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Abstract assignment problem takes as input the outcome of a single

Decomposition of learning problems is important
in order to make learning in large state spaces
tractable. One approach to learning problem de-
composition is to represent the knowledge that will
be learned as a collection of smaller, more indi-
vidually manageable pieces. However, such an ap-
proach requires the design of more complex knowl-
edge structures over which structural credit assign-
ment must be performed during learning. The spe-
cific knowledge organization scheme chosen has a
major impact on the characteristics of the structural
credit assignment problem that arises. In this paper,
we present an organizational scheme called Exter-
nally Verifiable Decomposition designed to facili-
tate credit assignment over composite knowledge
representations. We also describe an experiment
in an interactive strategy game that shows that a
learner making use of EVD is able to improve per-
formance on the studied task more rapidly than by

action by an agent and gives as output a distribution over the
components of the agent, where the output distribution spec-
ifies the relative responsibility of the components for the out-
come. In this work, we are interested (only) in the structural
credit assignment problem as it pertains to a learning agent’s
knowledge. In particular, we are interested in specifying and
organizing knowledge components so as to enable accurate
and efficient structural credit assignment over the resulting
structure.

The question then becomes what might be the design prin-
ciples for organizing knowledge and what additional knowl-
edge might be encoded with each component to facilitate
structural credit assignment? In this paper, we present an
organizational and encoding scheme that we call Externally
Verifiable Decomposition (or EVD). We also describe exper-
imental results in an interactive strategy game, comparing re-
inforcement learning with EVD.

2 Externally Verifiable Decomposition

using pure reinforcement learning. We begin by informally describing the EVD scheme with an

illustrative example from an interactive strategy game called
Freeciv (http://www.freeciv.org). We provide a formal de-
ﬁcription of EVD later in the paper.

1 Introduction

The need for decomposition in learning problems has bee
widely recognized. One approach to making learning in larg = .
state spaces tractable is to design a knowledge representati rfl' reeciv
composed of small pieces, each of which concerns a morereeCiv is an open-source variant of a class of Civilization
compact state space than the overall problem. Techniquagmmes with similar properties. The aim in these games is
that would be intractable for the problem as a whole can theto build an empire in a competitive environment. The major
be applied successfully to each of the learning subproblemtasks in this endeavor are exploration of the randomly ini-
induced by the set of components. tialized game environment, resource allocation and develop-
Such composite knowledge representations, however, renent, and warfare that may at times be either offensive or
quire the design of top-level structures that combine thelefensive in nature. Winning the game is achieved most di-
knowledge that will be stored at individual components intorectly by destroying the civilizations of all opponents. We
a usable whole that encodes knowledge about the completeave chosen FreeCiv as a domain for research because the
problem. These structures raise new issues for credit assiggame provides challenging complexity in several ways. One
ment. Specifically, there is a need to perform structural credisource of complexity is the game’s goal structure, where clean
assignment over the top-level structure during learning. decomposition into isolated subgoals is difficult or impossi-
The temporal credit assignment problem takes as input thble. The game is also partially observable. The map is ini-
outcome of a sequence of actions by an agent and gives &ially largely hidden, and even after exploration does not re-
output a distribution over the actions in the sequence, wherlect state changes except in portions directly observed by a
the output distribution specifies the relative responsibility ofplayer’s units. A consequence is that the actions of opponents
the actions for the outcome. In contrast, the structural creditnay not be fully accessible. Also, the game provides a very



large state space, making it intractable to learn to play wel [city_quatity |
without decomposition.

It is not necessary to understand the game completely fc
the purpose of understanding this study, but some specific|
are in order. The game is played on a virtual map that is
divided into a grid. Each square in this grid can be character
ized by the type of terrain, presence of any special resource
and proximity to a source of water such as a river. In ad-
dition, each square in the grid may contain some improve [Shield fooi sometdense | | population happiness | [population arowdh |
ment constructed by a player. One of the fundamental action
taken while playing FreeCiv is the construction of cities on
this game map, an action that requires resources. In return fq [food_start | [suficient seuares | [food_growetn]
this expenditure, each city produces resources on subseque
turns that can then be used by the player for other purpose
including but not limited to the production of more cities. The
guantity of resources produced by a city on each turn is base
on several factors, including the terrain and special resource
surrounding the city’s location on the map, the constructior
of various improvements in the squares surrounding the city fashiwmter
and the skill with which the city’s operations are managed. As
city placement decisions are pivotal to success in the game,
an intelligent player must make reasoned choices about where Figure 1: City Estimate Decomposition
to construct cities.
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2.2 Learner Design . L L
. . . of inputs, so the goal of learning is to minimize rather than
We have designed an agent that plays FreeCiv. In this studg|iminate error in these estimates.

we are focused on evaluating EVD for a relatively small but

still challenging part of the game. To that end, we have ap: :
. 4 ) the world. For examplepod start takes as input a raw per-
plied both EVD and Q-learinfWatkins, 1989 to a part of ception available from the environment (a set of numbers)

the module responsible for making decisions about city placeg, o1 e presents the food production value of game tiles in the
ment, specifically a part responsible for estimating the ex

ected resource production over time if a city were built at inspected area. This leaf node produces as output an inte-
P P Y Oaﬁral value from 1 to 5, representing the food resources ini-

thgtt'g;:]a[);naseggat;)?‘: ;Qisleeztllrpeaz;goﬁear‘ i%il?ekatéi?o ally available to the prospective city in a form usable by the
u yanhg N . CCISIONArent node. These discretization functions in leaf nodes are
about where to place cities. In the experiment described i1 .0 4ad in this study

this paper, we are not concerned with the success of a higher ’ . .
pap g Nodes at any level higher than leaf nodes in the hierarchy

level reasoner, but only in acquiring the knowledge needed. X
to produce state abstractions that accurately project resourd4€W the outputs of child nodes as features and aggregate and
ducti abstract them into states at their level. These abstractions
production. : . .
made at intermediate nodes are learned; that is, each node

EVD Learner Design contains a learner (the specific type of which is not specified

Informally, the EVD scheme for organizing an agent's by EVD) capable of mapping the vector of inputs to an output
decision-making process has the following characteristic¥alue. In this work, we use a simple table-lookup procedure
(we provide a formal description of EVD later). Firstly, from Within each node to perform the mapping, where learning is
a top-level perspective, knowledge is organized in a statePerformed via a simple scheme that gradually changes table
abstraction hierarchy, progressively aggregating and abstracgntries as examples are presented. For examplepdpe-

ing from inputs. Figure 1 illustrates the hierarchy used to aplation_growth component contains a three dimensional table
ply EVD in our chosen problem setting. This decompositionindexed by the output values fifod start, sufficientsquares

is a simplification of actual game dynamics, but is sufficientandfood growth and produces an integral output value from
for the purposes of this study. The output of this structure isl t0 5, abstractly representing the expected population growth
one of nine values representing the expected resource produ€r the prospective city.

tion of the terrain surrounding the map tile represented by the The most important feature of EVD is the association of
inputs. Specifically, the value represents the (short and longredictive knowledge with each non-leaf component. Specif-
term) estimated resource production on each turn relative to igally, this knowledge establishes failure (success) conditions
baseline function. The baseline is computed as a function dr each output value available to the component with which
the number of turns for which the city in question has beerit is associated. In general these conditions could indicate
active. This baseline accounts for the fact that absolute rethard” success or failure, or values along some gradient be-
source production is expected to increase over time. Noteveen success and failure, interpretable as severity of failure
that no single estimate value may be correct for a given seand/or confidence in local failure. Here, we deal only with

The leaf nodes in the hierarchy discretize raw features of



digital success or failure. The predictive knowledge assoresource production estimate for the current turn, a reward of
ciated with a component can be thought of as encoding thel is given. If the action corresponds to a correct value for the
semantics of the state abstraction knowledge acquired by theurrent turn, a reward of 0 is given. Exploration is handled by
learner within the component. initializing the value of all state-action pairs to 0, the highest
This predictive knowledge is encoded in structural creditvalue possible under this reward scheme.
assignment functions, one of which is associated with each
agent component. These funct|on§ are used to refleqt upog EV/D Credit Assignment Procedure
the correctness of each component’s action as information be-
comes available through perception subsequent to value prd¥hile predictive knowledge forms the basis for credit assign-
duction. The set of values produced by each component'ment over structures resulting from the application of EVD, it
function form an (unnormalized) distribution over the agentis not sufficient in and of itself. Predictive knowledge estab-
structure, as required for structural credit assignment. As alishes failure conditions for each component. However, this
example, th@opulationgrowthnode has an associated func- knowledge does not capture the dependencies among agent
tion that takes as input the actual population of a city, thecomponents, and these dependencies are also significant in
number of turns that have passed since the city was built, andetermining the failure status at each node. For this reason,
the value that was produced by thepulationgrowthnode’s  the failure conditions used for credit assignment must incor-
table during previous inference, and returns a boolean valuporate both the local predictive knowledge at each component
indicating whether the value produced is correct in light ofand some information about top-level knowledge structure.
the first two parameters. This function was hand coded dur- This work focuses on decompositions with a hierarchical
ing the design phase, representing the intended semantics stfucture, that progressively aggregate and abstract from raw
the state abstraction to be produced by the node. state features. For these state abstraction hierarchies, the ob-
We term the property of a decomposition that is con-servation necessary is that failure at a given component may
structed to allow the encoding of this type of predictive be due either to erroneous knowledge (mapping from inputs
knowledge "external verifiability” because each of the com-to outputs) stored locally, or may be due to errors at the inputs
ponents is designed to have semantics that can be verifiatising from faults nearer the leaves. This structural charac-
based on available percepts. Note that the technique is usteristic, along with the functions enabling retrospective local
ful only when values produced by components can be veriverification when feedback becomes available, forms the ba-
fied in retrospect, when percepts become available after asis for the credit assignment process associated with this de-
tion selection — if they could be verified with certainty at the composition technique.
time values are produced, there would be no need for learning Because the verification functions associated with each
within components. Instead, the knowledge used for verificaagent component may in principle be arbitrarily complex, it
tion could simply be used to produce values directly. is advantageous to avoid evaluations whenever possible. In
This principle of external verifiability is used when design- order to limit the number of evaluations required during each
ing a problem decomposition, guiding the choices that ardearning episode, we view incorrect behavior at a node as the
made in terms of problem framing and the definition of agentproduction of a value that is both registered as a failure by
components. The prescription of EVD is that these choiceshe local verification function and that (recursively) results
must be made so that the necessary predictive knowledge ciémincorrect behavior at the parent. Only the first condition
be defined for each component. Beyond the facilitation ofis required for behavior at the root of the hierarchy to be
credit assignment during learning, this type of decompositiorviewed as incorrect. Viewing error in this way means that
also has the advantage that agent components have meanirlgting some learning episodes, components that produce ac-
ful, known semantics, allowing the results of learning to betions inconsistent with the local verification function may not
easily interpreted. be given weight by the credit assignment process, if the er-
Inference over an EVD structure is straightforward. In or-ror is not propagated to the root of the hierarchy. The neg-
der to produce an output, each component recursively queriedive repercussion of this choice is that some opportunities
its children to obtain its inputs, and then uses its learner tdor learning may not be fully exploited. However, if an ac-
map these inputs into an output value. This recursion is tertion taken by some agent component is truly to be seen as
minated at the leaves, at each of which a feature of raw inpuncorrect, it is reasonable to require that there be some set of

state is discretized and returned. circumstances under which the erroneous action contributes
) ) to an overall failure. If such a situation exists, the credit as-
Q-Learning Agent Design signment process will eventually recommend a modification

A separate Q-learning agent was also implemented for that the component. If no such situation exists, it is safe to
purposes of comparison. The outputs of the EVD learner'sillow the component to continue with the "erroneous” behav-
input mappers are composed into a feature vector that is usédr. The major benefit of this view is that when a component
as the input state description for the Q-learner. The set ot found to have chosen an action that agrees with the local
values that can be produced as outputs by the EVD learneferification function, none of the components in the subtree
form the set of actions available to the Q-learner. This setupooted at the evaluated component need to be examined.

is intended to provide an I/O environment for the Q-learner Given this view of error, the set of local verification func-
that matches that of the EVD learner closely. Each time theions associated with each component, and knowledge of
action selected by the Q-learner corresponds to an incorrethe hierarchical structure of the decomposition, the structural



bool EVD _assign _credit(EVD d, percepts P) each component

bool problem  «+ false

if d —F(d—a, P) == 1 4 Experiments
return false

end In order to provide evidence that the decomposition tech-

forall children ¢ of d nigue and associated structural credit assignment method out-
if EVD -assign credit(c, P) == true lined above provide advantages over learning in a flat prob-
eng’“’b'e’“ o e lem space, we have applied the technique to a problem within

end a strategy game playing agent, and compared the results with

if tproblem an RL implementation, specifically Q-learning, as discussed
mark e previously.

end

g e 4.1 Procedure

Because we train and evaluate the learners in an on-line,

incremental fashion, we cannot apply the standard train-
Figure 2: Pseudo-code for EVD structural credit assigniNg Set/test set approach to evaluation. Rather, we evaluate
ment. Each node has an associated structural credit assigii€ leamers’ performance improvement during training by
ment function as described above, denoted 'F’ here. Eachégmenting the sequence of games played into multi-game

component is also expected to store its last action, ’a’. blocks, and comparing overall error rate between blocks. In
’ this way, we are able to compare error rate around the begin-

ning of a training sequence with the error rate around the end

credit assignment process is as shown in Figure 2. The fun®f that sequence.
tion is called when new percepts become available from the Errors are counted on each turn of each game by produc-
environment (here, on each new turn), and results in markingng a value (equivalently, selecting an action), finishing the
the nodes identified as responsible for failure, if any. Wherturn, perceiving the outcome of the turn, and then determin-
invoked, the procedure evaluates the verification function aing whether the value produced correctly reflects the resource
the root of the hierarchy based on the relevant value previproduction experienced on that turn. If the value is incorrect,
ously selected at that component. If the verification is sucan error is counted. Note that this error counting procedure
cessful, no further action is taken. If an error is indicated,contrasts with another possibility; producing a value only at
each child is visited, where the procedure is recursively rethe beginning of each game, and counting error on each turn
peated. If and only if no error can be found at any child,of the game based on this value, while continuing to learn on
the current node is marked as being in error. The base casach turn. While this alternative more closely matches the
for this recursive procedure is achieved by defining leaveintendeduseof the learned knowledge, we chose to instead
in the hierarchy as correct; that is, inputs representing ravallow a value to be produced on each turn in order to reflect
state are never considered to be a source of error, but are prihte evolving state of knowledge as closely as possible in the
vided with "dummy” verification functions that yield 1 for error count. A negative consequence of this choice is that
all inputs. This procedure treats error as a digital property okome overfitting within games may be reflected in the error
agent components, not making distinctions in degree of failcount. However, a decrease in error rate between the first and
ure. Notice that this procedure also makes the commitmeritaist block in a sequence can be seen as evidence of true learn-
that error is due either to local knowledgeto erroneous in- ing (vs. overfitting), since any advantage due to overfitting
puts. Also note that this credit assignment procedure is purelghould be as pronounced in the first group of games as in the
structural. That is, no temporal credit assignment is handlethst. Also note that error counting was consistent for both the
by this algorithm. For this reason, the percepts 'P’ can beEVD-based learner and the Q-learner.
directly attributed to the last action 'a’ taken by each compo- In each trial, a sequence of games is run, and learning
nent. This is why cached last action values can be used in thend evaluation occurs on-line as described above. The EVD-
algorithm above. In order to address both structural and terrbased learner is trained on sequences of 175 games, while
poral credit assignment, the method described here could ke Q-learner is allowed to train on sequences of 525 games.
used to distribute credit structurally after another techniqueNe trained the Q-learner on sequences three times longer
has distributed credit temporally. than those provided to the EVD learner to determine whether

Based on the result of structural credit assignment, learrnthe Q-learner’s performance would approach that of the EVD
ing is performed at each node that has been marked as dearner over a longer training sequence. As described above,
roneous, by whatever procedure is applicable to the type(sye segment these sequences of games into multi-game blocks
of learners used within the components. Note that the defor the purpose of evaluation; the block sized used is 7 games.
composition method and accompanying method for structuratach game played used a (potentially) different randomly
credit assignment make no prescription whatsoever in termgenerated map, with no opponents. The agent always builds a
of the knowledge format or learning procedure that is usedity on the first occupied square, after making an estimate of
within each node. In this work, a simple table-update routinghe square’s quality. Building in the first randomly generated
was used within each component. However, in principle anyccupied square ensures that the learners will have opportu-
other type of learning technique desired could exist withinnities to acquire knowledge in a variety of states. Though this



EVD agent|  Q-learning agent an advantage in error rate in the Q-learning agent even after

7' block | 7" block | 215 block 525 games. Examining the complete set of results for inter-

Without city 24% (4%) 1% vening blocks does mitigate this impression to some extent,
improvements as an overall downward trend is observed, with some fluctu-
With city 29% 7% 10% ations. However, given that the fluctuations can be of greater
improvements magnitude than the decrease in error due to Q-learning, the

learning that has been achieved after this number of games
floes not appear significant. Based on the significant differ-

Table 1: Average percent decrease (or increase, shown ence in observed learning rate, these trials provide evidence
parentheses) in error for decomposition-based learning im= 9 ' P

plementation from block 1 to 7, and for the Q-learning agentat the decomposed structure and accompanying structural

from block 1 to blocks 7 and 21. _credlt assignment capab!htles of EVD do offe_r an advantage
in terms of allowing learning to occur more quickly in a large
state space.

setup is simpler than a full-fledged game, it was sufficient to

illustrate differences between the learners. In order to com5  Formal Description of EVD Structure
pensate for variation due to randomness in starting positio has been di d. this paper is f d on decomposi-
and game evolution, results are averaged over multiple ind%‘S as been discussed, this paper IS Tocused on decompos

pendent trial sequences. Each result for the EVD learner i ons that prpgressively abstract away from raw state featu.res
an average of 60 independent trials. Each result for the Q- rough a hierarchy of components. Abstraction hierarchies
learner is an average over 25 independent trials; each trial & t)efwe\{ved as h?ﬂdt“rr']g ag:lass_((j)f t??kz, te:jmfed selllect-
time consuming, as each trial for the Q-learner is three time -ou '.g “’é’ tl)n %vlvayd aJ ﬁs een IdeC-r‘]blklﬁ 3“ torrlna y
as long as for the EVD-learner, and it did not seem likely escribed by bylander, Johnson an anderet al,

; ; _ L 1991]. We base our formal description of EVD structure on
tmhg'gui:]tpoerrn;cg&l)snwnh the Q-learner would offer significantly this class of tasks. The select-1-outsotask is defined as
: - ; ; - follows:

To compare the speed with which learning occurs in the
two agents, we ran two separate sets of trials. The first set ddefinition 5.1 Let C' be a set of choices. Lét be a set of
trials was run in an environment where no city improvementgarameters. LeV’ be a set of values. Let an assignment of
were constructed in the area surrounding the city. The secori¢lues inV’ to the parameterg> be represented by a function
set of trials did allow for the construction of city improve- d : P — V. Then letD be the set containing all possible pa-
ments, but had an identical environment in all other ways. Forameter assignmenté Theselect-1-out-ofs task is defined

each set of environmental conditions, we measure the quais a tuple< P, V,C, s >, wheres is a functions : D — C.

ity of learning by comparing the average number of errors |n practice, each of the parametergimay have a distinct
counted in the first block of the sequences to the number ofet of legal values. In this caséis the union of the sets of le-
errors counted in the last block. In the case of the Q-learnegg) input values to each parametee P, andD is restricted
we make two comparisons. The first compares error in thgg contain only functions that provide legal assignments of
first block to the block containing the 175th game, illustrat-ygjyes to parameters.

ing decrease in error over the same sequence length providedpefore formally defining EVD structure, we need to define
to the EVD learner. We also compare error in the first blockaninput mapper

to error in the last block of the Q-learner’s sequences, to de- finition 5.2 Aninout i defined tuol
termine whether the Q-learner’s improvement will approachDe 'r}'/'%nq; nr:npu T“app.e'sl e |n(=:[ asa utpfi is th
that of the EVD learner over sequences three times as Ion%<. ? ol >thWt erepbls::tilng; '?hp“ param? e(éir::ithe
We perform this evaluation separately for each of the two en>€! 0! valu€s (hat can be taken Dy the parameter, €

vironmental setups. set of possible output values. is a function7 : V. — C
P that implements the translation of input values to the choice
4.2 Results alphabet.

The results of the experiment described above are summa- NOW we can formally define EVD structure.

rized in Table 1. The EVD based learner is able to pro-Definition 5.3 AnEVD is recursively defined as a tuple
duce a greater improvement in error rate in each case, as P,V,C,P,S, L, F >, whereP is the set of input parame-
compared to the Q-learner, both after the same number dérs,V is the set of values that can be taken by those param-
games and after the Q-learner has played three times as maeters, and”' is the set of choices that form the output of the
games. For the two scenarios, the average improvement jndgement? is atuple< Py, ..., P. > suchthaf{ P, ..., P.}
error rate is 26.5%, compared to only 1.5% after the samés a partition of the parameter® of rankr. Thatis,Py, ..., P.
number of training examples for Q-learning. The decreas@re non-empty disjoint sets whose uniorHs S is a tuple

in error across a typical sequence was not strictly monotonicg s1, ..., s, >, wheres; is anEVD with parameters’;, val-
but did exhibit progressive decrease rather than wild fluctuauesV and choice< if |P;| > 1, or aninput mappemith
tion. Even after three times as many games had been playgiérameterp, p € P;, valuesV and choice<” if |P;| = 1. £

by the Q-learning agent, the decrease in error rate is signifis an arbitrary learner with domair®'” and rangeC. F'is a
icantly less than that achieved using EVD after only severfunctionF' : e x C' — {1,0}, wheree is a representation of
blocks. In one case, it appears that learning has not yieldefdedback perceived from the environment.



Once againy represents the union of the values taken byet al, 2001 outlines rationale for using state representations
all EVD parameters; value assignments and functions involvthat directly encode predictions about future events. In a gen-
ing value assignments are restricted to handle legal assigeral way, the notion that knowledge should have a predictive
ments only. This treatment &f is for notational convenience. interpretation is central to this work as well. However, the
Similarly, some subtrees may return only a subset’ond  specific problems of decomposition and structural credit as-
L at the parent node need not handle outputs of a subtree thsignment that motivate this work are not the focus of PSRs,
cannot legally be produced. The functiéhencodes predic- and there are clearly significant differences between PSRs
tive knowledge about the knowledge encoded in the compoand the work described here.
nent, as described above. This work is an extension of our previous effoftlones

Evaluation of an EVD is handled in two steps. First, de-and Goel, 2004 In addition to comparing the effectiveness
termine the input taC by evaluating each; ¢ S, and then of EVD with reinforcement learning over a flat representa-
produce as output the result of applyidgto the generated tion, this paper extracts and begins to formalize the key de-
input vector. Input mappers are evaluated by applyindi-  sign principles from our previous work in the hopes that these
rectly to the value of the sole parameter_earning over the principles may be useful to researchers designing knowledge
EVD structure as a whole proceeds by first using the creditepresentations for learning in other domains.
assignment technique described previously, and then apply-
ing feedback to the learner within each EVD component as  Conclusions

dictated by the outcome of credit assignment. This paper presents an approach to designing a composite
knowledge representation for a learning agent that is directly
6 Discussion driven by the needs to perform structural credit assignment

i o . L , .. over the resulting top-level structure. The experiment de-
The intended contribution of this work is in making explicit scriped here provides evidence that the approach and accom-
the connection between structural credit assignment and dgunying credit assignment technique are sufficient for learn-
composition of learning problems via composite knowledg€ng “and that the decomposition increases the tractability of
representation, and in describing an approach that drives thgaming in a large state space. This means that if a prob-
design of knowledge representations based on the needs @iy framing and set of components can be defined according
structural credit assignment. The connection between decongy the principle of external verifiability for a given problem,
position and structural credit assignment has been recognizgtl/p-pased knowledge structure and credit assignment may
!oy Dietterich in his work on hierarchical rejnforce;ment Iegrn-be used to accelerate learning. In principle, this type of de-
ing, where he refers to the problem as hierarchical credit assopmposition should be compatible with a variety of learning
signment[Dietterich, 1998 However, the MAXQ method techniques within each component, and even with a hetero-
takes a different approach to decomposition that is not diyeneous set of techniques. Such combinations have the po-

rectly driven by the need to perform credit assignment ovefential to create learners for complex problems with varying
the resulting structure, and focuses on temporal rather thaghgracteristics.

state abstractions.
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