importance of
the size principlein guiding generalization independent of the choice of prior. However, the
uninformative prior misses the nonlinear dependence on r for small n, because it assumes
anideal scaleinvariancethat clearly does not hold in this experiment (due to the fixed size
of the computer window in which the rectangles appeared). In contrast, the expected-size
prior naturally embodies prior knowledge about typical scaleinits onefree parameter o. A
reasonable value of o = 5 units (out of the 24-unit-wide window) yields an excellent fit to
subjects’ average generalization behavior on this task.

4 Conclusions

In developing a model of concept learning that is at once computationally principled and
ableto fit human behavior precisely, | hope to have shed some light on how people are able

!Because dots were drawn randomly, the “true” rectanglesthat subjects saw during practice were
quite variable and were rarely the “correct” response according to any theory considered here. Thus
itisunlikely that this short practice was responsible for any consistent trendsin subjects’ behavior.



to infer the correct extent of a concept from only afew positive examples. The Bayesian
model has two key components: (1) a generalization function that results from integrating
the predictions of al hypothesesweighted by their posterior probahility; (2) the assumption
that examples are sampled from the concept to be learned, and not independently of the
concept as previous weak Bayes models have assumed. Integrating predictions over the
whole hypothesis space explains why either broad gradients of generalization (Fig. 2, row
1) or sharp, rule-based generalization (Fig. 2, row 3) may emerge, depending on how
peaked the posterior is. Assuming examples drawn randomly from the concept explains
why learners do not weight all consistent hypotheses equally, but instead weight more
specific hypotheses higher than more general ones by a factor that increases exponentially
with the number of examples observed (the size principle).

Thiswork is being extended in a number of directions. Negative instances, when encoun-
tered, are easily accomodated by assigning zero likelihood to any hypotheses containing
them. The Bayesian formulation applies not only to learning rectangles, but to learning
concepts in any measurable hypothesis space — wherever the size principle for scoring
hypotheses may be applied. 1n Tenenbaum (1999), | show that the same principles enable
learning number concepts and words for kinds of objects from only afew positive exam-
ples. 2 | also show how the size principle supports much more powerful inferences than
this short paper could demonstrate: automatically detecting incorrectly 1abeled examples,
selecting relevant features, and determining the complexity of the hypothesis space. Such
inferences are likely to be necessary for learning in the complex natural settings we are
ultimately interested in.
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Figure 2: Performance of three concept learning algorithms on the rectangle task.

(a) Average data from 6 subjects (b) MIN and weak Bayes models
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Figure 3: Datafrom human subjects and model predictionsfor the rectangle task.



