
Knowledge Organization and Structural Credit Assignment

Joshua Jones and Ashok Goel
College of Computing

Georgia Institute of Technology
Atlanta, USA 30332

{jkj, goel}@cc.gatech.edu

Abstract

Decomposition of learning problems is important
in order to make learning in large state spaces
tractable. One approach to learning problem de-
composition is to represent the knowledge that will
be learned as a collection of smaller, more indi-
vidually manageable pieces. However, such an ap-
proach requires the design of more complex knowl-
edge structures over which structural credit assign-
ment must be performed during learning. The spe-
cific knowledge organization scheme chosen has a
major impact on the characteristics of the structural
credit assignment problem that arises. In this paper,
we present an organizational scheme called Exter-
nally Verifiable Decomposition designed to facili-
tate credit assignment over composite knowledge
representations. We also describe an experiment
in an interactive strategy game that shows that a
learner making use of EVD is able to improve per-
formance on the studied task more rapidly than by
using pure reinforcement learning.

1 Introduction
The need for decomposition in learning problems has been
widely recognized. One approach to making learning in large
state spaces tractable is to design a knowledge representation
composed of small pieces, each of which concerns a more
compact state space than the overall problem. Techniques
that would be intractable for the problem as a whole can then
be applied successfully to each of the learning subproblems
induced by the set of components.

Such composite knowledge representations, however, re-
quire the design of top-level structures that combine the
knowledge that will be stored at individual components into
a usable whole that encodes knowledge about the complete
problem. These structures raise new issues for credit assign-
ment. Specifically, there is a need to perform structural credit
assignment over the top-level structure during learning.

The temporal credit assignment problem takes as input the
outcome of a sequence of actions by an agent and gives as
output a distribution over the actions in the sequence, where
the output distribution specifies the relative responsibility of
the actions for the outcome. In contrast, the structural credit

assignment problem takes as input the outcome of a single
action by an agent and gives as output a distribution over the
components of the agent, where the output distribution spec-
ifies the relative responsibility of the components for the out-
come. In this work, we are interested (only) in the structural
credit assignment problem as it pertains to a learning agent’s
knowledge. In particular, we are interested in specifying and
organizing knowledge components so as to enable accurate
and efficient structural credit assignment over the resulting
structure.

The question then becomes what might be the design prin-
ciples for organizing knowledge and what additional knowl-
edge might be encoded with each component to facilitate
structural credit assignment? In this paper, we present an
organizational and encoding scheme that we call Externally
Verifiable Decomposition (or EVD). We also describe exper-
imental results in an interactive strategy game, comparing re-
inforcement learning with EVD.

2 Externally Verifiable Decomposition
We begin by informally describing the EVD scheme with an
illustrative example from an interactive strategy game called
Freeciv (http://www.freeciv.org). We provide a formal de-
scription of EVD later in the paper.

2.1 Freeciv

FreeCiv is an open-source variant of a class of Civilization
games with similar properties. The aim in these games is
to build an empire in a competitive environment. The major
tasks in this endeavor are exploration of the randomly ini-
tialized game environment, resource allocation and develop-
ment, and warfare that may at times be either offensive or
defensive in nature. Winning the game is achieved most di-
rectly by destroying the civilizations of all opponents. We
have chosen FreeCiv as a domain for research because the
game provides challenging complexity in several ways. One
source of complexity is the game’s goal structure, where clean
decomposition into isolated subgoals is difficult or impossi-
ble. The game is also partially observable. The map is ini-
tially largely hidden, and even after exploration does not re-
flect state changes except in portions directly observed by a
player’s units. A consequence is that the actions of opponents
may not be fully accessible. Also, the game provides a very

large state space, making it intractable to learn to play well
without decomposition.

It is not necessary to understand the game completely for
the purpose of understanding this study, but some specifics
are in order. The game is played on a virtual map that is
divided into a grid. Each square in this grid can be character-
ized by the type of terrain, presence of any special resources,
and proximity to a source of water such as a river. In ad-
dition, each square in the grid may contain some improve-
ment constructed by a player. One of the fundamental actions
taken while playing FreeCiv is the construction of cities on
this game map, an action that requires resources. In return for
this expenditure, each city produces resources on subsequent
turns that can then be used by the player for other purposes,
including but not limited to the production of more cities. The
quantity of resources produced by a city on each turn is based
on several factors, including the terrain and special resources
surrounding the city’s location on the map, the construction
of various improvements in the squares surrounding the city,
and the skill with which the city’s operations are managed. As
city placement decisions are pivotal to success in the game,
an intelligent player must make reasoned choices about where
to construct cities.

2.2 Learner Design
We have designed an agent that plays FreeCiv. In this study,
we are focused on evaluating EVD for a relatively small but
still challenging part of the game. To that end, we have ap-
plied both EVD and Q-learning[Watkins, 1989] to a part of
the module responsible for making decisions about city place-
ment, specifically a part responsible for estimating the ex-
pected resource production over time if a city were built at a
particular map location. This estimate is a state abstraction
that can be used by a higher level reasoner to make decisions
about where to place cities. In the experiment described in
this paper, we are not concerned with the success of a higher
level reasoner, but only in acquiring the knowledge needed
to produce state abstractions that accurately project resource
production.

EVD Learner Design
Informally, the EVD scheme for organizing an agent’s
decision-making process has the following characteristics
(we provide a formal description of EVD later). Firstly, from
a top-level perspective, knowledge is organized in a state-
abstraction hierarchy, progressively aggregating and abstract-
ing from inputs. Figure 1 illustrates the hierarchy used to ap-
ply EVD in our chosen problem setting. This decomposition
is a simplification of actual game dynamics, but is sufficient
for the purposes of this study. The output of this structure is
one of nine values representing the expected resource produc-
tion of the terrain surrounding the map tile represented by the
inputs. Specifically, the value represents the (short and long
term) estimated resource production on each turn relative to a
baseline function. The baseline is computed as a function of
the number of turns for which the city in question has been
active. This baseline accounts for the fact that absolute re-
source production is expected to increase over time. Note
that no single estimate value may be correct for a given set

Figure 1: City Estimate Decomposition

of inputs, so the goal of learning is to minimize rather than
eliminate error in these estimates.

The leaf nodes in the hierarchy discretize raw features of
the world. For example,food start takes as input a raw per-
ception available from the environment (a set of numbers)
that represents the food production value of game tiles in the
inspected area. This leaf node produces as output an inte-
gral value from 1 to 5, representing the food resources ini-
tially available to the prospective city in a form usable by the
parent node. These discretization functions in leaf nodes are
hard-coded in this study.

Nodes at any level higher than leaf nodes in the hierarchy
view the outputs of child nodes as features and aggregate and
abstract them into states at their level. These abstractions
made at intermediate nodes are learned; that is, each node
contains a learner (the specific type of which is not specified
by EVD) capable of mapping the vector of inputs to an output
value. In this work, we use a simple table-lookup procedure
within each node to perform the mapping, where learning is
performed via a simple scheme that gradually changes table
entries as examples are presented. For example, thepopu-
lation growth component contains a three dimensional table
indexed by the output values offood start, sufficientsquares
andfood growth, and produces an integral output value from
1 to 5, abstractly representing the expected population growth
for the prospective city.

The most important feature of EVD is the association of
predictive knowledge with each non-leaf component. Specif-
ically, this knowledge establishes failure (success) conditions
for each output value available to the component with which
it is associated. In general these conditions could indicate
”hard” success or failure, or values along some gradient be-
tween success and failure, interpretable as severity of failure
and/or confidence in local failure. Here, we deal only with

digital success or failure. The predictive knowledge asso-
ciated with a component can be thought of as encoding the
semantics of the state abstraction knowledge acquired by the
learner within the component.

This predictive knowledge is encoded in structural credit
assignment functions, one of which is associated with each
agent component. These functions are used to reflect upon
the correctness of each component’s action as information be-
comes available through perception subsequent to value pro-
duction. The set of values produced by each component’s
function form an (unnormalized) distribution over the agent
structure, as required for structural credit assignment. As an
example, thepopulationgrowthnode has an associated func-
tion that takes as input the actual population of a city, the
number of turns that have passed since the city was built, and
the value that was produced by thepopulationgrowthnode’s
table during previous inference, and returns a boolean value
indicating whether the value produced is correct in light of
the first two parameters. This function was hand coded dur-
ing the design phase, representing the intended semantics of
the state abstraction to be produced by the node.

We term the property of a decomposition that is con-
structed to allow the encoding of this type of predictive
knowledge ”external verifiability” because each of the com-
ponents is designed to have semantics that can be verified
based on available percepts. Note that the technique is use-
ful only when values produced by components can be veri-
fied in retrospect, when percepts become available after ac-
tion selection – if they could be verified with certainty at the
time values are produced, there would be no need for learning
within components. Instead, the knowledge used for verifica-
tion could simply be used to produce values directly.

This principle of external verifiability is used when design-
ing a problem decomposition, guiding the choices that are
made in terms of problem framing and the definition of agent
components. The prescription of EVD is that these choices
must be made so that the necessary predictive knowledge can
be defined for each component. Beyond the facilitation of
credit assignment during learning, this type of decomposition
also has the advantage that agent components have meaning-
ful, known semantics, allowing the results of learning to be
easily interpreted.

Inference over an EVD structure is straightforward. In or-
der to produce an output, each component recursively queries
its children to obtain its inputs, and then uses its learner to
map these inputs into an output value. This recursion is ter-
minated at the leaves, at each of which a feature of raw input
state is discretized and returned.

Q-Learning Agent Design
A separate Q-learning agent was also implemented for the
purposes of comparison. The outputs of the EVD learner’s
input mappers are composed into a feature vector that is used
as the input state description for the Q-learner. The set of
values that can be produced as outputs by the EVD learner
form the set of actions available to the Q-learner. This setup
is intended to provide an I/O environment for the Q-learner
that matches that of the EVD learner closely. Each time the
action selected by the Q-learner corresponds to an incorrect

resource production estimate for the current turn, a reward of
-1 is given. If the action corresponds to a correct value for the
current turn, a reward of 0 is given. Exploration is handled by
initializing the value of all state-action pairs to 0, the highest
value possible under this reward scheme.

3 EVD Credit Assignment Procedure
While predictive knowledge forms the basis for credit assign-
ment over structures resulting from the application of EVD, it
is not sufficient in and of itself. Predictive knowledge estab-
lishes failure conditions for each component. However, this
knowledge does not capture the dependencies among agent
components, and these dependencies are also significant in
determining the failure status at each node. For this reason,
the failure conditions used for credit assignment must incor-
porate both the local predictive knowledge at each component
and some information about top-level knowledge structure.

This work focuses on decompositions with a hierarchical
structure, that progressively aggregate and abstract from raw
state features. For these state abstraction hierarchies, the ob-
servation necessary is that failure at a given component may
be due either to erroneous knowledge (mapping from inputs
to outputs) stored locally, or may be due to errors at the inputs
arising from faults nearer the leaves. This structural charac-
teristic, along with the functions enabling retrospective local
verification when feedback becomes available, forms the ba-
sis for the credit assignment process associated with this de-
composition technique.

Because the verification functions associated with each
agent component may in principle be arbitrarily complex, it
is advantageous to avoid evaluations whenever possible. In
order to limit the number of evaluations required during each
learning episode, we view incorrect behavior at a node as the
production of a value that is both registered as a failure by
the local verification function and that (recursively) results
in incorrect behavior at the parent. Only the first condition
is required for behavior at the root of the hierarchy to be
viewed as incorrect. Viewing error in this way means that
during some learning episodes, components that produce ac-
tions inconsistent with the local verification function may not
be given weight by the credit assignment process, if the er-
ror is not propagated to the root of the hierarchy. The neg-
ative repercussion of this choice is that some opportunities
for learning may not be fully exploited. However, if an ac-
tion taken by some agent component is truly to be seen as
incorrect, it is reasonable to require that there be some set of
circumstances under which the erroneous action contributes
to an overall failure. If such a situation exists, the credit as-
signment process will eventually recommend a modification
at the component. If no such situation exists, it is safe to
allow the component to continue with the ”erroneous” behav-
ior. The major benefit of this view is that when a component
is found to have chosen an action that agrees with the local
verification function, none of the components in the subtree
rooted at the evaluated component need to be examined.

Given this view of error, the set of local verification func-
tions associated with each component, and knowledge of
the hierarchical structure of the decomposition, the structural

bool EVD assign credit(EVD d, percepts P)

bool problem ← false

if d →F(d→a, P) == 1
return false

end

forall children c of d
if EVD assign credit(c, P) == true

problem ← true
end

end

if !problem
mark e

end
return true

end

Figure 2: Pseudo-code for EVD structural credit assign-
ment. Each node has an associated structural credit assign-
ment function as described above, denoted ’F’ here. Each
component is also expected to store its last action, ’a’.

credit assignment process is as shown in Figure 2. The func-
tion is called when new percepts become available from the
environment (here, on each new turn), and results in marking
the nodes identified as responsible for failure, if any. When
invoked, the procedure evaluates the verification function at
the root of the hierarchy based on the relevant value previ-
ously selected at that component. If the verification is suc-
cessful, no further action is taken. If an error is indicated,
each child is visited, where the procedure is recursively re-
peated. If and only if no error can be found at any child,
the current node is marked as being in error. The base case
for this recursive procedure is achieved by defining leaves
in the hierarchy as correct; that is, inputs representing raw
state are never considered to be a source of error, but are pro-
vided with ”dummy” verification functions that yield 1 for
all inputs. This procedure treats error as a digital property of
agent components, not making distinctions in degree of fail-
ure. Notice that this procedure also makes the commitment
that error is due either to local knowledgeor to erroneous in-
puts. Also note that this credit assignment procedure is purely
structural. That is, no temporal credit assignment is handled
by this algorithm. For this reason, the percepts ’P’ can be
directly attributed to the last action ’a’ taken by each compo-
nent. This is why cached last action values can be used in the
algorithm above. In order to address both structural and tem-
poral credit assignment, the method described here could be
used to distribute credit structurally after another technique
has distributed credit temporally.

Based on the result of structural credit assignment, learn-
ing is performed at each node that has been marked as er-
roneous, by whatever procedure is applicable to the type(s)
of learners used within the components. Note that the de-
composition method and accompanying method for structural
credit assignment make no prescription whatsoever in terms
of the knowledge format or learning procedure that is used
within each node. In this work, a simple table-update routine
was used within each component. However, in principle any
other type of learning technique desired could exist within

each component.

4 Experiments
In order to provide evidence that the decomposition tech-
nique and associated structural credit assignment method out-
lined above provide advantages over learning in a flat prob-
lem space, we have applied the technique to a problem within
a strategy game playing agent, and compared the results with
an RL implementation, specifically Q-learning, as discussed
previously.

4.1 Procedure
Because we train and evaluate the learners in an on-line,
incremental fashion, we cannot apply the standard train-
ing set/test set approach to evaluation. Rather, we evaluate
the learners’ performance improvement during training by
segmenting the sequence of games played into multi-game
blocks, and comparing overall error rate between blocks. In
this way, we are able to compare error rate around the begin-
ning of a training sequence with the error rate around the end
of that sequence.

Errors are counted on each turn of each game by produc-
ing a value (equivalently, selecting an action), finishing the
turn, perceiving the outcome of the turn, and then determin-
ing whether the value produced correctly reflects the resource
production experienced on that turn. If the value is incorrect,
an error is counted. Note that this error counting procedure
contrasts with another possibility; producing a value only at
the beginning of each game, and counting error on each turn
of the game based on this value, while continuing to learn on
each turn. While this alternative more closely matches the
intendeduseof the learned knowledge, we chose to instead
allow a value to be produced on each turn in order to reflect
the evolving state of knowledge as closely as possible in the
error count. A negative consequence of this choice is that
some overfitting within games may be reflected in the error
count. However, a decrease in error rate between the first and
last block in a sequence can be seen as evidence of true learn-
ing (vs. overfitting), since any advantage due to overfitting
should be as pronounced in the first group of games as in the
last. Also note that error counting was consistent for both the
EVD-based learner and the Q-learner.

In each trial, a sequence of games is run, and learning
and evaluation occurs on-line as described above. The EVD-
based learner is trained on sequences of 175 games, while
the Q-learner is allowed to train on sequences of 525 games.
We trained the Q-learner on sequences three times longer
than those provided to the EVD learner to determine whether
the Q-learner’s performance would approach that of the EVD
learner over a longer training sequence. As described above,
we segment these sequences of games into multi-game blocks
for the purpose of evaluation; the block sized used is 7 games.
Each game played used a (potentially) different randomly
generated map, with no opponents. The agent always builds a
city on the first occupied square, after making an estimate of
the square’s quality. Building in the first randomly generated
occupied square ensures that the learners will have opportu-
nities to acquire knowledge in a variety of states. Though this

EVD agent Q-learning agent
7th block 7th block 21st block

Without city 24% (4%) 1%
improvements

With city 29% 7% 10%
improvements

Table 1: Average percent decrease (or increase, shown in
parentheses) in error for decomposition-based learning im-
plementation from block 1 to 7, and for the Q-learning agent
from block 1 to blocks 7 and 21.

setup is simpler than a full-fledged game, it was sufficient to
illustrate differences between the learners. In order to com-
pensate for variation due to randomness in starting position
and game evolution, results are averaged over multiple inde-
pendent trial sequences. Each result for the EVD learner is
an average of 60 independent trials. Each result for the Q-
learner is an average over 25 independent trials; each trial is
time consuming, as each trial for the Q-learner is three times
as long as for the EVD-learner, and it did not seem likely
that further trials with the Q-learner would offer significantly
more information.

To compare the speed with which learning occurs in the
two agents, we ran two separate sets of trials. The first set of
trials was run in an environment where no city improvements
were constructed in the area surrounding the city. The second
set of trials did allow for the construction of city improve-
ments, but had an identical environment in all other ways. For
each set of environmental conditions, we measure the qual-
ity of learning by comparing the average number of errors
counted in the first block of the sequences to the number of
errors counted in the last block. In the case of the Q-learner,
we make two comparisons. The first compares error in the
first block to the block containing the 175th game, illustrat-
ing decrease in error over the same sequence length provided
to the EVD learner. We also compare error in the first block
to error in the last block of the Q-learner’s sequences, to de-
termine whether the Q-learner’s improvement will approach
that of the EVD learner over sequences three times as long.
We perform this evaluation separately for each of the two en-
vironmental setups.

4.2 Results
The results of the experiment described above are summa-
rized in Table 1. The EVD based learner is able to pro-
duce a greater improvement in error rate in each case, as
compared to the Q-learner, both after the same number of
games and after the Q-learner has played three times as many
games. For the two scenarios, the average improvement in
error rate is 26.5%, compared to only 1.5% after the same
number of training examples for Q-learning. The decrease
in error across a typical sequence was not strictly monotonic,
but did exhibit progressive decrease rather than wild fluctua-
tion. Even after three times as many games had been played
by the Q-learning agent, the decrease in error rate is signif-
icantly less than that achieved using EVD after only seven
blocks. In one case, it appears that learning has not yielded

an advantage in error rate in the Q-learning agent even after
525 games. Examining the complete set of results for inter-
vening blocks does mitigate this impression to some extent,
as an overall downward trend is observed, with some fluctu-
ations. However, given that the fluctuations can be of greater
magnitude than the decrease in error due to Q-learning, the
learning that has been achieved after this number of games
does not appear significant. Based on the significant differ-
ence in observed learning rate, these trials provide evidence
that the decomposed structure and accompanying structural
credit assignment capabilities of EVD do offer an advantage
in terms of allowing learning to occur more quickly in a large
state space.

5 Formal Description of EVD Structure
As has been discussed, this paper is focused on decomposi-
tions that progressively abstract away from raw state features
through a hierarchy of components. Abstraction hierarchies
can be viewed as handling a class of tasks, termed select-
1-out-of-n, in a way that has been identified and formally
described by Bylander, Johnson and Goel[Bylanderet al.,
1991]. We base our formal description of EVD structure on
this class of tasks. The select-1-out-of-n task is defined as
follows:

Definition 5.1 Let C be a set of choices. LetP be a set of
parameters. LetV be a set of values. Let an assignment of
values inV to the parametersP be represented by a function
d : P → V . Then letD be the set containing all possible pa-
rameter assignmentsd. Theselect-1-out-of-n task is defined
as a tuple,< P, V,C, s >, wheres is a functions : D → C.

In practice, each of the parameters inP may have a distinct
set of legal values. In this case,V is the union of the sets of le-
gal input values to each parameterp ∈ P , andD is restricted
to contain only functionsd that provide legal assignments of
values to parameters.

Before formally defining EVD structure, we need to define
an input mapper.

Definition 5.2 An input mapperis defined as a tuple
< p, V, C, T >, wherep is a single input parameter,V is the
set of values that can be taken by the parameter, andC is the
set of possible output values.T is a functionT : V → C
that implements the translation of input values to the choice
alphabet.

Now we can formally define EVD structure.

Definition 5.3 AnEVD is recursively defined as a tuple
< P, V,C,P,S,L, F >, whereP is the set of input parame-
ters,V is the set of values that can be taken by those param-
eters, andC is the set of choices that form the output of the
judgement.P is a tuple< P1, ..., Pr > such that{P1, ..., Pr}
is a partition of the parametersP of rankr. That is,P1, ..., Pr

are non-empty disjoint sets whose union isP . S is a tuple
< s1, ..., sr >, wheresi is anEVD with parametersPi, val-
uesV and choicesC if |Pi| > 1, or an input mapperwith
parameterp, p ∈ Pi, valuesV and choicesC if |Pi| = 1. L
is an arbitrary learner with domainCr and rangeC. F is a
functionF : e × C → {1, 0}, wheree is a representation of
feedback perceived from the environment.

Once again,V represents the union of the values taken by
all EVD parameters; value assignments and functions involv-
ing value assignments are restricted to handle legal assign-
ments only. This treatment ofV is for notational convenience.
Similarly, some subtrees may return only a subset ofC, and
L at the parent node need not handle outputs of a subtree that
cannot legally be produced. The functionF encodes predic-
tive knowledge about the knowledge encoded in the compo-
nent, as described above.

Evaluation of an EVD is handled in two steps. First, de-
termine the input toL by evaluating eachsi ∈ S, and then
produce as output the result of applyingL to the generated
input vector. Input mappers are evaluated by applyingT di-
rectly to the value of the sole parameterp. Learning over the
EVD structure as a whole proceeds by first using the credit
assignment technique described previously, and then apply-
ing feedback to the learner within each EVD component as
dictated by the outcome of credit assignment.

6 Discussion
The intended contribution of this work is in making explicit
the connection between structural credit assignment and de-
composition of learning problems via composite knowledge
representation, and in describing an approach that drives the
design of knowledge representations based on the needs of
structural credit assignment. The connection between decom-
position and structural credit assignment has been recognized
by Dietterich in his work on hierarchical reinforcement learn-
ing, where he refers to the problem as hierarchical credit as-
signment[Dietterich, 1998]. However, the MAXQ method
takes a different approach to decomposition that is not di-
rectly driven by the need to perform credit assignment over
the resulting structure, and focuses on temporal rather than
state abstractions.

Layered learning[Whitesonet al., 2005] makes use of de-
composition hierarchies to address large learning problems.
In layered learning, each component’s learner is trained in a
tailored environment specific to the component. The EVD
technique is more akin to what is called ”coevolution” of
components in work on layered learning, where all of the
learners in the decomposition hierarchy are trained as a com-
plete system in the actual target domain. Some notion of ex-
ternal verifiability is implicit in hierarchies built to be trained
with coevolution, as the evaluation functions used for each
component must be evaluable based on available percepts.
Here, we are explicit about the need to design decomposi-
tions specifically around this property, we allow the use of
arbitrary (possibly heterogeneous) learners within each com-
ponent, and provide a procedure for credit assignment over
the decomposition that can help to limit evaluations. An ad-
ditional distinction is that EVDs focus on state abstraction.
These decompositions aim to limit the number of inputs to
each component, ensuring a learning problem of manageable
dimensionality at each component. In contrast, layered learn-
ing focuses on temporal abstraction, where components re-
sponsible for selection of abstract actions are not necessarily
shielded from the need to consider many raw state features.

Work on Predictive State Representations (PSRs)[Littman

et al., 2001] outlines rationale for using state representations
that directly encode predictions about future events. In a gen-
eral way, the notion that knowledge should have a predictive
interpretation is central to this work as well. However, the
specific problems of decomposition and structural credit as-
signment that motivate this work are not the focus of PSRs,
and there are clearly significant differences between PSRs
and the work described here.

This work is an extension of our previous efforts[Jones
and Goel, 2004]. In addition to comparing the effectiveness
of EVD with reinforcement learning over a flat representa-
tion, this paper extracts and begins to formalize the key de-
sign principles from our previous work in the hopes that these
principles may be useful to researchers designing knowledge
representations for learning in other domains.

7 Conclusions
This paper presents an approach to designing a composite
knowledge representation for a learning agent that is directly
driven by the needs to perform structural credit assignment
over the resulting top-level structure. The experiment de-
scribed here provides evidence that the approach and accom-
panying credit assignment technique are sufficient for learn-
ing, and that the decomposition increases the tractability of
learning in a large state space. This means that if a prob-
lem framing and set of components can be defined according
to the principle of external verifiability for a given problem,
EVD-based knowledge structure and credit assignment may
be used to accelerate learning. In principle, this type of de-
composition should be compatible with a variety of learning
techniques within each component, and even with a hetero-
geneous set of techniques. Such combinations have the po-
tential to create learners for complex problems with varying
characteristics.

References
[Bylanderet al., 1991] T. Bylander, T.R. Johnson, and

A. Goel. Structured matching: a task-specific technique
for making decisions. Knowledge Acquisition, 3:1–20,
1991.

[Dietterich, 1998] T. Dietterich. The MAXQ method for hi-
erarchical reinforcement learning. InProc. 15th Interna-
tional Conf. on Machine Learning, pages 118–126. Mor-
gan Kaufmann, San Francisco, CA, 1998.

[Jones and Goel, 2004] J. Jones and A. Goel. Hierarchical
Judgement Composition: Revisiting the structural credit
assignment problem. InProceedings of the AAAI Work-
shop on Challenges in Game AI, San Jose, CA, USA, pages
67–71, 2004.

[Littmanet al., 2001] M. Littman, R. Sutton, and S. Singh.
Predictive representations of state, 2001.

[Watkins, 1989] C. J. Watkins. Learning from delayed re-
wards. PhD thesis, Cambridge university, 1989.

[Whitesonet al., 2005] S. Whiteson, N. Kohl, R. Miikku-
lainen, and P. Stone. Evolving keepaway soccer players
through task decomposition.Machine Learning, 59(1):5–
30, 2005.

