
Contentful Mental States for Robot Baby

Paul R. Cohen
Dept. of Computer Science.
University of Massachusetts,

Amherst
cohen@cs.umass.edu

Tim Oates
Dept. of Computer Science.

University of Maryland,
Baltimore County

oates@cs.umbc.edu

Carole R. Beal
Dept. of Psychology,

University of Massachusetts,
Amherst

cbeal@psych.umass.edu

Niall Adams
Dept. of Mathematics.

Imperial College,
London

n.adams@ic.ac.uk

Abstract

In this paper we claim that meaningful representations can
be learned by programs, although today they are almost al-
ways designed by skilled engineers. We discuss several kinds
of meaning that representations might have, and focus on a
functional notion of meaning as appropriate for programs to
learn. Specifically, a representation is meaningful if it incor-
porates an indicator of external conditions and if the indica-
tor relation informs action. We survey methods for inducing
kinds of representations we call structural abstractions. Pro-
totypes of sensory time series are one kind of structural ab-
straction, and though they are not denoting or compositional,
they do support planning. Deictic representations of objects
and prototype representations of words enable a program to
learn the denotational meanings of words. Finally, we discuss
two algorithms designed to find the macroscopic structure of
episodes in a domain-independent way.

Introduction

In artificial intelligence and other cognitive sciences it is taken for
granted that mental states are representational. Researchers differ
on whether representations must be symbolic, but most agree that
mental states have content — they are about something and they
mean something — irrespective of their form. Researchers dif-
fer too on whether the meanings of mental states have any causal
relationship to how and what we think, but most agree that these
meanings are (mostly) known to us as we think. Of formal rep-
resentations in computer programs, however, we would say some-
thing different: Generally, the meanings of representations have
no influence on the operations performed on them (e.g., a program
concludes q because it knows p → q and p, irrespective of what p
and q are about); yet the representations have meanings, known to
us, the designers and end-users of the programs, and the represen-
tations are provided to the programs because of what they mean
(e.g., if it was not relevant that the patient has a fever, then the
proposition febrile(patient) would not be provided to the
program — programs are designed to operate in domains where
meaning matters.). Thus, irrespective of whether the contents of
mental states have any causal influence on what and how we think,
these contents clearly are intended (by us) to influence what and

Copyright c© 2002, American Association for Artificial Intelli-
gence (www.aaai.org). All rights reserved.

how our programs think. The meanings of representations are not
irrelevant but we have to provide them.

This paper addresses philosophical and algorithmic issues in what
we might call robot intentionality or a philosophy of mind for
robots. We adapt current thinking in philosophy of mind for hu-
mans, particularly that of Fred Dretske, reifying in algorithms oth-
erwise abstract concepts, particularly the concept of meaning. If
programs could learn the meanings of representations it would
save us a great deal of effort. Most of the intellectual work in
AI is done not by programs but by their creators, and virtually
all the work involved in specifying the meanings of representa-
tions is done by people, not programs (but see, e.g., (Steels 1999;
Pierce & Kuipers 1997; Kuipers 2000)). This paper discusses kinds
of meaning that programs might learn and gives examples of such
programs.

How do people and computers come to have contentful, i.e., mean-
ingful, mental states? As Dennett (Dennett 1998) points out,
there are only three serious answers to the question: Contents are
learned, told, or innate. Lines cannot be drawn sharply between
these, in either human or artificial intelligence. Culture, including
our educational systems, blurs the distinction between learning and
being told; and it is impossible methodologically to be sure that the
meanings of mental states are innate, especially as some learning
occurs in utero (de Boysson-Bardies 2001) and many studies of
infant knowledge happen weeks or months after birth.

One might think the distinctions between learning, being told,
and innate knowledge are clearer in artificial systems, but the
role of engineers is rarely acknowledged (Cohen & Litch 1999;
Utgoff & Cohen 1998; Dretske 1988). Most AI systems manipu-
late representations that mean what engineers intend them to mean;
the meanings of representations are exogenous to the systems. It is
less clear where the meanings of learned representations reside, in
the minds of engineers or the “minds of the machines” that run the
learning algorithms. We would not say that a linear regression al-
gorithm knows the meanings of data or of induced regression lines.
Meanings are assigned by data analysts or their client domain ex-
perts. Moreover, these people select data for the algorithms with
some prior idea of what they mean. Most work in machine learn-
ing, KDD, and AI and statistics are essentially data analysis, with
humans, not machines, assigning meanings to regularities found in
the data.

We have nothing against data analysis, indeed we think that learn-
ing the meanings of representations is data analysis, in particular,



analysis of sensory and perceptual time series. Our goal, though,
is to have the machine do all of it: select data, process it, and in-
terpret the results; then iterate to resolve ambiguities, test new hy-
potheses, refine estimates, and so on. The relationship between
domain experts, statistical consultants, and statistical algorithms is
essentially identical to the relationship between domain experts,
AI researchers, and their programs: In both cases the intermedi-
ary translates meaningful domain concepts into representations that
programs manipulate, and translates the results back to the domain
experts. We want to do away with the domain expert and the engi-
neers/statistical consultants, and have programs learn representions
and their meanings, autonomously.

One impediment to learning the meanings of representations is
the fuzziness of commonsense notions of meaning. Suppose a re-
gression algorithm induces a strong relationship between two ran-
dom variables x and y and represents it in the conventional way:
y = 1.31x− .03, R2 = .86, F = 108.3, p < .0001. One meaning
of this representation is provided by classical inferential statistics:
x and y appear linearly related and the relationship between these
random variables is very unlikely to be accidental. Now, the statis-
tician might know that x is daily temperature and y is ice-cream
sales, and so he or his client domain expert might assign additional
meaning to the representation, above. For instance, the statistician
might warn the domain expert that the assumptions of linear re-
gression are not well-satisfied by the data. Ignoring these and other
cautions, the domain expert might even interpret the representation
in causal terms (i.e., hot weather causes people to buy ice-cream).
Should he submit the result to an academic journal, the reviews
would probably criticize this semantic liberty and would in any
case declare the result as meaningless in the sense of being utterly
unimportant and unsurprising.

This little example illustrates at least five kinds of meaning for the
representation y = 1.31x−.03, R2 = .86, F = 108.3, p < .0001.
There is the formal meaning, including the mathematical fact that
86 % of the variance in the random variable y is explained by x.
Note that this meaning has nothing to do with the denotations of y
and x, and it might be utter nonsense in the domain, but, of course,
the formal meaning of the representation is not about weather and
ice cream, it is about random variables. Another kind of meaning
has to do with the model that makes y and x denote ice cream and
weather. When the statistician warns that the residuals of the re-
gression have structure, he is saying that a linear model might not
summarize the relationship between x and y as well as another kind
of model. The domain expert will introduce a third kind of mean-
ing: he will interpret y = 1.31x − .03, R2 = .86, F = 108.3,
p < .0001 as a statement about ice cream sales. This is not to say
that every aspect of the representation has an interpretation in the
domain—the expert might not assign a meaning to the coefficient
−.03—only that, to the expert, the representation is not a formal
object but a statement about his domain. We could call this kind of
meaning the domain semantics, or the functional semantics, to em-
phasize that the interpretation of a representation has some effect
on what the domain expert does or thinks about.

Having found a relationship between ice cream sales and the
weather, the expert will feel elated, ambitious, or greedy, and this is
a fourth, affective kind of meaning. Let us suppose, however, that
the relationship is not real, it is entirely spurious (an artifact of a
poor sampling procedure, say) and is contradicted by solid results
in the literature. In this case the representation is meaningless in
the sense that it does not inform anyone about how the world really
works.

To which of these notions of meaning should a program that learns
meanings be held responsible? The semantics of classical statistics
and regression analysis in particular are sophisticated, and many
humans perform adequate analyses without really understanding
either. More to the point, what good is an agent that learns formal
semantics in lieu of domain or functional semantics? The relation-
ship between x and y can be learned (even without a statistician
specifying the form of the relationship), but so long as it is a for-
mal relationship between random variables, and the denotations of
x and y are unknown to the learner, a more knowledgeable agent
will be required to translate the formal relationship into a domain
or functional one. The denotations of x and y might be learned,
though generally one needs some knowledge to bootstrap the pro-
cess; for example, when we say, “x denotes daily temperature,” we
call up considerable amounts of common-sense knowledge to as-
sign this statement meaning. 1 As to affective meanings, we believe
artificial agents will benefit from them, but we do not know how to
provide them.

This leaves two notions of meaning, one based in the functional
roles of representations, the other related to the informativeness of
representations. The philosopher Fred Dretske wrestled these no-
tions of meaning into a theory of how meaning can have causal
effects on behavior (Dretske 1981; 1988). Dretske’s criteria for a
state being a meaningful representational state are: the state must
indicate some condition, have the function of indicating that con-
dition, and have this function assigned as the result of a learn-
ing process. The latter condition is contentious (Dennett 1998;
Cohen & Litch 1999), but it will not concern us here as this pa-
per is about learning meaningful representations. The other con-
ditions say that a reliable indicator relationship must exist and be
exploited by an agent for some purpose. Thus, the relationship be-
tween mean daily temperature (the indicator) and ice-cream sales
(the indicated) is apt to be meaningful to ice-cream companies, just
as the relationship between sonar readings and imminent collisions
is meaningful to mobile robots, because in each case an agent can
do something with the relationship. Learning meaningful repre-
sentations, then, is tantamount to learning reliable relationships be-
tween denoting tokens (e.g., random variables) and learning what
to do when the tokens take on particular values.

The minimum required of a representation by Dretske’s theory is an
indicator relationship �s ← I(�S) between the external world state
�S and an internal state �s, and a function that exploits the indicator
relationship through some kind of action a, presumably changing
the world state: f(�s, a) → �S. The problems are to learn represen-
tations �s ∼ �S and the functions f (the relationship ∼ is discussed
below, but here means “abstraction”).

These are familiar problems to researchers in the reinforcement
learning community, and we think reinforcement learning is a way
to learn meaningful representations (with the reservations we dis-
cussed in (Utgoff & Cohen 1998)). We want to up the ante, how-
ever, in two ways. First, the world is a dynamic place and we think
it is necessary and advantageous for �s to represent how the world
changes. Indeed, most of our work is concerned with learning rep-
resentations of dynamics.

1Projects such as Cyc emphasize the denotational meanings of
representations (Lenat & Guha 1990; Lenat 1990). Terms in Cyc
are associated with axioms that say what the terms mean. It took a
collosal effort to get enough terms and axioms into Cyc to support
the easy acquisition of new terms and axioms.



Second, a policy of the form f(�s, a) → �s manifests an intimate re-
lationship between representations �s and the actions a conditioned
on them: �s contains the “right” information to condition a. The
right information is almost always an abstraction of raw state in-
formation; indeed, two kinds of abstraction are immediately ap-
parent. Not all state information is causally relevant to action, so
one kind of abstraction involves selecting information in �S to in-
clude in �s (e.g., subsets or weighted combinations or projections of
the information in �S). The other kind of abstraction involves the
structure of states. Consider the sequence AABACAABACAABA-
CAABADAABAC. Its structure can be described many ways, per-
haps most simply by saying, “the sequence AABAx repeats five
times, and x =C in all but the fourth replication, when x =D.”
This might be the abstraction an agent needs to act; for example,
it might condition action on the distinction between AABAC and
AABAD, in which case the “right” representation of the sequence
above is something like this p1s1p1s1p1s1p1s2p1s1, where p and
s denote structural features of the original sequence, such as “pre-
fix” and “suffix’. We call representations that include such struc-
tural features structural abstractions.

To recap, representations �s are meaningful if they are related to
action by a function f(�s, a) → �S, but f can be stated more or
less simply depending on the abstraction �s ∼ �S. One kind of ab-
straction involves selecting from the information in �S, the other is
structural abstraction. The remainder of this paper is concerned
with learning structural abstractions, with what AI researchers call
“getting the representation right,” a creative process that we reserve
unto ourselves and to which, if we are honest, we must attribute
most of the performance of our programs. Note that, in Dretske’s
terms, structural abstractions can be indicator functions but not all
indicator functions are structural abstractions. Because the world
is dynamic, we are particularly concerned with learning structural
abstractions of time series.

Structural Abstractions of Time Series

As a robot wanders around its environment, it generates a sequence
of values of state variables. At each instant t we get a vector of val-
ues �xt (our robot samples its sensors at 10Hz, so we get ten such
vectors each second). Suppose we have a long sequence of such
vectors X = �x0, �x1, . . .. Within X are subsequences xij that,
when subjected to processes of structural abstraction, give rise to
episode structures that are meaningful in the sense of informing
action. The trick is to find the subsequences xij and design the
abstraction processes that produce episode structures. We have de-
veloped numerous methods of this sort and survey some of them
briefly, here.

Figure 1 shows four seconds of data from a Pioneer 1 robot as it
moves past an object. Prior to moving, the robot establishes a co-
ordinate frame with an x axis perpendicular to its heading and a y
axis parallel to its heading. As it begins to move, the robot mea-
sures its location in this coordinate frame. Note that the ROBOT-X
line is almost constant. This means that the robot did not change its
heading as it moved. In contrast, the ROBOT-Y line increases, indi-
cating that the robot does increase its distance along a line parallel
to its original heading. Note especially the VIS-A-X and VIS-A-Y
lines, which represent the horizontal and vertical locations, respec-
tively, of the centroid of a patch of light on the robot’s “retina,” a
CCD camera. VIS-A-X decreases, meaning that the object drifts to
the left on the retina, while VIS-A-Y increases, meaning the object

Figure 1: As the robot moves, an object approaches the pe-
riphery of its field of view then passes out of sight.

moves toward the top of the retina. Simultaneously, both series
jump to constant values. These values are returned by the vision
system when nothing is in the field of view.

Every time series that corresponds to moving past an object has
qualitatively the same structure as the one in Figure 1. It fol-
lows that if we had a statistical technique to group the robot’s
experiences by the characteristic patterns in multivariate time se-
ries (where the variables represent sensor readings), then this tech-
nique would in effect learn a taxonomy of the robot’s experiences.
Clustering by dynamics (CBD) is such a technique (Tim Oates
2000a): A long multivariate time series is divided into segments,
each of which represents an episode such as moving toward an ob-
ject, avoiding an object, crashing into an object, and so on. The
episodes are not labeled in any way. Next, a dynamic time warp-
ing algorithm (Kruskall & Liberman 1983) compares every pair of
episodes and returns a number that represents the degree of sim-
ilarity between the time series in the pair. The algorithm returns
a degree of mismatch (conversely, similarity) between the series
after the best fit between them has been found. Given similarity
numbers for every pair of episodes, it is straightforward to clus-
ter episodes by their similarity. Lastly, another algorithm finds the
“central member” of each cluster, which we call the cluster proto-
type following Rosch (Rosch & Mervis 1975).

CBD produces structural abstractions (prototypes) of time series,
the question is whether these abstractions can be meaningful in
the sense of informing action. Schmill shows how to use proto-
types as planning operators (Matthew Schmill 2000). The first step
is to learn rules of the form, “in state i, action a leads to state j
with probability p.” These rules are learned by a classical decision-
tree induction algorithm, where features of states are decision vari-
ables. Given such rules, the robot can plan by means-ends anal-
ysis. It plans not to achieve world states specified by exogenous
engineers, as in conventional generative planning, but to achieve
world states which are preconditions for its actions. This is called
“planning to act,” and it has the effect of gradually increasing the
size of the corpus of prototypes and things the robot can do. In this
way, clustering by dynamics yields structural abstractions of time
series that are meaningful in the sense of informing action. There
is also a strong possibility that CBD prototypes are meaningful in
the sense of informing communicative actions. Oates, Schmill and
Cohen (2000b) report a very high degree of concordance between
the clusters of episodes generated by CBD and clusters generated
by a human judge. The prototypes produced by CBD are not weird
and unfamiliar to people, but seem to correspond to how humans
themselves categorize episodes. Were this not the case, communi-

VIS-A-Y

VIS-A-X

ROBOT-X

ROBOT-Y



cation would be hard, because the robot would have an ontology of
episodes unfamiliar to people.

A Critique of Sensory Prototypes

While the general idea of clustering by dynamics is attractive (it
does produce meaningful structural abstractions), the CBD method
described above has two limitations. First, it requires someone (or
some algorithm) to divide a time series into shorter series that con-
tain instances of the structures we want to find. The technique can-
not accept time series of numerous undifferentiated activities (e.g.,
produced by a robot roaming the lab for an hour). A more seri-
ous problem concerns the kinds of prototypes produced by CBD,
of which Figure 1 is an example. As noted earlier, this prototype
represents the robot moving past an object, say, a cup. Can we
find anything in the representation that denotes a cup? We cannot.
Consequently, representations of this kind cannot inform actions
that depend on individuating the cup; for example, the robot could
not respond correctly to the directive, “Turn toward the cup.” The
abstractions produced by CBD contain sufficient structure to clus-
ter episodes, but still lack much of the structure of the episodes. If
one is comfortable with a crude distinction between sensations and
concepts, then the structural abstractions produced by CBD are en-
tirely sensory (Paul R. Cohen & Beal 1997). They do not represent
objects, spatial relationships, or any other individuated entity.

Learning Word Meanings

Learning the meanings of words in speech clearly requires indi-
viduation of elements in episodes. To learn the meaning of the
word “cup” the robot must first individuate the word in the speech
signal, then individuate the object cup in other sensory series, as-
sociate the representations; and perhaps estimate some properties
of the object corresponding to the cup, such as its color, or the fact
that it participates as a target in a “turn toward” activity. In his PhD
dissertation, Oates discusses an algorithm called PERUSE that does
all these things (Oates 2001).

To individuate objects in time series PERUSE relies on deictic mark-
ers — functions that map from raw sensory data to representa-
tions of objects (Ballard, Hayhoe, & Pook 1997; Agre & Chapman
1987). A simple deictic marker might construct a representation
whenever the area of colored region of the visual field exceeds a
threshold. The representation might include attributes such as the
color, shape, and area, of the object, as well as the intervals during
which it is in view, and so on.

To individuate words in speech, PERUSE requires a corpus of
speech in which words occur multiple times (e.g., multiple sen-
tences contain the word “cup”). Spoken words produce similar
(but certainly not identical) patterns in the speech signal, as one
can see in Figure 2. (In fact, PERUSE’s representation of the speech
signal is multivariate but the univariate series in Fig. 2 will serve
to describe the approach.) If one knew that a segment in Figure 2
corresponded to a word, then one could find other segments like it,
and construct a prototype or average representation of these. For
instance, if one knew that the segment labeled A in Figure 2 cor-
responds to a word, then one could search for similar segments in
the other sentences, find A’, and construct a prototype from them.
These problems are by no means trivial, as the boundaries of words
are not helpfully marked in speech. Oates treats the boundaries as

Figure 2: Corresponding words in four sentences. Word
boundaries are shown as boxes around segments of the
speech signal. Segments that correspond to the same word
are linked by connecting lines.

hidden variables and invokes the Expectation Maximization algo-
rithm to learn a model of each word that optimizes the placement
of the boundaries. However, it is still necessary to begin with a seg-
ment that probably corresponds to a word. This problem is solved
with two heuristics: In brief, the entropy of the distribution of the
“next tick” spikes at episode (e.g., word) boundaries; and the pat-
terns in windows that contain boundaries tend to be less frequent
than patterns in windows that do not. These heuristics, combined
with some methods for growing hypothesized word segments, suf-
fice to bootstrap the process of individuating words in speech.

Given prototypical representations of words in speech, and rep-
resentations of objects and relations, PERUSE learns associatively
the denotations of the words. Denotation is a common notion of
meaning: The meaning of a symbol is what it points to, refers
to, selects from a set, etc. However, naive implementations of
denotation run into numerous difficulties, especially when one
tries to learn denotations. One difficulty is that the denotations
of many (perhaps most) words cannot be specified as boolean
combinations of properties (this is sometimes called the prob-
lem of necessary and sufficient conditions). Consider the word
“cup”. With repeated exposure, one might learn that the word de-
notes prismatic objects less than five inches tall. This is wrong
because it is a bad description of cups, and it is more seri-
ously wrong because no such description of cups can reliably di-
vide the world into cups and non-cups (see, e.g., (Lakoff 1984;
Bloom 2000)).

Another difficulty with naive notions of denotation is referential
ambiguity. Does the word “cup” refer to an object, the shape of
the object, its color, the actions one performs on it, the spatial rela-
tionship between it and another object, or some other feature of the
episode in which the word is uttered? How can an algorithm learn
the denotation of a word when so many denotations are logically
possible?

Let us illustrate Oates’ approach to these problems with the word
“square,” which has a relatively easy denotation. Suppose one’s
representation of an object includes its apparent height and width,
and the ratio of these. An object will appear square if the ratio is
near 1.0. Said differently, the word “square” is more likely to be
uttered when the ratio is around 1.0 than otherwise. Let φ be the
group of sensors that measures height, width and their ratio, and let
x be the value of the ratio. Let U be an utterance and W be a word
in the utterance. Oates defines the denotation of W as follows:



denote(W, φ, x) = Pr(contains(U, W )|about(U, φ), x) (1)

The denotation of the word “square” is the probability that it is
uttered given that the utterance is about the ratio of height to width
and the value of the ratio. More plainly, when we say “square”
we are talking about the ratio of height to width and we are more
likely to use the word when the value of the ratio is close to 1.0.
This formulation of denotation effectively dismisses the problem
of necessary and sufficient conditions, and it brings the problem of
referential ambiguity into sharp focus, for when an algorithm tries
to learn denotations it does not have access to the quantities on the
right hand side of Eq. 1, it has access only to the words it hears:

hear(W, φ, x) = Pr(contains(U, W )|x) (2)

The problem (for which Oates provides an algorithm) is to get
denote(W, φ, x) from hear(W, φ, x).

At this juncture, however, we have said enough to make the case
that word meanings can be learned from time series of sensor and
speech data. We claim that the PERUSE algorithm constructs repre-
sentations and learns their meanings by itself. PERUSE builds word
representations sufficient for a robot to respond to spoken com-
mands and to translate words between English, German and Man-
darin Chinese. The denotational meanings of the representations
are therefore sufficient to inform some communicative acts.

Although PERUSE is a suite of statistical methods, it is about as far
from the data analysis paradigm with which we began this paper
as one can imagine. In that example, an analyst and his client do-
main expert select and provide data to a linear regression algorithm
because it means something to them, and the algorithm computes
a regression model that (presumably) means something to them.
Neither data nor model mean anything to the algorithm. In con-
trast, PERUSE selects and processes speech data in such a way that
the resulting prototypes are likely to be individuated entities (more
on this, below), and it assigns meaning to these entities by finding
their denotations as described earlier. Structural abstraction of rep-
resentations and assignment of meaning are all done by PERUSE.

Conclusion

The central claim of this paper is that programs can learn represen-
tations and their meanings. We adopted Dretske’s definition that a
representation is meaningful if it reliably indicates something about
the external world and the indicator relationship is exploited to in-
form action. As this notion of meaning does not constrain what is
represented, how it is represented, and how representations inform
action, we have considerable freedom in how we gather evidence
relevant to the claim. In fact, we imposed additional constraints
on learned representations in our empirical work: They should be
grounded in sensor data from a robot; the data should have a tem-
poral aspect and time or the ordinal sequence of things should be an
explicit part of the learned representations; and the representations
should not merely inform action, but should inform two essentially
human intellectual accomplishments, language and planning. We
have demonstrated that a robot can learn the meanings of words,
and construct simple plans, and that both these abilities depend on

representations and meanings learned by the robot. In general, we
have specified how things are to be represented (e.g., as sequences
of means and variances, multivariate time series, transition proba-
bilities, etc.) but the contents of the representations (i.e., what is
represented) and the relationship between the contents and actions
have been learned.

Acknowledgments

This research is supported by DARPA under contract number
USASMDCDASG60-99-C-0074. The U.S. Government is autho-
rized to reproduce and distribute reprints for governmental pur-
poses notwithstanding any copyright notation hereon. The views
and conclusions contained herein are those of the authors and
should not be interpreted as necessarily representing the offi-
cial policies or endorsements either expressed or implied, of the
DARPA or the U.S. Government.

References

Agre, P. E., and Chapman, D. 1987. Pengi: An implementation of
a theory of activity. In Proceedings of the Sixth National Confer-
ence on Artificial Intelligence, 268–272. American Association
for Artificial Intelligence.

Ballard, D. H.; Hayhoe, M. M.; and Pook, P. K. 1997. Deictic
codes for the embodiment of cognition. Computer Science De-
partment, University of Rochester.

Bloom, P. 2000. How Children Learn the Meanings of Words.
MIT Press.

Cohen, P. R., and Litch, M. 1999. What are contentful mental
states? dretske’s theory of mental content viewed in the light of
robot learning and planning algorithms. In Proceedings of the
Sixteenth National Conference on Artificial Intelligence.

de Boysson-Bardies, B. 2001. How Language Comes to Children.
MIT Press.

Dennett, D. 1998. Do it yourself understanding. In Dennett, D.,
ed., Brainchildren, Essays on Designing Minds. MIT Press and
Penguin.

Dretske, F. 1981. Knowledge and the Flow of Information. Cam-
bridge University Press. Reprinted by CSLI Publications, Stan-
ford University.

Dretske, F. 1988. Explaining Behavior: Reasons in a World of
Causes. MIT Press.

Kruskall, J. B., and Liberman, M. 1983. The symmetric time
warping problem: From continuous to discrete. In Time Warps,
String Edits and Macromolecules: The Theory and Practice of
Sequence Comparison. Addison-Wesley.

Kuipers, B. 2000. The spatial semantic hierarchy. Artificial In-
telligence 119:191–233.

Lakoff, G. 1984. Women, Fire, and Dangerous Things. University
of Chicago Press.

Lenat, D. B., and Guha, R. V. 1990. Building large knowledge-
based systems: Representation and inference in the Cyc project.
Addison Wesley.

Lenat, D. B. 1990. Cyc: Towards programs with common sense.
Communications of the ACM 33(8).

Matthew Schmill, Tim Oates, P. C. 2000. Learning planning op-
erators in real-world, partially observable environments. In Pro-



ceedings Fifth International Conference on Artificial Planning
and Scheduling, 246–253. AAAI Press.

Oates, J. T. 2001. PhD: Grounding Knowledge in Sensors: Un-
supervised Learning for Language and Planning. Ph.D. Disser-
tation, Affiliation removed for blind review.

Paul R. Cohen, Marc S. Atkin, T. O., and Beal, C. R. 1997. NEO:
Learning conceptual knowledge by sensorimotor interaction with
an environment. In Proceedings of the First International Con-
ference on Autonomous Agents, 170–177.

Pierce, D., and Kuipers, B. 1997. Map learning with uninterpreted
sensors and effectors. Artificial Intelligence Journal 92:169–229.

Rosch, E., and Mervis, C. B. 1975. Family resemblances: Stud-
ies in the internal structure of categories. Cognitive Psychology
7:573–605.

Steels, L. 1999. The Talking Heads Experiment: Volume I. Words
and Meanings. Laboratorium, Antwerpen. This is a museum
catalog but is in preparation as a book.

Tim Oates, Matthew Schmill, P. C. 2000a. Identifying qualita-
tively different outcomes of actions: Gaining autonomy through
learning. In Proceedings Fourth International Conference, pp
110-111. ACM.

Tim Oates, Matthew Schmill, P. C. 2000b. A method for clus-
tering the experience of a mobile robot that accords with human
judgments. In Proceedings of Seventeenth National Conference,
pp. 846-851. AAAI Press/The MIT Press.

Utgoff, P., and Cohen, P. R. 1998. Applicability of reinforce-
ment learning. In The Methodology of Applying Machine leraning
Problem Definition, Task Decompostion and Technique Selection
Workshop, ICML-98, 37–43.


