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decisions in 
game theory

Ui(X)=xi
Players only care about their 
own payoffs. This is elegant, but 
wrong. A host of experiments 
show that people don’t make 
economic  decisions  this  way.

ultimatum bargaining
Player 1 chooses how to split $10. Player 2 then 
accepts this split (both players take their share) or 
rejects it (neither player gets anything). That’s all.

Player 2 should accept any split greater than $0, 
even accepting only 25¢ or 1¢. So player 1 should 
offer almost nothing, so as to get the most money 
from the game. But hundreds of experiments in 
different cultures, with different stakes, show that 
people don’t behave this way. Almost always, low 
offers are rejected. Here, game theory doesn’t 
predict what players do; it also doesn’t offer good 
advice about what to do when playing with a person.

Despite some limitations in explaining economic behavior, “classical” game 
theory as developed by von Neumann, Nash, and others has proved an 
extremely powerful tool in economics. Certain obvious applications of game 
theory are impossible, however. Imagine a matrix game representing 
international trade. All the countries of the world are players, and each 
player’s payoffs depend on the 
moves of all the players. To 
extremely simplify the possible actions, let each country simply choose one 
other country to focus on in improving exports. The U.S. Department of 
State lists 192 countries. Even if 50 of these can be neglected, the matrix 
for this game would have 142142 entries — substantially more entries than 
there are particles in the universe. We cannot even write down the 
specification of this game, much less begin to compute its Nash equilibrium. 
To deal with such problems, researchers in computational game theory have 
sought approximate solutions and have rewritten the problem to take into 
account the structure of interactions among players.

game theory + computation

I am working now with Michael Kearns and other researchers to uncover 
and address important questions at the intersection of computational 
game theory, behavioral economics, and machine learning. A new 
behavioral game theory is now in development, seeking to explain how 
people make economic decisions (as actually observed in experiments) 
and how they learn to reach the observed equilibria.

Many important questions remain regarding the computational aspects 
of the new, behavioral models: As the number of players and actions 
becomes large, is the computational complexity of problem similar to that 
of the classical game theory problem? Are the suggested learning 
algorithms tractable for large numbers of players or actions? I will also 
consider appropriate ways that graphical models can be used to encode 
local structure in behavioral game theory.
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decisions in behavioral game theory
Ui(X)=xi - n-1 Σmax(xk-xi,0) - n-1 Σmax(xi-xk,0)

Players care about their own payoffs, they dislike others having more than them with 
coefficient α, and they dislike having more than others with coefficient β. This 
particular model (Fehr and Schmidt, 1999) is one of  several behavioral theories.
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learning in
behavioral game theory

Ai
j(t)=

N(t)=N(t-1)φ(1-κ)+1
One model of how economic behavior changes over time is 
FEWA, functional experience-weighted attraction learning 
(Camerer, Ho, and Chong, 2001), which incorporates 
reinforcement and belief learning. It modifies EWA, above, 
replacing free parameters φ, δ, and κ with φi(t), δi(t), and 
κi(t), functions of the player’s experience so far.
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