Preprint of article published in:
International Journal of Uncertainty, Fuzziness and Knowledge-Based Systems, Vol. 9, No. 3 (June 2001)
Errata in the printed version have been corrected in this version. Last updated 15 October 2002.

A LOGIC FOR UNCERTAIN PROBABILITIES

AUDUN JZSANG
Distributed Systems Technology Centre
Faculty of Information Technology, Queensland University of Technology
GPO Box 2434, Brisbane, Qld 4001, Australia

Received February 1998
Revised February 2000

We first describe a metric for uncertain probabilities called opinion, and subsequently a set of logical
operators that can be used for logical reasoning with uncertain propositions. This framework which
is called subjective logic uses elements from the Dempster-Shafer belief theory and we show that it is
compatible with binary logic and probability calculus.
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1. Introduction

In standard logic, propositions are considered to be either true or false. However, a fun-
damental aspect of the human condition is that nobody can ever determine with absolute
certainty whether a proposition about the world is true or false. In addition, whenever the
truth of a proposition is assessed, it is always done by an individual, and it can never be
considered to represent a general and objective belief. This indicates that important aspects
are missing in the way standard logic captures our perception of reality, and that it is more
designed for an idealised world than for the subjective world in which we are all living.

Several alternative calculi and logics which take uncertainty and ignorance into con-
sideration have been proposed and quite successfully applied to practical problems where
conclusions have to be made based on insufficient evidence (see for example Hunter 19961
or Motro & Smets 19972 for an analysis of some uncertainty logics and calculi). Although
including uncertainty in the belief model is a significant step forward, it only goes half the
way in realising the real nature of human beliefs. It is also necessary to take into account
that beliefs always are held by individuals and that beliefs for this reason are fundamentally
subjective.

In this paper we describe subjective logic (see Jgsang 19972 for an earlier version) as
a logic which operates on subjective beliefs about the world, and use the term opinion
to denote the representation of a subjective belief. Subjective logic operates on opinions
and contains standard logical operators in addition to some non-standard operators which
specifically depend on belief ownership. An opinion can be interpreted as a probability
measure containing secondary uncertainty, and as such subjective logic can be seen as an
extension of both probability calculus and binary logic.
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Subjective logic must not be confused with fuzzy logic. The latter operates on crisp
and certain measures about linguistically vague and fuzzy propositions, whereas subjective
logic operates on uncertain measures about crisp propositions.

2. Representing Uncertain Probabilities

2.1. The Belief Model

The representation of uncertain probabilities will be based on a belief model similar to the
one used in the Dempster-Shafer theory of evidence. The Dempster-Shafer theory was first
set forth by Dempster in the 1960s as a framework for upper and lower probability bounds,
and subsequently extended by Shafer who in 1976 published A Mathematical Theory of
Evidence?. A more concise presentation can be found in Lucas & Van Der Gaag 1991°
from which Defs.1 & 2 below are taken.

The first step in applying the Dempster-Shafer belief model is to define a set of possible
situations which is called the frame of discernment. A frame of discernment delimits a set
of possible states of a given system, exactly one of which is assumed to be true at any one
time. Fig.1 illustrates a simple frame of discernment denoted by © with 4 elementary states
T1,%2,%3,%4 € O.

® ® 0 @

Fig. 1. Example of a frame of discernment

In the following, standard set theory will be used to describe frames of discernment,
but the term ‘state’ will be used instead of *set” because the former is more relevant to the
field of application. It is assumed that the system can not be in more than one elementary
state at the same time, or in other words, only one elementary state can be true at any one
time. However, if an elementary state is assumed to be true, then all superstates can be
considered true as well; e.g. if x5 is assumed to be true then for example z2 U 23 and all
other superstates of x5 are also true. In fact © is by definition always true because it by
definition contains a true state. This becomes more meaningful when assigning belief mass
to states.

The elementary states in the frame of discernment © will be called atomic states be-
cause they do not contain substates. The powerset of ©, denoted by 2°, contains the atomic
states and all possible unions of the atomic states, including ©. A frame of discernment
can be finite or infinite, in which cases the corresponding powerset is also finite or infinite
respectively.

An observer who believes that one or several states in the powerset of @ might be true
can assign belief mass to these states. Belief mass on an atomic state z € 2° is interpreted
as the belief that the state in question is true. Belief mass on a non-atomic state z € 2°©
is interpreted as the belief that one of the atomic states it contains is true, but that the
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observer is uncertain about which of them is true. The following definition is central in the
Dempster-Shafer theory.

Definition 1 (Belief Mass Assignment) Let © be a frame of discernment. If with each
substate z € 2© a number mg (x) is associated such that:

1. me(z)>0

2. me(@) =0

3. Y,cemel(r) =1
then me is called a belief mass assignmentlon ©, or BMA for short. For each substate
x € 22, the number meg (x) is called the belief mass’f z.

Fig.2 illustrates a part of the powerset of the frame of discernment of Fig.1 with the
atomic states z1, z2, x3 and x4, and the non-atomic states x5, zg and ©. All the states in
Fig.2 are in fact elements in 2® and it can be imagined that belief mass is assigned to these
states according to Def.1.

Fig. 2. Part of the powerset of ©

A belief mass meg(x) expresses the belief assigned to the state = and does not express
any belief in substates of z in particular. If for example belief mass is assigned to x5 in
Fig.2 it must be interpreted as the belief that either z; or x5 is true but that the observer is
uncertain about which of them is true.

In contrast to belief mass, the belief in a state must be interpreted as an observer’s total
belief that a particular state is true. The next definition from the Dempster-Shafer theory
will make it clear that belief in 2 not only depends on belief mass assigned to z but also on
belief mass assigned to substates of z.

Definition 2 (Belief Function) Let © be a frame of discernment, and let mg be a BMA
on ©. Then the belief function corresponding with me is the function b : 2° s [0, 1]
defined by:

b(z) = Zm@(y), z,y € 2° .

yCz

Similarly to belief, an observer’s disbelief must be interpreted as the total belief that a
state is not true. The following definition is ours.
Definition 3 (Disbelief Function) Let © be a frame of discernment, and let mg be a BMA
on ©. Then the disbelief function corresponding with mg is the functiond : 2® s [0, 1]
defined by:
d(z) = Z me(y), z,y€2°.
yNz=0

Lcalled basic probability assignment in Shafer 19764
2called basic probability number in Shafer 19764
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The disbelief in for example state x5 in Fig.2 is the sum of the belief masses on the states
x3 and z4, i.e. all those that have and empty intersection with z5. The disbelief of x
corresponds to the doubt of z in Shafer’s book. However, we choose to use the term
‘disbelief’ because we feel that for example the case when it is certain that a state is false
can better be described by “total disbelief’ than by ‘total doubt’.

Our next definition expresses uncertainty regarding a given state as the sum of belief
masses on superstates or on partly overlapping states.

Definition 4 (Uncertainty Function) Let © be a frame of discernment, and let meg be
a BMA on ©. Then the uncertainty function corresponding with mg is the function « :
2® +— [0, 1] defined by:

u(m) = Z m@(:’/): T,y € 26 -

yNz #0
yZw

The uncertainty regarding for example state x5 in Fig.2 would be the sum of belief masses
on the states z¢ and ©.

Total uncertainty can be expressed by assigning all the belief mass to ©. The belief
function corresponding to this situation is called the vacuous belief function.

A BMA with zero belief mass assigned to © is called a dogmatic BMA. In later sections
it is argued that dogmatic BMASs are unnatural in practical situations and strictly speaking
can only be defended in idealised hypothetical situations.

With the concepts defined so far a simple theorem can be stated.

Theorem 1 (Belief Function Additivity)

b(z) +dz) +u(z)=1, €29 z#£0. 1)

Proof 1
The sum of the belief, disbelief and uncertainty functions is equal to the sum of the belief
masses in a BMA which according to Def.1 sums up to 1.

m|

Eq.(1) is fundamental to our model of uncertain probabilities. The uncertainty func-
tion represents an observer’s uncertainty regarding the truth of a given state, and can be
interpreted as something that fills the void in the absence of both belief and disbelief.

For the purpose of expressing uncertain probabilities we will show that the relative
number of atomic states is also needed in addition to belief functions. Assume for example
that belief mass me(©) = 1 is assigned to © of Fig.2. Intuitively the probability of for
example z; being true can then be estimated to 1/4 because any of the four atomic states
can be true, and none is more probable than the others. Assume now that belief mass
me(zs) = 1 is assigned to z5. The probability of z; being true can now be estimated to
1/2 because only x; or z» can be true, and one is equally probable as the other.
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For any particular state x the atomicity of z is the number of states it contains, denoted
by |z|. In Fig.2 we have for example that |z5| = 2. If © is a frame of discernment,
the atomicity of © is equal to the total number of atomic states it contains. Similarly, if
z,y € 29 then the overlap between z and y relative to y can be expressed in terms of
number of atomic states. Our next definition captures this idea:

Definition 5 (Relative Atomicity) Let © be a frame of discernment and let z,y € 2.
Then for any given y # () the relative atomicity of z to y is the functiona : 2® +— [0,1]
defined by:

TNy
amw>='w|ﬂ 2,y €29, y 40

It can be observedthatz Ny =0 = a(z/y) =0,andthaty Cz = a(z/y) =1.In
all other cases the relative atomicity will be a value between 0 and 1. The relative atomicity
of for example z4 to x5 in Fig.2 is given by:

a(ze/w5) = |z6 N @5/ |25
=1/2.

The relative atomicity of an atomic state to its frame of discernment, denoted by a(z/®),
can simply be written as a(z). If nothing else is specified, the relative atomicity of a state
then refers to the frame of discernment.

A frame of discernment with a corresponding BMA can be used to determine a prob-
ability expectation value for any given state. Uncertainty contributes to the probability
expectation but will have different weight depending on the relative atomicities. When con-
sidering for example z; in Fig.2 the belief masses on z; and © both count as uncertainty
but belief mass on © will have less weight than belief mass on x5 because the atomicity of
21 is smaller relative to © than it is to x5.

Definition 6 (Probability Expectation) Let © be a frame of discernment with BMA mg,
then the probability expectation function corresponding with mg is the function E : 2© —
[0, 1] defined by:
E(z) = Y me(y) a(z/y), ye2°. )
Yy

This definition is equivalent with the pignistic probability described in e.g. Smets &
Kennes 1994¢, and is based on the principle of insufficient reason; A belief mass assigned
to the union of n atomic states is split equally among these n states.

The probability expectation of a given state is thus determined by the BMA and the
atomicities. It should be noted that the probability expectation function removes infor-
mation and that there can be infinitely many different BMAs that correspond to the same
probability expectation value.

Shaferian belief functions and possibility measures have been interpreted as upper and
lower probability bounds respectively (see e.g. de Cooman & Ayles 19987). In our view
belief functions can only be used to estimate probability values and not to set bounds,
because the probability of a real event can never be determined with certainty, and neither
can upper and lower bounds to it.
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2.2. The Focused Frame of Discernment

This section describes how to derive from an arbitrary frame of discernment a binary frame
of discernment and a corresponding BMA that for a given state will produce the same
belief, disbelief and uncertainty functions as with the original frame of discernment and
BMA.

Definition 7 (Focused Frame of Discernment) Let © be a frame of discernment and let
x € 29. The frame of discernment , denoted by ©° and containing the two atomic states
x and -z, where —z is the complement of z in ©, is then called the focused frame of
discernment with focus on z.

For example, the transition from the original frame of discernment of Fig.1 to a focused
frame of discernment which focuses on the state z7 = (z2 U x3) is illustrated in Fig.3. It
can be imagined that belief mass is assigned to all states drawn with solid lines in the left
part of the figure, and that z~ (drawn with dashed line) is defined as one of the two atomic
states in the focused frame of discernment.

Fig. 3. Deriving the focused frame of discernment with focus on z7

Definition 8 (Focused BMA and Relative Atomicity) Let © be a frame of discernment
with BMA mg and let b(x), d(z) and u(z) be the belief, dishelief and uncertainty functions
of z in 29. Let © be the the focused frame of discernment with focus on z. The focused
BMA mg, on O is defined according to:

e:ﬂ
mg.(~x) = d(z) ®
mg, (0%) =u(z).
The focused relative atomicity of z is defined by the following equation:
ag. (¢) = [E(z) — b(@)]/u(z) . (4)

It can be seen that the belief, disbelief and uncertainty functions of z are identical in in
29 and 297, The focused relative atomicity is defined so that the probability expectation
value of the state z is equal in © and ©°, and the expression for a~_ (x) in Def.8 can be
determined by using Def.6.

The focused relative atomicity will in general be different from % although ©° contains
exactly two states. It is in fact a constructed value which represents the weighted average
of relative atomicities of z to all other states in 2° as a function of their uncertainty mass.
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A focused frame of discernment with corresponding focused BMA and relative atomicity
makes it possible to work with binary frames of discernment instead of the full state space,
and this is a great advantage when operators on belief functions are introduced in Sec.3.

2.3. Example A: Assigning Belief Mass

As example we will consider the frame of discernment to the left of Fig.3 with BMA mg
according to:

([ me(z1) =0.10
me(z2) =0.20
me(z3) = 0.20 This produces the following b(z7) =0.40
me:{ me(xs) =0.00 belief, disbelief and uncertainty d(z7) =010 (5
me(zs) =0.10 functions for z7: u(zy) =0.50.
me(zg) =0.30
L T)’L@(@) =0.10.

Applying Def.6 produces the probability expectation value E(z7) = 0.70. The focused
BMA on ©%7 can be determined from Egs.(3) and (5) resulting in:

M., (x7)  =0.40
mg,, : mg., (j$7) =0.10
mg., (©*7) =0.50.

The focused relative atomicity of 2, can be computed by using Eq.(4) to produce:
ag., (z7) = 0.60 . (6)

It can be seen that the focused BMA is more compact than the original BMA because
it only represents the belief mass that is relevant for the state in focus.

2.4. The Opinion Space

After having presented some fundamental concepts in the previous sections the challenge is
now to find a simple intuitive representation of uncertain probabilities. For this purpose we
will define a 3-dimensional metric called opinion but which will contain a 4th redundant
parameter in order to be simple to use in combination with logical operators.

Definition 9 (Opinion) Let © be a binary frame of discernment with 2 atomic states z
and —z, and let mg be a BMA on © where b(z), d(z), u(x), and a(x) represent the belief,
disbelief, uncertainty and relative atomicity functions on = in 2® respectively. Then the
opinion about z, denoted by w,, is the tuple defined by:

we = (b(2), d(z), u(z), a(z)) . Y]

For compactness and simplicity of notation we will in the following denote the belief,
disbelief, uncertainty and relative atomicity functions as b, d,, u, and a,, respectively. The
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notation E(w,) will be equivalent to E(x) as a representation of probability expectation
value of opinions.

The three coordinates (b, d, ) are dependent through Eq.(1) so that one is redundant.
As such they represent nothing more than the traditional (Belief, Plausibility) pair of Shafe-
rian belief theory. However, it is useful to keep all three coordinates in order to obtain
simple expressions when introducing operators. Eq.(1) defines a triangle that can be used
to graphically illustrate opinions as shown in Fig.4.

U nceriai nty

Director

Disbelief -
0 f 05 a, E(x7) 1
Probability axis

Fig. 4. Opinion triangle with w, as example

As an example the position of the opinion w,, = (0.40, 0.10, 0.50, 0.60) from
Example A in Sec.2.3 is indicated as a point in the triangle. Also shown are the probability
expectation value and the relative atomicity.

The horizontal bottom line between the belief and disbelief corners in Fig.4 is called
the probability axis. The relative atomicity can be graphically represented as a point on the
probability axis. The line joining the top corner of the triangle and the relative atomicity
point becomes the director. In Fig.4 a(z7) = 0.60 is represented as a point, and the dashed
line pointing at it represents the director.

The projector is parallel to the director and passes through the opinion point. Its inter-
section with the probability axis defines the probability expectation value which otherwise
can be computed by the formula of Def.6. The position of the probability expectation
E(z7) = 0.70 is shown.

Opinions situated on the probability axis are called dogmatic opinions. They represent
situations without uncertainty and correspond to traditional frequentist probabilities. The
distance between an opinion point and the probability axis can be interpreted as the degree
of uncertainty.

Opinions situated in the left or right corner, i.e. with either b = 1 or d = 1 are called
absolute opinions. They represent situations where it is absolutely certain that a state is
either true or false, and correspond to ‘TRUE’ or ‘FALSE’ proposition in binary logic.
With the definitions established so far we are able to derive the fundamental Kolmogorov
axioms of traditional probability theory as a theorem.
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Theorem 2 (Kolmogorov Axioms) Given a frame of discernment © with a BMA mg,
the probability expectation function E with domain 2© satisfies:

1. E(z)>0forallz e 2®
2. E©)=1
[C]
3. Ifzy,zy... € 2° are pairwise disjoint, then E(ULillxz-) = E?:@l‘ E(z;)

Proof 2 Each property can be proved separately.

1. Immediate results of Defs.1 & 2 are that b, > 0, that u, > 0, and that a,, > 0 for

all z. As a consequence any probability expectation according to Def.6 will satisfy
0<E(z)<1.

2. Immediate results of Defs.1 are that bg = 1 and thatueg = 0, resultingin E(©) = 1.

3. Let zy,x2... € 2° be a set of disjoint states, i.e. sothatz; Nz; = () for i # j.
According to Def.6 we can write:

E((ziUz;)) = ) mely) al(zi Uz;)/y), y€2°. ®)

Because x; and x; are disjoint the following holds:

a((zi Uz;)/y) = alzi/y) + a(z;/y) - 9)
The sum in (8) can therefore be split in two so that E((z; U z;)) can be written:

E((ziUg;) =3, me(yalzi/y) + X, me(y)a(z;/y), y € 2°
(10)
= E(z;) + E(z;) .

This can be generalised to cover arbitrary sets of disjoint states. O

Opinions can be ordered according to probability expectation value, but additional cri-
teria are needed in case of equal probability expectation values. The following definition
determines the order of opinions:

Definition 10 (Ordering of Opinions) Let w, and w, be two opinions. They can be or-
dered according to the following criteria by priority:

1. The opinion with the greatest probability expectation is the greatest opinion.
2. The opinion with the least uncertainty is the greatest opinion.
3. The opinion with the least relative atomicity is the greatest opinion.

The first criterion is self evident. The second criterion is less so, but it is supported by
experimental findings described by Ellsberg cited in Example B below. The third criterion
is more an intuitive guess and so is the priority between the second and third criteria, and
before these assumptions can be supported by evidence from practical experiments we
invite the readers to judge whether they agree. An application of the third criterion will be
illustrated by Example C in Sec.2.6.
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2.5. Example B: The Ellsberg Paradox

The Ellsberg paradox? is a classical example of how traditional probability theory is
unable to express uncertainty. Suppose you are shown an urn with 90 balls in it and you
are told that 30 are red and that the remaining 60 balls are either black or yellow. One ball
is going to be selected at random and you are given the following choice. Option | will
give you $100 if a red ball is drawn and nothing of either a black or a yellow ball is drawn;
option Il will give you $100 if a black ball is drawn and nothing if a red or a yellow is
drawn. Here is a summary of the options:

Table 1. First pair of betting options
Red Black Yellow

Optionl:  $100 O 0
Optionll: 0 $100 O

Make a note of your choice and then consider another two options based on the same
random draw from this urn:

Table 2. Second pair of betting options
Red Black Yellow
Option I1l:  $100 0 $100
OptionIV: 0 $100  $100

Which of option 111 and 1V would you choose?

Ellsberg reports that, when presented with these pairs of choices, most people select
options I and IV. Adopting the approach of expected utility theory this reveals a clear incon-
sistency in probability assessments. On this interpretation, when a person chooses option |
over option Il, he or she is revealing a higher subjective probability assessment of a ‘Red’
than a ‘Black’. However, when the same person prefers option 1V to option 111, he or she
reveals that his or her subjective probability assessment of ‘Black or Yellow’ is higher than
a ‘Red or Yellow’, implying that ‘Black’ has a higher probability assessment than ‘Red’.

When representing the uncertain probabilities as opinions the choice of the majority be-
comes perfectly logic. Fig.5 shows a part of the powerset of the Ellsberg paradox example

with corresponding BMA.
Ya
2/3 fyellow
Y3
0

Fig. 5. Frame of discernment in the Ellsberg paradox

Utilities of option | and Il depend on the opinions about y,:‘Red’ and y:‘Black’:

OptionI:  wy, = (3, 2,0, 3) Option Il:  w,, = (0, %, 2, 1)
By using Def.6 we find that: { EEZ“; B ig = E(wy,) = E(wy,)
Y2 -
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The probability expectations are equal in both cases but w,,, contains uncertainty whereas
wy, does not. Fig.6 clearly shows the difference in uncertainty between the two opinions.

Uncertainty

Projector for wy,

Projector for wy,

Belief

Disbelief
0

Wy,
Fig. 6. Opinions about y1 and y»

It can be concluded that option I is the best choice because its corresponding probability
of winning $100 is certain whereas option |1 represents an uncertain probability of winning.

Let us now turn to the next pair of options, namely option Ill and IV. This is equiva-
lent to choosing between the states (y; U y3): ‘Red or Yellow’ and y4: ‘Black or Yellow’
respectively. The corresponding opinions are:

Option Il:  wy,uy, = (5, 0,

IS

) Option IV:  wy, = (

N[
N
W=

L
win
~—

)

: . E(w?hUys) = 2/3 _
From Def.6 we find that: { E(w,,) —2/3 = E(wyuys) = E(wy,)

The probability expectations are again equal but wy, Uy, contains uncertainty whereas
wy, does not. Fig.7 clearly shows the difference in uncertainty between the two opinions.

Uncertainty

Projector for wy, ‘ 3 S & Oy1uys

~ Projector for

Wyyuys

Disbelief

g e+ Belief
0 Wy, 1

Fig. 7. Opinions about (y1 U y3) and y4
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Based on the above it can be conclude that wy, Uy, < wy, and that opinion IV is the
best choice because its probability of winning $100 is more certain than with option I11.

We have shown that preferring option | to option Il and preferring option IV to option
I11 is perfectly rational and does not represent a paradox within the opinion model. Other
models of uncertain probabilities are also able to explain the Ellsberg paradox, such as
e.g. Choquet capacities(Choquet 1953°, Chateauneuf 1991'9). However, the next example
presents a case which as far as we know can not be explained by any other model.

2.6. Example C: Ordering Opinions

In this example we describe a situation similar to the one in the Ellsberg paradox,
namely an urn filled with balls, but this time having 9 different colours.

Suppose you are shown an urn with 80 balls in it and you are told that the urn was first
filled with 20 red balls, then with 10 balls that were either red, black or yellow, then with 20
balls that were either blue, white, green, pink, brown or orange, and finally with 30 balls of
any of the 9 mentioned colours. Fig.8 represents the frame of discernment of the situation
where also the BMA is indicated.

38 | 1/8

Fig. 8. Frame of discernment and BMA of urn with balls of 9 different colours

One ball is going to be drawn at random and we will compare the opinions about the
states 219, 211, 212, 213 € 2° defined by:

z10 = ‘red, black or yellow’, Wi = (%, %; %, %)
z11 ¢ ‘blue, white, green, pink, brown or orange’, wa, =(3, 3,3, 2)
z12 ¢ ‘red, blue or pink’, Wapy = (%7 0, %, %)
z13 ¢ ‘black, yellow, white, green, brown or orange’, w,,, = (0, %, g, %)

By computing the respective probability expectation values it can be observed that:

E(Wz10) = E(Wz1;) = E(Wzy,) = E(wzy) = 1/2.
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The problem is now to order the opinions about the 4 states that all have equal proba-
bility expectation. Fig.9 clearly shows that although the probability expectation values are
equal the opinions have different levels of uncertainty and different relative atomicities.

Uncertainty

Projector for
, Wzyy and Wz,
Projector for

Dishelief Ly %+ ¥ + 4 + + N Belief
0
Fig. 9. Opinions about z10, 211, 212, and z13

According to the second criterion in Def.10 opinions positioned furthest down in the
triangle are the greatest. According to the third criterion, those positioned furthest to the
right are the greatest. We can therefore conclude that w,,, > w,,, > Wz, > Wz,,. ThIS re-
sult of course depends on the correctness of the priority between criteria 2 and 3 in Def.10,
which needs to be verified by practical experiments on human judgement.

3. Logical Operators

So far we have described the elements of a frame of discernment as states. In practice states
will verbally be described as propositions; if for example © consists of possible colours of
a ball when drawn from an urn with red and black balls, and x designates the state when
the colour drawn from the urn is red then it can be interpreted as the verbal proposition z:
‘A ball drawn at random will be red’.

Standard binary logic operates on binary propositions that can take the values ‘TRUE’
or ‘FALSE’. Subjective logic operates on opinions about binary propositions, i.e. opinions
about propositions that are assumed to be either true or false. In this section we describe
the traditional logical operators ‘AND’, ‘OR’ and ‘NOT’ applied to opinions, and it will
become evident that binary logic is a special case of subjective logic for these operators. An
example of applying subjective logic to the problem of authentication and decision making
for electronic transactions is described in Jgsang 199911,

Opinions are considered individual, and will therefore have an ownership assigned
whenever relevant. In our notation, superscripts indicate ownership, and subscripts indi-
cate the proposition to which the opinion applies. For example w2 is an opinion held by
agent A about the truth of proposition z.
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3.1. Propositional Conjunction and Disjunction

Forming an opinion about the conjunction of two propositions from distinct frames of dis-
cernment consists of determining from the opinions about each proposition a new opinion
reflecting the truth of both propositions simultaneously. This corresponds to ‘AND’ in
binary logic.
Theorem 3 (Propositional Conjunction)

Let ©x and ©y be two distinct binary frames of discernment and let 2 and y be propo-
sitions about states in @ x and Oy respectively. Let w, = (bs,d,,us,a,) and w, =
(by, dy, uy, ay) be an agent’s opinions about z and y. Let wyny = (bzay, deny; Yzay, Gzay)
be the opinion such that:

bzny = bzby

dyny = dy + dy — dpdy

Ugny = bpy + ughy + uzuy

_ bauyaytuzazbytuzazuyay
Azny = betuy+usbyt+usuy .

o=

Then w,y is called the propositional conjunction of w, and w,, representing the agents
opinion about both = and y being true. By using the symbol * A’ to designate this operator,
we define wypy = wy A wy.

Forming an opinion about the disjunction of two propositions from distinct frames of
discernment consists of determining from the opinions about each proposition a new opin-
ion reflecting the truth of one or the other or both propositions. This corresponds to ‘OR’
in binary logic.

Theorem 4 (Propositional Disjunction)

Let ©x and Oy be two distinct binary frames of discernment and let = and y be propo-
sitions about states in @ x and Oy respectively. Let w, = (by,dy, ug,a,) and wy =
(by, dy, uy, a,) be an agent’s opinions about z and y. Let wgvy = (bpvy, devys Uzvy, Gzvy)
be the opinion such that:

bovy = by + by — bzby

dyvy = dgdy

Ugvy = dpUy + Ugpdy + uzuy

Up Qo FUy Gy —balUyly —Ug by — Uz azUyay
Uz FUy —boUy — Uz by —Uz Uy )

L

any -

Then w,yv, is called the propositional disjunction of w, and w,, representing the agents
opinion about z or y or both being true. By using the symbol * v’ to designate this operator,
we define wyyy = wy V wy.

Proof 3 and 4

Let ©x and ©y be two binary frames of discernment, were z,—z € Ox and y,—y €
Oy . The product frame of discernment of ® x and ©y, denoted by © x «y is obtained by
conjugating each element of 2 with each element of 2®¥ . This produces:

Oxxy
= {SL',".’L',@X} X {ya_'yaGY}
={zNy,zN-y,zNOy,~zNy,~zN—y,~2NOy,O0xNy,0xN-y,Ox NOy}.



A Logic for Uncertain Probabilities 15

Letme, and me, be BMAson © x and Oy respectively. Because © x and Oy are binary,
the belief masses can be expressed according to Eq.(3) as simple belief functions such that:

me () =b; mey (y) =by
mex (ﬁm) = dm Moy (_'y) = d?/
me (@X) = Uy, me. (@y) = ’U.y .

The BMA on Ox«y is obtained by multiplying the respective belief masses on the
elements of 29x with the belief masses on the elements of 28 . This produces:

bﬂ?by me xyy (".'17 n y) = dwby me xyy (®X n y) = Umby
bzdy me xyy (_LCL' n _'y) = dzdy mMe x.y (@X N _'y) = uzdy
bolly Mexyy (M NOy) =dyuty Moy, (Ox NOY) = uzuy .

mMe xyy ("E N y)
mMe xyy ('7: N _'y)
mMe xyy ('7: N @Y) =

e Propositional Conjunction
The conjunction betweenz € ©x andy € Oy issimply 2Ny € O x xy. The derived
frame of discernment with focus on z Ny then becomes ©% Yy, = {zNy, ~{zNy}},
where ={zNy} = {zN—y, ~zNy, ~zN-y}. According to Def.8 the BMA m~

0%y
is such that:
mémny (.’L‘ N y) = bz/\y
XXY
Mgy (~{ZNYY) = duny
XXY ~ oy
3. Megeny (0% %) = Ugpy -

By using Eqg.(4) it can also be observed that the derived relative atomicity of x Ny is
such that:

4. ageny (Ny) =azny-
XXY

These four parameters define w;, as specified in Theorem 3.

e Propositional Disjunction
Similarly to propositional conjunction, the propositional disjunction between x €
Ox andy € Oy issimplyzUy ={zNy,zN-y,-zNy},withzUy € Oxxy.
The derived frame of discernment with focus on z U y then becomes @ﬁufy ={zU
y,—{z Uy}}, where ={z Uy} = {—z N -y}. According to Def.8 the belief mass
assignment me,,, is such that:

1. mgeuy ("1: U y) = szy
XxY
Mgeon (~{zUy)) = dovy
XXY ~ Uy
3. Megeuy (O%%y) = Ugvy -

By using Eqg.(4) it can also be observed that the derived relative atomicity of x Uy is
such that:

4. ageuwy (TUY) =agvy.
X XY

These four parameters define w;y, as specified in Theorem 4. O
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As would be expected, propositional conjunction and disjunction of opinions are both
commutative and associative. Idempotence is not defined because it would mean that the
propositions x and y are identical and therefore belong to the same frame of discernment.
It must always be assumed that the arguments are independent and refer to distinct frames
of discernment.

Propositional conjunction and disjunction are equivalent to the ‘AND’ and ‘OR’ op-
erators of Baldwin’s support logic'? except for the relative atomicity parameter which is
absent in Baldwin’s logic. When applied to absolute opinions, i.e with either b = 1 or
d = 1, propositional conjunction and disjunction are equivalent to ‘AND’ and ‘OR’ of
binary logic, that is; they produce the truth tables of logical ‘AND’ and ‘OR’ respectively.
When applied to dogmatic opinions, i.e opinions with zero uncertainty, they produce the
same results as the product and co-product of probabilities respectively. It can be observed
that for dogmatic opinions the denominator becomes zero in the expressions for the relative
atomicity in Theorems 3 and 4. However, the limits do exist and can be computed in such
cases. See also comment about dogmatic opinions in Sec.5.2 below.

Propositional conjunction and disjunction must not be confused with the conjunctive
and disjunctive rules of combination described by e.g. Smets 1993'2 and Smets & Kennes,
19948, Propositional conjunction represents belief about the conjunction (i.e. logical
‘AND?’) of distinct propositions whereas the conjunctive rule of combination is just an-
other name for Dempster’s rule for combining separate beliefs about the same proposition.
The latter is described in Sec.5.4 below.

Propositional conjunction and disjunction of opinions are not distributive on each other.
If for example w,, wy and w, are independent opinions we have:

wWe A(wy Vw,) # (we Awy) V (wy Aw;) (12)

This result which may seem surprising is due to the fact that w,, appears twice in the expres-
sion on the right side so that it in fact represents the propositional disjunction of partially
dependent arguments. Only the expression on the left side is thus correct.

Propositional conjunction decreases the relative atomicity whereas propositional dis-
junction increases it. What really happens is that the product of the two frames of dis-
cernment produces a new frame of discernment with atomicity equal to the product of the
respective atomicities. However, as opinions only apply to binary frames of discernment, a
new frame of discernment with corresponding relative atomicity must be derived both for
propositional conjunction and propositional disjunction. The expressions for relative atom-
icity in Theorems 3 and 4 are in fact obtained by forming the product of the two frames of
discernment and applying Eq.(4) and Def.6 .

In order to show that subjective logic is compatible with probability calculus regarding
product and co-product of probabilities we will prove the following theorem.

Theorem 5 (Product and Co-product)
Let ©x and Oy be two distinct binary frames of discernment and let = and y be propo-
sitions about states in @ x and Oy respectively. Let w, = (by,dy, ugz,a,) and wy =
(by,dy,uy,ay) be an agent’s opinions about the propositions = and y respectively, and
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let wany = (bzny, dany, Uzny, Gzny) ANAd wavy = (bavy, dovy, Usvy, Gzvy) bE their re-
spective propositional conjunction and disjunction. The probability expectation function E
satisfies:

1. E(wgay) = E(wz)E(wy)

2. E(wzvy) = E(wg) + E(wy) — E(wg)E(wy) -

Proof5 Each property can be proved separately.

1. Equation 1 corresponds to the product of probabilities. By using Def.6 and Theorem
3 we get:
E(wz/\y) = bz/\y + Ugay Gzay
= bgby + bruyay + UgGzby + UzazUyay
= (by + ugag)(by + uyay)
= E(wz)E(wy) -

(12)

2. Equation 2 corresponds to the co-product of probabilities. By using Def.6, Theorem
4 and Eq.(1) we get:

E(szy) = bz‘\/y + Ugvy Azvy
= bpvy + (datsy + uady + uguy) azvy
= bgvy + (Ug + Uy — byuy — uzby — Uzy) Azvy
=bg + by — byby + Uzay + Uyay — brUyay — Ugazby — UzazUyay
= b, +uga, + by + uyay — (by + uga,)(by + uyay)
= E(w;) + E(wy) — E(w,)E(wy) -
(13)

O

3.2. Example D: Reliability Analysis

A newly designed industrial process Z depends on two subprocesses X and Y to produce
correct result. This conjunctive situation is illustrated in Fig.10, and the analysis of this
system illustrates the use of the propositional conjunction operator.

Fig. 10. Conjunctive system

The analysis is based on expressing opinions about proposition such as for example
x: ‘Process X will produce correct result’. The propositions y and z are defined accord-
ingly. A’s perception of the reliability of Z can be expressed as w4 = w;}Ay. From earlier
experience, agent A has the following opinions about the subprocesses X and Y':

w2 = (0.8, 0.1, 0.1, 0.5) wi = (0.1, 0.8, 0.1, 0.5) .
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By using the propositional conjunction operator, the opinion about the reliability of process
Z can be computed as:

wA  =(0.08, 0.82, 0.10, 0.475) .

z

The corresponding probability expectation value gives E(wA) = 0.1275. It can be verified
that:
E(wf/\y) + E(wﬁ/\ﬂy) + E(wfz/\y) + E(wfz/\ﬂy) =L

which shows that propositional conjunction preserves probability additivity.

3.3. Negation

The negation of an opinion about proposition z represents the opinion about x being false.
This corresponds to ‘NOT” in binary logic.
Theorem 6 (Negation)
Letw, = (b, ds,us, a;) be anopinion about the proposition z. Thenw-, = (b—, d—¢, Uz, G—z)
is the negation of w, where:

1. b,=d,
2. d;=0b;
3. u_p=u,

4. a.=1-a,.
By using the symbol * =’ to designate this operator, we define —w, = w_.

Proof 6
The opinion about the negation of the proposition is the opinion about the complement
state in the frame of discernment. An immediate result of Eq.(3) is then that b_, = d,,
d-; = b, and u—, = u,. The probability expectation values of z and —z must satisfy
E(w;) + E(w-;) = 1 which when used in Eq.4 results ina—, =1 — a,.
O

Negation can be applied to expressions containing propositional conjunction and dis-

junction, and it can be shown that De Morgans’s laws are valid.

4. The Evidence Space

This section describes an alternative representation of uncertain probabilities, namely by
probability density functions over a probability variable. Similar ideas have been described
by e.g. Gérdenfors & Sahlin 1982'4, Chavez, 1996'® and Walley 1997'¢. In addition
we define a mapping between the density function representation and the Shaferian belief
model representation described in Sec.2 so that results from one space can be used in the
other.

4.1. Probability Density Functions

The mathematical analysis leading to the expression for posteriori probability estimates of
binary events can be found in many text books on probability theory, e.g. Casella & Berger
1990'7 p.298, and we will only present the results here.
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It can be shown that posteriori probabilities of binary events can be represented by the
beta distribution. The beta-family of density functions is a continuous family of functions
indexed by the two parameters a and 3. The beta(a, 3) distribution can be expressed using
the gamma function T as:

f(pla. B) = F &1 (1 - )Pt

(14)
where0<p<1,a>0,8>0.

with the restriction that the probability variable p 2 0 if « < 1,and p # 1if 8 < 1. The
expectation value of the beta distribution is given by E(p) = a/(a + 8).

The usual acronym for a probability density function is ‘pdf’. In our case the variable
will always be a probability variable, so the pdf can be called a probability pdf, or ‘ppdf’
for short.

The ppdf expression of Eq.(14) is valid for binary events, that is when the relative
atomicity of the actual event is % We generalise Eq.(14) to cover event spaces of arbitrary
atomicity, and thus events of arbitrary relative atomicity through the following equations:

a=r+2a, where 0 <a<1,r>0

B=s+2(1-a), where 0<a<l,s>0. (15)

Here a is defined to be the relative atomicity of the actual event to which the ppdf applies,
and shall be interpreted equivalently with the relative atomicity of opinions. The parame-
ters r represents the amount of evidence supporting the actual event and the parameters s
represents the amount of evidence supporting its negation. Our next definition captures this
idea.

Definition 11 (Probability Density Function) Let f be a probability density function over
the probability variable p, then f is characterised by r, s and a according to:

flp|r,s,a) = r(r+21;()7ijz:iz221—a))p(r+2a71)(1 —p)ler2mah

(16)
where0 <p<1,0<r, 0<s,0<a<l.

with the restriction that the probability variable p # 0 if (r + 2a) < 1, and p # 1 if
(s +2(1 —a)) < 1. Here r,s and a represent positive evidence, negative evidence and
relative atomicity respectively. This function will be called a ppdf for short.
Justification
In order to justify Def.11 we will show that probability expectation values of ppdfs preserve
additivity in a frame of discernment.

The probability expectation value of a ppdf can be directly derived from the expectation
value of the beta distribution by using Eq.(15):

E(p)=(r+2a)/(r+s+2). @)

A process that can produce ¢ different outcomes can be represented by the frame of
discernment © with ¢ atomic states. Over a period of time an observer has registered each
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outcome n; times where 0 < n; and i represents the index of the outcome. The probability
expectation value of each outcome indexed by 7 can be expressed as:

n; + 2/t

= (18)
Z;:I n; + 2

E(p;) =

where 1/t is the relative atomicity of each event. The sum of the probability expectation
values of all the events then becomes:

Y. Ep) =1. (19)

A probability expectation value contain less information than the ppdf and the above
result does not guarantee that a ppdf expresses the degree of uncertainty correctly. This
will be discussed in Sec.4.4.

O

As an example, a process with two possible outcomes (i.e. binary event space, a = 0.5)
that has produced r = 7 positive and s = 1 negative outcomes, will have a ppdf expressed
as f(p|7.0,1.0,0.5) which is plotted in Fig.11.

f
5

p

0.2 0.4 0.6 0.8 1
Fig. 11. Ppdf after 7 positive and 1 negative results

This curve expresses the uncertain probability that the process will give a positive out-
come during future observations. The probability expectation value is given by E(p) = 0.8.
This can be interpreted as saying that the relative frequency of positive outcome is some-
what uncertain, and that the most likely value is 0.8.

4.2. Mapping between the Evidence and Opinion Spaces

The ppdf in Def.11 is a 3-dimensional representation of uncertain probabilities. This fits
well with the 3-dimensional expression for opinions described in Sec.2.4, and we will in
this section define a mapping between the two representations which leads to equivalent
interpretations.

Definition 12 (Mapping) Letw = (b, d, u,a) be an agent’s opinion about a proposition,
and let f(p|r,s,a) be the same agent’s probability estimate regarding the same proposi-
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tion expressed as a ppdf, then w can be expressed as a function of f(p) according to:

b= s
= # where u # 0 . (20)
u= r+s+2

Justification
We start by requiring equality between the probability expectation values of w and f(p),
and by using Eq.(1).

E(f(p)) = E(w)
{ b+d+u=1 (21)
oy - { iy 2
21) = {2136:_21“:/({4-8%—2)4-2@/(7"4-34—2) 23)

We require the solution to make b an increasing function of r, and d an increasing
function of s, so that there is an affinity between b and r, and between d and s. We also
require u to be a decreasing function of (r, s). By including this “affinity’ requirement we

get:
(21) b=r/(r+s+2)
+ =< d=s/(r+s+2)
‘affinity’ u=2/(r+s+2).

Equivalently to Def.12 it is possible to express f(p) as a function of w:

(20) r=2b/u
{ (1) i{ s = 2d/u where u # 0 .

We see for example that the uniform ppdf f(p|0.0, 0.0, 0.5) corresponds to the opin-
ion w = (0.0, 0.0, 1.0, 0.5) which expresses total uncertainty about a binary event, that
f(p|o0,0,a) or the absolute probability corresponds to w = (1,0, 0, a) which expresses
absolute belief, and that f (p | 0, o0, a) or the zero probability corresponds to w = (0, 1, 0, a)
which expresses absolute disbelief. By defining w as a function of f according to Eq.(20),
the interpretation of w corresponds exactly to the interpretation of f(p).

Dogmatic opinions such as for example w = (0.5,0.5,0.0,0.5), do not have a clear
equivalent representation as ppdf because the (r, s) parameters would explode and make
it necessary to work with infinity ratios. In order to avoid this problem dogmatic and
absolute opinions can be excluded, or in other words only allow opinions with u # 0. See
also comments about dogmatic opinions in Sec.5.2.

Eq.(20) defines a bijective mapping between the evidence space and the opinion space
so that any ppdf has an equivalent mathematical and interpretative representation as an
opinion and vice versa, making it possible to produce opinions based on statistical evidence.
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4.3. Combination of Evidence

Assume two observers A and B having observed a process over two different periods re-
spectively. The event of producing a positive result is denoted by z and the event of pro-
ducing a negative result is denoted by —z. The parameters r, and s represent the observed
number of positive and negative results respectively. The parameter a represents the rela-
tive atomicity of the positive event. According to Def.11, the observers’ respective ppdfs
are then f(p|ra,s2,ad) and f(p|r2,sB, aP). Imagine now that they combine their ob-
servations to form a better estimate of the event’s probability. This is equivalent to an
imaginary observer [A, B] having made all the observations and who therefore can form
the ppdf defined by f(p|r2 +rB, s2 + 5B, aP). This is the basis for our definition of

xz

the consensus operator for combining evidence.

Definition 13 (Combining Evidence)

Let f(p|rZ,s2,a2) and f(p|rZ,sZ,al) be two ppdfs respectively held by the observers
A and B regarding the truth of a proposition z. The ppdf f(p|r2-B, s2B a4-B) defined
by:

1. 8= rA + rf

2. A B = s + s

3 A B _ A(r +sA)+aB(T +s5)
- z TA+8A+’!‘B+SB

is then called the consensus operator for combining A’s and B’s evidence, as if all the
evidence was held by an imaginary observer [A, B]. By using the symbol “ &’ to designate
this operator, we get f(p|rAB, s2B aAB) = f(p|rd, s2,ad) ® f(p|rE,sE,ab).

The expression for the comblned relative atomicity aZ® is not based on statistical
analysis of evidence but is due to technical considerations. It could be imagined that the
two observers have different views of the atomicity of the event space to which the observed
event belongs, whereas a common view is required. A simple solution to this problem is
to let the expression for a2 be a weighted average of the respective relative atomicities,
where the observer with the most observations has the greatest influence on a2, The
idea is that the observer with the most evidence about the event should also know the event
space the best.

This operator for combining evidence will in Sec.5.2 form the basis for describing a
consensus operator for opinions.

4.4. Propositional Conjunction and Disjunction of Density Functions

The mapping between the opinion space and the evidence space makes it possible to apply
subjective logic to probability density functions over a probability variable, or ppdfs for
short. This sections briefly describes some consequences of this.

A totally uncertain opinion w, = (0.0, 0.0, 1.0, 0.5) maps to f,(p|0.0, 0.0, 0.5)
which is the uniform ppdf illustrated in Fig. 12.

Combining two totally uncertain opinions with the propositional conjunction opera-
tor ‘AND’ produces a new totally uncertain opinion with relative atomicity equal to the
product of the operand relative atomicities. Let for example w, be defined as above
and let w, = w,. Then wya, = (0.00, 0.00, 1.00, 0.25), and the corresponding ppdf
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0.2 0.4 0.6 0.8 1
Fig. 12. Uniform ppdf

fzay(p]0.00, 0.00, 0.25). This result can be compared with the computation of simulta-
neous uniform density functions.

A method for computing simultaneous pdfs is described in e.g. Casella & Berger
1990'7 p.148. Let g(p) represent simultaneous uniform pdfs over a probability variable
p. This produces the simultaneous pdf described by:

9p) = f2(»]0.0, 0.0, 0.5) x f,(p]0.0, 0.0, 0.5) (24)
= —In(p) .

For comparison both f;,(p) and g(p) are plotted in Fig. 13.

f.g
5

4

g(p)
2 /
1 7
f(P)
0.2 0.4 0.6 0.8 1 P

Fig. 13. Comparison between simultaneous uniform pdfs and conjunction of uniform ppdfs

From the expressions of fzr,(p) and g(p) it is easy to prove that E(fzay(p)) =
E(g(p)) = 0.25 although the curves are slightly different.

We have defined a ppdf to be a pdf over a probability variable. Intuitively one should
think that simultaneous pdfs over a probability variable is equivalent with the propositional
conjunction of ppdfs, and the difference seen in Fig.13 needs an explanation. Without
going into detail possible reasons can for example be:

e The expression for ppdfs might only be an approximation in case the frame of dis-
cernment is larger than binary.
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e The propositional conjunction operator could be imperfect.
e The computation of simultaneous pdfs could be imperfect.
e The mapping defined in Def.12 could be imperfect.

An investigation into these possibilities must be the subject future research. It should
be noted that the greater the uncertainty the greater the difference between simultaneous
pdfs and propositional conjunction of ppdfs becomes, so that the example in Fig.13 actually
illustrates the biggest difference possible. As such the propositional conjunction operator
provides at least a good approximation of simultaneous beta pdfs.

5. Evidential Operators

The propositional conjunction, disjunction and negation operators described in Sec.3 rep-
resent traditional logical operators. In this section two non-traditional operators are de-
scribed, namely discounting and consensus of opinions.

5.1. Discounting

Assume two agents A and B where A has an opinion about B in the form of the propo-
sition: ‘B is knowledgeable and will tell the truth’. In addition B has an opinion about
a proposition z. Agent A can then form an opinion about z by discounting B’s opinion
about 2 with A’s opinion about B. There is no such thing as physical belief discounting,
and discounting of opinions therefore lends itself to different interpretations. The main
difficulty lies with describing the effect of A disbelieving that B will give a good advice.
This we will interpret as if A thinks that B is uncertain about the truth value of z so that A
also is uncertain about the truth value of z no matter what B’s actual advice is. Our next
definition captures this idea.

Definition 14 (Discounting)

Let A and B be two agents where wi = (b4, d4a, ug,af) is A’s opinion about B’s advice,
and let z be a proposition where w? = (b8, dB uZ a?) is B’s opinion about z expressed
in an advice to A. Letw? = (bAB d4A8 w28, a/P) be the opinion such that:

L bd8 = ot

2. dz == dew

3. ulP =df +up + biub
4. alP =df

then wAP is called the discounting of w? by w# expressing A’s opinion about z as a
result of B’s advice to A. By using the symbol * ®” to designate this operator, we define
WAB = wi @wB.

The discounting function defined by Shafer* uses a discounting rate that can be denote
by ¢, where the belief mass on each state in 2© except the belief mass on @ itself is mul-
tiplied by (1 — ¢). By setting (1 — ¢) = b our definition becomes equivalent to Shafer’s
definition. In our earlier publications(e.g. Jgsang 19973 and 1999'1) the discounting oper-

ator was described as the recommendation operator, meaning exactly the same thing.
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Itis easy to prove that ® is associative but not commutative. This means that in case of
a chain of recommendations the discounting of opinions can start in either end of the chain,
but that the order of opinions is significant. In a chain with more than one advisor, opinion
independence must be assumed, which for example translates into not allowing the same
entity to appear more than once.

5.2. Consensus

The consensus opinion of two opinions is an opinion that reflects both opinions in a fair
and equal way. For example if two agents have observed a machine over two different
time intervals they might have different opinions about it depending on the behaviour of
the machine in the respective periods. The consensus opinion must then be the opinion that
a single agent would have after having observed the machine during both periods.
Theorem 7 (Consensus)

Letw? = (b4,d2,ust,a?) and wB = (bB,dZ,uZ, aP) be opinions respectively held by
agents A and B about the same proposition z. Let w8 = (b8 a8 428 o2P) be
the opinion such that

AB _ (1A, B | 1B, A
ba’B = (bzAuzB+ szumA)/fs
dﬁ,B = (daumB+dz uy)/k
uy” = (uzug ) /K
An _ afutatud (e ta?)utu?
ap’" = ud+uB —2uduB

R

where k = uZ +uZ —uAu? suchthat k # 0, and a2? = (a2} +aP)/2 whenuZ,uf = 1.
Then w8 is called the consensus between w? and w?, representing an imaginary agent
[A, B]’s opinion about z, as if she represented both A and B. By using the symbol * & to
designate this operator, we define w4 ? = w4 @ wP.
Proof 7
The consensus operator for opinions is obtained by mapping the operator for combined
evidence from Def.13 onto the opinion space using Def.12.

O

It is easy to prove that @ is both commutative and associative which means that the
order in which opinions are combined has no importance. Opinion independence must be
assumed, which obviously translates into not allowing an agent’s opinion to be counted
more than once

The effect of the consensus operator is to reduce the uncertainty. For example the case
where several witnesses give consistent testimony should amplify the judge’s opinion, and
that is exactly what the operator does. Consensus between an infinite number of inde-
pendent non-dogmatic opinions would necessarily produce a consensus opinion with zero
uncertainty.

Two dogmatic opinions can not be combined according to Theorem 7. This can be
explained by interpreting uncertainty as room for influence, meaning that it is only possi-
ble to reach consensus with somebody who maintains some uncertainty. A situation with
conflicting dogmatic opinions is philosophically counterintuitive, primarily because opin-
ions about real situations can never be absolutely certain, and secondly, because if they



26 A.Jgsang

were they would necessarily be equal. The consensus of two absolutely uncertain opinions
results in a new absolutely uncertain opinion, although the relative atomicity is not well
defined. The limit of the relative atomicity when both u2', u? — 1is (a2 +aP)/2, i.e. the
average of the two relative atomicities, which intuitively makes sense.

The consensus operator will normally be used in combination with the discounting
operator, so that if dogmatic opinions are advised, the recipient should not have absolute
trust in the advisor and thereby introduce uncertainty before combining the advice by the
consensus operator, as illustrated in Example E below.

The consensus operator has the same purpose as Dempster’s rule#, but is quite different
from it. Dempster’s rule has been criticised for producing counterintuitive results (see e.g.
Zadeh 1984'® and Cohen 1986'?), and in Sec.5.4 we will compare our consensus operator
with Dempster’s rule.

5.3. Example E: Assessment of Testimony from Wilnesses

Imagine a court case where three witnesses W1y, W, and W3 are giving testimony to ex-
press their opinions about a verbal proposition z which has been made about the accused.
Assume that the verbal proposition is either true or false, and let each witness express his
or her opinion about the truth of the proposition as an opinion w)¥', to the courtroom. The
judge J then has to determine his or her own opinion about z as a function of her trust wy},
in the proposition: ‘Witness W is reliable and will tell the truth’ in each individual witness.
This situation is illustrated in Fig.14 where the arrows denote trust or opinions about truth.

/ \ Legend:
\ /

Trust

Fig. 14. Trust in testimony from witnesses

The effect of each individual testimony on the judge can be computed using the dis-
counting operator, so that for example T/, s belief in  is discounted by the judge’s trust in
W1. This causes the judge to have the opinion:

wzJW1 — w[‘{Vl ®w;/vl
about the truth of z as a result of the testimony from W;. Assuming that the opinions result-

ing from each witness are independent, they can finally be combined using the consensus
operator to produce the judge’s own opinion about z:

wp M) = (i, @) © (Wi, Bl @ (Wl @Wl) . (25)

As a numerical example, let J’s opinion about the witnesses, and the witnesses’ opin-
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ions about the truth of proposition = be given by:

Wiy, = (0.90,0.00,0.10,0.50) wt = (0.90,0.00,0.10, 0.50)
Wi, = (0.00,0.90,0.10,0.50) w2 = (0.90,0.00,0.10,0.50)
Wiy, = (0.10,0.00,0.90, 0.50) ws = (0.90,0.00,0.10,0.50)

It can be seen that the judge has a high degree of trust in W1, that she distrusts W, and
that her opinion about W3 is highly uncertain.

The judge’s separate opinions about the proposition x as a function of the advice from
each witness then become:

w!M1 = (0.81, 0.00, 0.19, 0.50)
wI™2 = (0.00, 0.00, 1.00, 0.50)

w!Ws = (0.09, 0.00, 0.91, 0.50)

It can be seen that w;"? is totally uncertain due to the fact that the judge distrust W,
and that w"= is highly uncertain because the judge is very uncertain about testimonies
from W3. Only w1 represents an opinion that can be useful for making a decision. By
combining all three independent opinions into one the judge gets:

wyWeWeWa) (9 8135, 0.0000, 0.1865, 0.5000)

It can be seen that the combined opinion is mainly based on the advice from W;.

5.4. Comparing the consensus operator with Dempster’s rule

In this section we will compare our consensus operator with the original Dempster’s rule
and with Smets’” non-normalised version of Dempster’s rule.

We start with the well known example that Zadeh 198418 used for the purpose of crit-
icising Dempster’s rule. Smets 19882 used the same example in defence of the non-
normalised version of Dempster’s rule.

Suppose that we have a murder case with three suspects; Peter, Paul and Mary and
two witnesses Wy and W» who give highly conflicting testimonies. The beliefs of the two
witnesses can be combined using Dempster’s rule and the non-normalised Dempster’s rule
defined below.

Definition 15 Let © be a frame of discernment, and let m§ and m& be BMAs on ©. Then
mg © m§ is afunctionm§ © mg : 2° — [0, 1] such that:

1. miom8®) =0, and
3 mAw) mE(2)
1-k

2. mjom(z) = forall z # 0

— A B(.) i , —0i
where K= Zy_m:@ mg(y) - mg(z) in Dempster’s rule, and where x = 0 in the non-
normalised version.



28 A.Jgsang

Table 3 gives the belief masses of Zadeh’s example and the resulting belief masses after
applying Dempster’s rule and its non-normalised version.

Table 3. Comparison of operators in Zadeh’s example
Witness 1 Witness 2 Dempster’s rule  Non-normalised rule

Peter 0.99 0.00 0.00 0.00
Paul 0.01 0.01 1.00 0.0001
Mary 0.00 0.99 0.00 0.00
(€] 0.00 0.00 0.00 0.00

Dempster’s rule selects the least suspected by both witnesses as the guilty. The non-
normalised version acquits all the suspects and indicates that the guilty has to be someone
else. This is explained by Smets 19882° with the so-called open world interpretation of
the frame of discernment which says that there can be unknown possible states outside the
known frame of discernment.

Although both Dempster’s rule and the non-normalised version seem to give very coun-
terintuitive results the main problem in this example is the witnesses’ dogmatic BMAs
which is philosophically meaningless, and no operator can be expected to give a meaning-
ful answer in such cases.

Because the BMAs of T, and W, are dogmatic our consensus operator can not be
applied to this example. The consensus operator requires operands with a non-zero un-
certainty component. We will therefore introduce uncertainty by allocating some belief to
the state © = {Peter, Paul, Mary}. Table 4 gives the modified BMAs and the results of
applying the rules.

Table 4. Comparison of operators after introducing uncertainty in Zadeh’s example
Dempster’s  Non-normalised Consensus

Witness 1 Witness 2 rule rule operator
Peter 0.98 0.00 0.490 0.0098 0.492
Paul 0.01 0.01 0.015 0.0003 0.010
Mary 0.00 0.98 0.490 0.0098 0.492
0 0.01 0.01 0.005 0.0001 0.005

The column for the consensus operator is obtained by displaying the ‘belief’ coordi-
nate from the consensus opinions. The consensus opinion values and their corresponding
probability expectation values are:

w;}[lll,Wg = (04927 0.503, 0.005, 1/3) , E(wgllﬁ,Wg) = 0.494
W W2 = (0,010, 0.985, 0.005, 1/3) , Bl 2) = 0,012
Wi W = (0,492, 0.503, 0.005, 1/3) , E(wlf1:W2) = 0.494

When uncertainty is introduced Dempster’s rule corresponds well with intuitive human
judgement. The non-normalised Dempster’s rule however still indicates that none of the
suspects are guilty and that new suspects must be found. Our consensus operator corre-
sponds well with human judgement and gives almost the same result as Dempster’s rule.
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The belief masses resulting from Dempster’s rule in Table 4 add up to 1. The ‘belief’ pa-
rameters of the consensus opinions do not add up to 1 because they are actually taken from
3 different focused frames of discernment, but the following holds:

E(wZ“WQ) + E(wzzl’WQ) + E(w;’?"%) =1.

The above example indicates that Dempster’s rule and the consensus operator give sim-
ilar results. However, this is not always the case as illustrated by the following example.
Let the two agents A and B have equal beliefs about the truth of a binary proposition z.
The agents” BMAs and the results of applying the rules are give in Table 5.

Table 5. Comparison of operators i.c.0. equal beliefs
Dempster’s  Non-normalised Consensus

Witness 1 Witness 2 rule rule operator
x 0.90 0.90 0.99 0.99 0.947
-z 0.00 0.00 0.00 0.00 0.000
() 0.10 0.10 0.01 0.01 0.053

The consensus opinion about 2 and the corresponding probability expectation value
are:
wB = (0.947,0.000, 0.053, 0.500),  E(wA?)=0.974.

Dempster’s rule and the non-normalised version give the same result because the wit-
nesses’ BMAs are non-conflicting. It is interesting to notice that Dempster’s rule amplifies
the combined belief twice as much as the consensus operator. If belief is to be interpreted
as resulting from evidence according to the mapping between the evidence space and the
opinion space described in Sec.4.2, then the consensus operator seems to give the most
correct result.

6. Uncertainty Maximisation

Although an opinion represents an uncertain probability its formal representation requires
crisp values in the form of the four parameters b, d, u and a. The main problem when
applying subjective logic and other uncertainty calculi is to determine input operand values
from real world observations.

A distinction can be made between events that can be repeated many times and events
that can only happen once. Frequentist probabilities with high certainty are meaningful in
the first case but less so in the latter. For example assigning 0.5 belief mass to z: ‘Oswald
killed Kennedy’ and 0.5 belief mass to —z: ‘Oswald did not kill Kennedy” really shows that
the observer is totally uncertain and therefore should have assigned 1.0 belief mass to ©
instead.

In Zadeh’s example described in Sec.5.4 the actual event of having committed a par-
ticular murder must be considered as one that can only happen once, and the witnesses’
dogmatic opinions are therefore partly meaningless. In such cases belief masses assigned
to an event and its negation outweigh each other and should be transformed into uncertainty
while keeping the probability expectation value unchanged. This idea is captured by the
following definition.
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Definition 16 (Uncertainty Maximisation) Letw, = (bs,d,uz, a;) be an opinion about
a binary event that can only happen once. If belief mass is assigned to b, and d,, simul-
taneously then uncertainty maximisation of w, consists of transforming it into the opinion
Gy = (by, dy, Gy, a5) defined by:

1. b,=0 1. by=1—uy—dy/(1—ay)

2. dy=1—wuy—by/a, 2. d,=0

3. gy =wuy+by/a, and 3. Gy =uy+d;/(1—ay) (26)
4. Gy = ay 4. G, = a,

when E(w,) < a, when E(wg) > a.

Assigning belief mass simultaneously to an event and its negation in case of events that
can only happen once is intuitively meaningless and can be avoided by uncertainty maximi-
sation. This translates into not allowing opinions where b # 0 and d # 0 simultaneously.
As a consequence only opinions situated on the outer left or right edge of the opinion trian-
gle in Fig.4 are allowed. The only acceptable dogmatic opinions would then be the absolute
opinions (1, 0,0,a) and (0,1, 0, a) which correspond to ‘“TRUE’ and ‘FALSE’ propositions
in binary logic. The purpose of uncertainty maximisation is to help observers realise their
ignorance regarding the probability of events that can only happen once. Maximising the
uncertainty in W1 ’s opinions from Zadeh’s example in Table 3 would produce:

Table 6. Original and uncertainty maximised opinions of Wy in Zadeh’s example
Original dogmatic opinions  Uncertainty maximised opinions

Peter  (0.99, 0.01, 0.00, 1/3) (0.985, 0.000, 0.015, 1/3)

Paul (0.01, 0.99, 0.00, 1/3) (0.000, 0.970, 0.030, 1/3)

Mary  (0.00, 1.00, 0.00, 1/3) (0.000, 1.000, 0.000, 1/3)

The uncertainty maximised opinions regarding Peter and Paul are now more meaning-
ful. The opinion regarding Mary however remains unchanged because it is not only dog-
matic but also absolute. Witnesses are likely to give absolute opinions when they feel very
sure about something, and this indicates that the judge’s or the jury’s opinions about wit-
nesses should always be included by using the discounting operator, and thereby introduce
uncertainty, when combining testimonies of this type.

7. Conclusion

Uncertainty comes in many flavours. The opinion metric described here provides a new
interpretation of the Shaferian belief model and allows secondary uncertainty about tradi-
tional frequentist probabilities to be expressed. Instead of interpreting the Shaferian belief
functions as probability bounds we use them to represent uncertainty about probabilities
and to estimate probability expectation values.

By applying standard and non-standard logical operators on the opinion metric a simple
and powerful framework for artificial reasoning emerges which we have called subjective
logic. We have for example shown that the propositional conjunction and disjunction op-
erators for opinions are compatible with product and co-product of probabilities as well as
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with ‘AND’ and ‘OR’ of binary logic. This makes subjective logic very general and it is

0

ur belief that it can be successfully applied in a multitude of applications.
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