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Abstract

In many real-world applications, Euclidean
distance in the original space is not good due
to the curse of dimensionality. In this paper,
we propose a new method, called Discrim-
inant Neighborhood Embedding (DNE), to
learn an appropriate metric space for classi-
fication given finite training samples. We de-
fine a discriminant adjacent matrix in favor of
classification task, i.e., neighboring samples
in the same class are squeezed but those in
different classes are separated as far as possi-
ble. The optimal dimensionality of the metric
space can be estimated by spectral analysis
in the proposed method, which is of great sig-
nificance for high-dimensional patterns. Ex-
periments with various datasets demonstrate
the effectiveness of our method.

1. Introduction

Learning an appropriate metric space plays an impor-
tant role in the field of machine learning. Given fi-
nite samples, Euclidean distance in the input space is
not good in practical applications due to the curse of
high-dimensionality. Recently, many techniques have
been introduced to learn a more appropriate met-
ric space. DANN (Discriminant Adaptive Nearest
Neighbor) (Hastie & Tibshirani, 1996) learns a locally
adaptive metric which approximates the weighted Chi-
squared distance to alleviate the curse of dimensional-
ity. RCA (Relevant Component Analysis)(Bar-Hillel
et al., 2003) divides the data set into several ‘chun-
klets’ and finds a metric by using side-information in
the form of equivalence relations. NCA (Neighborhood
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Components Analysis)(Goldberger et al., 2004) learns
a distance measure by maximizing a stochastic variant
of the leave-one-out knn score on the training set using
gradient descent. Xing et al. (2002) and Weinberger
et al. (2005) learn distance metrics through semidef-
inite programming. Furthermore, to reduce compu-
tation complexity, some of the above algorithms force
the learned distance metric to be low rank by selecting
a lower target dimensionality of the new space, such as
RCA and NCA; however, the target dimensionality is
not determined but selected at random for the purpose
of dimensionality reduction.

Actually, learning an appropriate distance metric is
equivalent to looking for a good transformation which
transforms the input data into another better repre-
sentation. Hence, those traditional methods on feature
extraction can be viewed as metric learning algorithms
as well, such as PCA (Principal Component Analy-
sis) and LDA (Linear Discriminant Analysis). PCA is
mainly for representation and LDA for classification
(Fukunaga, 1990). However, the number of features
extracted by LDA is at most c − 1 (c is the num-
ber of classes), which is suboptimal for classification
in Bayes sense unless a posteriori probability function
is selected (Fukunaga, 1990). Qiu and Wu (2005) pro-
vide an approach to improve LDA, but the target di-
mensionality of the new space for classification is not
clear, and should be tuned in an empirical way.

Another important family of algorithms that learn
metrics are the ones that assume all data points re-
side on an intrinsic manifold and find its embedding
in a low-dimensional space, such as Isomap (Tenen-
baum et al., 2000), LLE (Locally Linear Embedding)
(Roweis & Saul, 2000), Laplacian Eigenmap (Belkin &
Niyogi, 2001), and LPP (Locality Preserving Projec-
tions) (He et al., 2005). In favor of classification task,
LDE (Local Discriminant Embedding) (Chen et al.,
2005), MFA (Marginal Fisher Analysis) (Yan et al.,
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2005), LFDA (Local Fisher Discriminant Analysis)
(Sugiyama, 2006), and SNLE (Supervised Nonlinear
Local Embedding) (Cheng et al., 2004) incorporate the
class information into the underlying manifold struc-
tures. Again, the target dimensionality of the new
space for classification should be tuned through ex-
periments in these approaches.

In this paper, we propose a new method, called Dis-
criminant Neighborhood Embedding (DNE), to find a
low dimensional embedding for classification given fi-
nite labeled samples. We first define a discriminant
adjacent matrix in favor of classification task, i.e.,
neighboring samples in the same class are squeezed but
those in different classes are separated as far as possi-
ble. In the proposed method, the optimal dimension-
ality of the metric space can be estimated by spectral
analysis, which is of great significance for high dimen-
sional patterns.

The organization of this paper is as follows: In Section
2, we propose the DNE algorithm and formulate the
optimal dimensionality of the embedding for classifi-
cation by spectral analysis. Experimental results on
UCI repository and UMIST face database are shown
in Section 3. Finally, we give the conclusions and sug-
gestions for future work in Section 4.

2. Discriminant Neighborhood

Embedding

2.1. Basic Ideas

Suppose N multi-class data points {xi ∈ R
D}N

i=1 are
sampled from the underlying manifold embedded in
the ambient space. We seek an embedding character-
ized by intra-class compactness and extra-class separa-
bility. One neighbor for a point is referred to as intra-
class neighbor provided that they belong to the same
class; and extra-class neighbor otherwise. Assume that
there is an interaction between each pair of neighbor-
ing data points in the ambient space, which can be
distinguished as intra-class attraction or extra-class re-
pulsion. With the imaginary local forces of attraction
or repulsion exerted on each point, all data points in
the original space are supposed to be pulled or pushed
by the discriminant neighborhoods, and tend to move
until the optimal state for classification is achieved.

Multi-class data points and the interactions between
discriminant neighbors can naturally be characterized
by one graph G, the nodes of which represent data
points. An edge is put between nodes i and j if xi

is among the set of (intra- or extra-class) neighbors
of xj or xj is among the set of neighbors of xi. To
distinguish the local intra-class attraction and extra-

class repulsion between neighboring points, each edge
is assigned +1 or −1. Let NeigI(i) and NeigE(i) de-
note the set of intra- and extra-class neighbors of xi

respectively, then the discriminant adjacent matrix F

of graph G which models the underlying supervised
manifold structure is as follows:

Fij =



















+1 (xi ∈ NeigI(j) ∨ xj ∈ NeigI(i))

−1 (xi ∈ NeigE(j) ∨ xj ∈ NeigE(i))

0 otherwise

(1)

For simplicity, NeigI(i) and NeigE(i) can be assigned
by choosing the k nearest intra- and extra- class neigh-
bors, respectively. We implement the motion of all
points by learning a linear transformation of the input
space such that in the transformed space, intra-class
compactness and extra-class separability are achieved
simultaneously. We denote the transformation by a
matrix P , measure intra-class compactness by:

∆(P ) =
∑

i,j

∥

∥P⊤xi − P⊤xj

∥

∥

2
,

(xi ∈ NeigI(j) ∨ xj ∈ NeigI(i))
(2)

and similarly measure extra-class separability by:

δ(P ) =
∑

i,j

∥

∥P⊤xi − P⊤xj

∥

∥

2
,

(xi ∈ NeigE(j) ∨ xj ∈ NeigE(i))
(3)

then one reasonable criterion for ‘good’ motion is to
minimize:

Φ(P ) = ∆(P ) − δ(P ) (4)

Minimizing criterion (4) is an attempt to minimize
the total distance among intra-class neighbors and to
maximize that between extra-class neighbors simulta-
neously. Using (1), the criterion (4) can also be ex-
pressed as:

Φ(P ) =
∑

i,j

∥

∥P⊤xi − P⊤xj

∥

∥

2
Fij (5)

2.2. Optimization

Following some simple algebraic steps, we get that

Φ(P ) =
∑

i,j

∥

∥P⊤xi − P⊤xj

∥

∥

2
Fij

= 2
∑

i,j

(

x⊤

i PP⊤xi − x⊤

i PP⊤xj

)

Fij

= 2
∑

i,j tr
((

P⊤xix
⊤

i P − P⊤xjx
⊤

i P
)

Fij

)

= 2tr
(

∑

i,j

(

P⊤xiFijx
⊤

i P − P⊤xjFijx
⊤

i P
)

)

= 2tr
(

P⊤XSX⊤P − P⊤XFX⊤P
)

= 2tr
(

P⊤X(S − F )X⊤P
)

(6)
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where tr(·) denotes the trace of matrix and X =
[x1,x2, . . . ,xN ]. S is a diagonal matrix whose entries
are column (or row) sums of the discriminant adja-
cent matrix F which is symmetric. Since the quadratic
form Φ(P ) is not positive semi-definite, the symmet-
ric matrix (S − F ) and X(S − F )XT are not either,
which substantially differs from the Laplacian matrix
in Laplacian Eigenmaps (Belkin & Niyogi, 2001) and
LPP (He et al., 2005).

Then the optimal transformation matrix P can be ob-
tained by:

Poptimal = arg min
P

tr
(

P⊤X(S − F )X⊤P
)

(7)

Denote P = [P1, P2, . . . , Pm], (m ≤ D). The column
vectors of the matrix P form a basis spanning the new
space, and we constrain that they are orthonormal.
Then,we reformulate the right side of (7) as:

min
∑m

i=1 P⊤

i X(S − F )X⊤Pi

s.t. P⊤

i Pi = 1, P⊤

i Pj = 0, (i 6= j)
(8)

Lemma 1 Suppose that Pi is one normalized column
vector, i.e. P⊤

i Pi = 1, and that λ1 is the minimal
eigenvalue of the symmetric matrix A, then λ1 =
minP⊤

i
Pi=1

(

P⊤

i APi

)

, and the minimum is achieved
when Pi is the normalized eigenvector of A correspond-
ing to λ1 .

Lemma 2 Suppose that λ1 ≤ . . . ≤ λi−1 ≤ λi ≤
. . . ≤ λn are the eigenvalues of the symmetric ma-
trix A, P1, . . . , Pi−1 are the orthonormal eigenvec-
tors corresponding to λ1, . . . , λi−1, respectively, and
that Pi is one normalized column vector, then λi =
minP⊤

i
Pi=1,P⊤

i
Pj=0,(j=1,...,i−1)

(

P⊤

i APi

)

, and the min-
imum is achieved when Pi is the normalized eigenvec-
tor of A corresponding to λi .

The proofs of Lemma 1 and Lemma 2 are given in
(Wang & Shi, 1988).

Suppose that λ1 ≤ . . . ≤ λD are all the eigenvalues of
the symmetric matrix X(S − F )X⊤. If for each i we
ensure that P⊤

i X(S −F )X⊤Pi is as small as possible,
then the sum in (8) is as small as possible. With-
out loss of generality, we begin by minimizing the first
item of (8). According to Lemma 1, the minimum
is achieved when P1 is the normalized eigenvector cor-
responding to the smallest eigenvalue λ1. Then by
Lemma 2, we minimize the next item by assigning
P2 the normalized eigenvector corresponding to the
second smallest eigenvalue λ2, and so on. Finally, we
get:

∑m

i=1 P⊤

i X(S − F )X⊤Pi =
∑m

i=1 λi (9)

Since the symmetric matrix X(S − F )X⊤ is not posi-
tive semi-definite, the eigenvalues of X(S−F )X⊤ may
be positive, negative or zero: λ1 ≤ . . . ≤ λd < 0 ≤
λd+1 ≤ . . ., where d is the number of the negative
eigenvalues. To minimize (9), we select these d nega-
tive eigenvalues such that:

∑m

i=1 λi =
∑d

i=1 λi (10)

and the transformation matrix P is just constituted
by the eigenvectors of X(S − F )X⊤ corresponding to
its first d negative eigenvalues.

2.3. The Learned Distance Metric

Once the D × d transformation matrix P has been
learned, the representation of any new sample is ob-
tained by:

ynew = P⊤xnew (11)

where xnew ∈ R
D and ynew ∈ R

d.

In the transformed space, the squared distance be-
tween any pair of data points is as follows:

dist(xi,xj) =
∥

∥P⊤xi − P⊤xj

∥

∥

2

= (xi − xj)
⊤PP⊤(xi − xj)

= (xi − xj)
⊤M(xi − xj)

= ‖xi − xj‖
2
M

(12)

where the matrix M = PP⊤ just parameterizes the
Mahalanobis distance metric, which is of low rank if
d < D. The optimal dimensionality of the metric
space, i.e., the rank of the learned metric, can be esti-
mated by spectral analysis in our method. Intra-class
compactness and extra-class separability are achieved
simultaneously in the transformed space and therefore
such learned distance metric is appropriate for classi-
fication.

Actually, when data points are projected to one spe-
cific eigenvector Pi corresponding to eigenvalue λi, the
criterion Φ in (4) becomes as follows:

Φ(Pi) = ∆(Pi) − δ(Pi)

= 2
(

P⊤

i X(S − F )X⊤Pi

)

= 2P⊤

i λiPi

= 2λi

(13)

Intuitively, the eigenvalue λi measures the total dis-
tance between neighboring samples of the same class
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Figure 1. a)Three classes of well clustered data. Both
eigenvalues are negative. b)Two classes of data with multi-
modal distribution. The magnitude of one negative eigen-
value is much larger than the other. c)Three classes of
data. One eigenvalue is negative and the other is posi-
tive. d)Five classes of data which are not separable. Both
eigenvalues are positive. (For all the cases, k=1.)

minus that of different classes when data points are
projected to the corresponding eigenvector Pi. If
λi > 0, the total distance between intra-class neigh-
bors is larger than that between extra-class neighbors
along the direction Pi, and samples tend to be misclas-
sified. So, those eigenvectors corresponding to positive
eigenvalues are discarded. Otherwise, if λi < 0, sam-
ples tend to be correctly classified. Among all the d

negative eigenvalues λ1 ≤ . . . ≤ λd < 0, the absolute
values of some λi’s may be much larger than those of
others, e.g., |λ1| ≫ |λd|. The larger the absolute value
of λi (< 0) is, the more intra-class compact and more
extra-class separable the projected data are. There-
fore those of which absolute values are small enough
can be ignored. We can then choose t negative eigen-
values with the largest absolute values such that

t
∑

i=1

|λi| ≥ θ

d
∑

i=1

|λi| (14)

where θ specifies the proportion that we wish to re-
tain, and for a specified θ, we calculate a minimal t

(for instance θ=0.96 in our experiments). By selecting
such leading eigenvectors with respect to t (< d < D)
dominant negative eigenvalues in practice, a subspace
of even lower dimensionality is derived.

As an illustration, we show four cases with toy data
in Figure 1: a) Three classes of data are well clus-
tered in the input space. Both eigenvalues are neg-
ative, and we do not perform dimensionality reduc-
tion. b) Two classes of data with multimodal distri-
bution. Although two eigenvalues are both negative,
the magnitude of one is much larger than the other; so
we can reduce dimensionality by keeping the leading
eigenvector with λ1 = −1653.997 and discarding the
other. c) Three classes of data. We get two directions
corresponding to positive and negative eigenvalues re-
spectively. As can be seen, the direction with positive
eigenvalue should be removed from the point of view of
classification. d) Five classes of data. Both eigenvalues
are positive, and we can not perform classification well
along each direction. Samples are not separable in the
input space or any subspace. To solve this problem,
we can first map data points into Hilbert space with
kernel trick. This is not within the scope of this paper
and we would discuss it in our future work. Another
extreme case should be pointed out that given infinite
samples, total distance between intra-class neighbors is
always smaller than that between extra-class neighbors
along any direction Pi, so, all the eigenvalues are neg-
ative, and dimensionality reduction is not performed
accordingly.

3. Experimental Results

In this section, we evaluate the proposed method
in comparisons with the state-of-the-art approaches:
PCA, LDA, LPP, LDE and NCA. As for LDA, LPP,
and LDE, they all include solving a generalized eigen-
vector problem; to avoid singularities from a small
sample size problem encountered in these methods, the
techniques suggested by (Belhumeur et al., 1997; He
et al., 2005; Chen et al., 2005) are adopted, i.e., PCA is
used to pre-process the singular matrix. This problem
does not exist in our method since there is no need for
matrix inversion. The k−nearest neighbors classifier
(knn) is employed in our experiments.

We first conduct experiments on three datasets (i.e.,
sonar, wdbc, ionosphere) from the UCI repository
(Murphy & Aha, 1994). For each dataset, we ran-
domly split it into two subsets (30%+70%). First, the
30% subset is chosen for training and the rest 70% for
testing. Second, 70% for training and 30% for testing.
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All the experiments are repeated 10 times indepen-
dently and the average results and standard deviations
are calculated. Figure 2 shows the training and test-
ing performance. The accuracies on the training set
reported are evaluated by leave-one-out. As can be
seen, the performance of our method is the same as or
better than that of other approaches in most cases.

Experiments are also conducted on the UMIST face
database1(Graham & Allinson, 1998), which contains
575 images of 20 individuals (i.e., 20 classes). Each im-
age is firstly cropped and down-sampled into 56 × 46
size, and the resulting input vectors are of dimension-
ality D = 2576. For each individual, p (= 4, 6, 8, 10)
images are randomly selected for training and the re-
mainder for testing. For each given p, experiments
are repeated 10 times independently. Figure 3 shows
the average recognition rate with standard deviation
over 10 repetitions per p for each method. As can be
observed, the distance metric learned by DNE consis-
tently outperforms the others across a range of training
sizes.

4 6 8 10
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0.8

0.85

0.9

0.95

1

The Number of Training Samples for Each Individual: p

A
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u
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cy

 

 

DNE
PCA
LDA
LPP
LDE
NCA

Figure 3. Comparisons of the average accuracies with stan-
dard deviations on the UMIST database with k = 1.

In the proposed method, the optimal dimensionality is
determined by selecting the leading eigenvectors cor-
responding to negative eigenvalues, which is distin-
guished from the other approaches. Figure 4, 5, and 6
show the performance of the proposed method across
a range of projection dimensions. The upper panels
illustrate the classification accuracy (on the training
and testing set) as a function of the dimensionality
(one run for each dataset). The lower panels show
the ascendingly sorted eigenvalue spectra and its corre-

1http://images.ee.umist.ac.uk/danny/database.html.

sponding cumulative curve. As can be seen, the classi-
fication accuracy increases with projection dimensions
added when the corresponding eigenvalues are largely
smaller than zero; it achieves its optimum and tends
to be stable when eigenvalues are nearly zero; and it
even turns to decrease when eigenvalues are positive.
In the case that all dimensions are added, the classi-
fication accuracy of the learned metric actually yields
the same result as that of original Euclidean distance
metric. As for the UMIST face database, the dimen-
sionality of the input space is very high (D = 2576),
and a large number of eigenvalues are zero. During
the ranges with zero eigenvalues, the classification ac-
curacy is stable. For the purpose of clarity and saving
space, we do not show the range with zero eigenvalues,
but just show the ranges with negative and positive
eigenvalues in two separate panels per p. For example,
the left two columns in Figure 5, i.e., (a) and (b), are
corresponding to one run for p=4. Figure 5(a) shows
the change of classification accuracy (on the training
and testing set) versus the dimensionality at the range
with negative eigenvalues, and Figure 5(b) at the range
with positive eigenvalues. From Figure 4, 5, and 6, we
observe that the trajectory of classification accuracy
on the testing set fits with that on the training set in
general, and the generalization ability becomes better
when the size of training set is large; the shapes of both
trajectories are consistent with that of the cumulative
eigenspectra curve’s mirror image. Therefore, it is
demonstrated that the optimal subspace for classifica-
tion is just spanned by such eigenvectors corresponding
to the leading negative eigenvalues.

4. Conclusions

In this paper, we propose a new method to find a low-
dimensional embedding for classification given finite
training samples. Our method is conceptually sim-
ple yet effective. The learned metric space achieves
intra-class compactness and extra-class separability si-
multaneously, and the optimal dimensionality can be
estimated by spectral analysis. Similar to many mani-
fold learning algorithms, the proposed method consid-
ers the local structure which is more important than
global structure when knn rule is employed. However,
it remains unclear how to select the parameter k in
a principled manner which defines the locality theo-
retically. This is the common problem of our method
and other related algorithms (LPP, LDE, NCA, etc.),
which will be investigated in our future work. An-
other attempt is to extend DNE with kernel trick,
which may be useful to the case (See Figure 1(d)) that
samples are not separable.
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Figure 2. Comparisons of training and testing performances on three UCI datasets. Left: 30% subset is chosen for
training and the rest 70% for testing. Right: 70% for training and 30% for testing. Average correct rates and standard
deviations are calculated over 10 independent repetitions. In each panel, from left to right six pairs of bars are respectively:
1)DNE, 2)PCA, 3)LDA, 4)LPP, 5)LDE, 6)NCA. Also shown are N -the number of samples, c-the number of classes, D-the
dimensionality of input space, k-the parameter selected for knn.
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Figure 4. The relation between the performance of DNE across a range of projection dimensions and the corresponding
eigenspectra over sonar and wdbc datasets. Upper panels: The change of classification accuracy versus the dimensionality
(each panel involves the performance curve for the training and testing set simultaneously). The dimensionality of the
input space, D, is shown as well. Lower panels: The ascendingly sorted eigenvalue spectra and its cumulative curve over
each dataset.
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Figure 5. (a)p = 4, λ < 0, (b)p = 4, λ > 0; (c)p = 6, λ < 0, (d)p = 6, λ > 0. Ranges with zero eigenvalues are not shown.
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Figure 6. (a)p = 8, λ < 0, (b)p = 8, λ > 0; (c)p = 10, λ < 0, (d)p = 10, λ > 0. Ranges with zero eigenvalues are not shown.

Figure 5 and 6. The relation between the performance of DNE across a range of projection dimensions and the
corresponding eigenspectra per p(=4,6,8,10) over UMIST dataset. Upper panels of Figure 5 and 6: The change of
classification accuracy versus the dimensionality (on the training and testing set). Lower panels: The ascendingly sorted
eigenvalue spectra and its cumulative curve. 2576 eigenvalues are derived per run, among which more than 2000 are
zero. For the purpose of clarity and saving space, we just show the ranges with negative and positive eigenvalues in two
separate panels for each p, and the ranges with zero eigenvalues are not shown.


