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Abstract

The problem of locating motifs in real-valued, multivariate
time series data involves the discovery of sets of recurring
patterns embedded in the time series. Each set is composed of
several non-overlapping subsequences and constitutes a mo-
tif because all of the included subsequences are similar. The
ability to automatically discover such motifs allows intelli-
gent systems to form endogenously meaningful representa-
tions of their environment through unsupervised sensor anal-
ysis. In this paper, we formulate a unifying view of motif
discovery as a problem of locating regions of high density
in the space of all time series subsequences. Our approach
is efficient (sub-quadratic in the length of the data), requires
fewer user-specified parameters than previous methods, and
naturally allows variable length motif occurrences and non-
linear temporal warping. We evaluate the performance of our
approach using four data sets from different domains includ-
ing on-body inertial sensors and speech.

Introduction

Our goal is to develop intelligent systems that understand
their environment by autonomously learning new concepts
from their perceptions. In this paper, we address one form
of this problem where the concepts correspond to recur-
ring patterns in the sensory data captured by the intelligent
agent. Such recurring patterns are often referred to as per-
ceptual primitives or motifs and correspond to sets of similar
subsequences in the time-varying sensor data. For exam-
ple, a motif discovery system could find unknown words or
phonemes in speech data, learn common gestures in video
of sign language, or allow a mobile robot to learn endonge-
nously meaningful representations that help inform its ac-
tions.

Because intelligent systems rarely rely on a single sensor
or only on discrete readings, our work focuses on the discov-
ery of motifs in real-valued, multivariate time series. Even
in situations when a single sensing device is used, it is often
the case that multiple, simultaneous values are sensed (as
in the many pixels that make up each frame of a video) or
multiple features are extracted from a single reading (such as
Mel frequency cepstral coefficients (MFCCs) extracted from
a sound wave).

Unsupervised motif discovery is difficult due to the severe
lack of information available a priori, coupled with the large

amount of data typically collected. Generally, the number
of motifs, the corresponding number of occurrences, the du-
ration of the occurrences, the shape or other characterizing
statistics, and the location of the motifs in the time series
data are all unknown. Discovery in time series data (com-
pared to other, non-temporal sequential data) is further com-
plicated by non-linear temporal warping that can mask sub-
sequence similarity. Finally, because even small data sets
may have hundreds of thousands of sensor readings, sub-
quadratic computational complexity is necessary for practi-
cal applications.

In this paper, we frame motif discovery as the problem of
locating regions of high density in the space of all time se-
ries subsequences. Such regions concisely capture the idea
of a motif by combining similarity and frequency in a data-
relative measure (see Figure 2. For a particular data set, a re-
gion of high density must have many occurrences in a small
space. Casting motif discovery in terms of density estima-
tion is beneficial because the imprecise notions of “small
space” (equivalent to “high similarity”’) and “many occur-
rences” are naturally made precise relative to the data itself.

Our approach to motif discovery leads to several contri-
butions:

1. We provide a simple method for efficiently locat-
ing high density regions in the space of time series
subsequences that avoids problems caused by trivial
matches.

2. We detect motif occurrences using a form of greedy
mixture learning that allows variable-length occur-
rences, guarantees a globally optimal fit to the time
series data, and provides a natural measure of motif
quality.

3. Compared to previous methods, our approach re-
duces the number of user-specified parameters and
is less sensitive to the precise value of the remaining
parameters.

Subsequence Density Estimation

Adopting a density estimation framework for motif discov-
ery provides a principled foundation for characterizing mo-
tifs but still leaves several issues unresolved. One must still
deal with the problem of trivial matches, bandwidth selec-
tion, locating density modes, and bounding high density re-
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Figure 1: Three consecutive subsequences of length w from a 1D
time series. The three subsequences are all very similar but are
considered trivial matches since they overlap.

gions. We will address each of these problems in turn and
present solutions that form the foundation of our motif dis-
covery algorithm.

The Problem of Trivial Matches

When searching for motifs, we are interested in sets of time
series subsequences that are highly similar. A trivial match
occurs when a pair of subsequences are similar because they
overlap and thus share many sensor readings (Keogh, Lin,
& Truppel 2003). As an example of an extreme case, con-
sider a time series S with subsequences S = S; ;. and
SB = S(i+1)..(i+w+1) (see Figure 1). In smoothly varying
time series, S and S will almost always be very similar,
but this similarity does not imply a motif, nor does it imply
a region of high density. To avoid such false detections, we
require our motifs to be made up of non-overlapping subse-
quences and similarly restrict density estimates to only con-
sider non-overlapping subsequences.

Bandwidth Selection for Subsequence
Density Estimation

Typical methods for density estimation require specification
of a bandwidth parameter that defines the size of the region
of influence during the estimation process. Histograms, for
example, require a bin size while kernel density estimates in-
clude a parameter that specifies the scale of the kernel. Many
methods have been developed for computing a reasonable
global bandwidth that attempt to balance bias and variance.
These methods include heuristic formulae and optimization
criteria such as minimization of the estimated mean inte-
grated squared error (Silverman 1986). More robust meth-
ods provide for variable bandwidth estimation that automat-
ically adapts the bandwidth size to match the local structure
of the data (Sain 1999). Our approach uses an adaptive band-
width based on a simple version of the balloon estimator first
proposed by Loftsgaarden and Quesenberry (1965). In this
method, the density is estimated directly from the distance
to the k*" nearest neighbor.

Locating Density Modes

One of the most efficient and robust methods for locat-
ing density modes (local maxima) is the mean shift proce-
dure (Comaniciu & Meer 2002). This algorithm iteratively
computes a vector aligned with the estimated local gradient
and then updates the mode estimate. Mean shift was used
by Denton (2005) to find modes in fixed-length, univariate

Motif 1

Motif 2

Figure 2: Subsequence density landscape in 1D. Each dot rep-
resents a different subsequence. Note that the two motifs coin-
cide with regions of high density but that the motifs have different
widths and different densities.

time series subsequences using the Euclidean distance met-
ric. Our approach uses the dynamic time warping distance
measure. This measure allows for non-linear temporal warp-
ing and has been shown to be much more robust for measur-
ing the similarity of time series (Keogh & Ratanamahatana
2005).

In our approach, the subsequences located near each den-
sity mode are used to estimate the parameters of a hidden
Markov model (HMM) that represents the corresponding
motif. Thus a precise estimate for the location of the mode
is not required so long as the subsequences near the mode
are accurately detected. Given this relaxed requirement,
we chose note to use mean shift and instead efficiently lo-
cate high density regions by first finding the k-nearest non-
overlapping neighbors of each subsequence, then estimat-
ing the local density from the distance to the k*" neighbor,
and finally selecting those subsequences with higher density
than all of their neighbors. Although a naive implementation
of k-nearest neighbor search requires O(n?) distance calcu-
lations, numerous methods have been proposed for build-
ing spatial indexes that reduce this to O(nlogn) and dual-
tree and approximate methods can often provide even bet-
ter performance (Keogh & Ratanamahatana 2005; Liu 2006;
Gray & Moore 2003).

Bounding High Density Regions

While the procedure presented above will identify candidate
motifs seeds, it will neither detect all of the occurrences of
each motif nor will it reliably select an accurate set of motifs.
Incomplete motifs arise because there may be motif occur-
rences beyond the local maxima and its k-nearest neighbors.
Many methods for addressing this deficiency exist. For in-
stance, Chiu, Keogh, and Lonardi (2003) as well as Tanaka
and Uehara (2005) utilize a user-specified radius to define a
local, spherical neighborhood centered on each motif seed
and then identify motif occurrences as all subsequences that
lie within the hypersphere. Minnen et al. (2007) adopt a sim-
ilar strategy but their approach uses a heuristic to automati-
cally estimate the neighborhood radius from the data. Den-
ton (2005) proposes a density-based subsequence clustering
algorithm that estimates a density threshold from the subse-
quence data and an assumed random-walk noise model.
These approaches seek to directly bound the motif neigh-
borhood either in terms of distance in subsequence space
or in terms of density. We contend that these attempts



have shortcomings since they rely on restrictive assump-
tions (e.g., spherical neighborhoods or random-walk noise)
and require either accurate parameter estimation from noisy,
under-sampled data or user specification. In contrast, our ap-
proach avoids direct estimation of the motif neighborhood
size and instead lets the motif models compete to explain
the time series data. This shift is accomplished by modeling
each motif as a HMM and optimally fitting the set of HMMs
to the time series data using an generalized Viterbi algorithm
adapted from the speech recognition community (Young,
Russell, & Thornton 1989).

The benefits of using a HMM-based continuous recog-
nition system for motif occurrence detection are numerous.
First, as noted above, we no longer need to directly estimate
the motif neighborhood size. Second, the motif models are
free to shrink or stretch to account for non-linear warping
and variable length motif occurrences in the data, whereas
the existing approaches are restricted to fixed-length subse-
quences. Third, the models provide a measure of goodness-
of-fit in the form of the total data log-likelihood and the
likelihood per motif. As explained in the following section,
this evaluation metric will prove important for motif rank-
ing and selection. Fourth, the continuous recognition algo-
rithm is globally optimal in the sense that it finds the state
sequence that maximizes the data log-likelihood. Fifth, this
fitting procedure actually addresses both issues described in
the beginning of this section: it locates all of the motif oc-
currences given the models and also simplifies the process
of pruning redundant or spurious motif seeds. This prun-
ing is possible since redundant or spurious motifs will score
poorly due to the relatively small improvement in overall
data log-likelihood that they provide.

Greedy Mixture Learning for Motif Selection

Algorithm 1 gives an overview of our density-based motif
discovery algorithm. The previous section describes steps
1 through 4, which locate an over-complete set of candi-
date motif seeds by identifying subsequences located near
high density regions. In order to select the correct motifs
from this set and to find additional motif occurrences, our
approach adopts a greedy mixture learning framework. This
formulation was previously adopted by Blekas et al. (2003)
for motif discovery in discrete, univariate sequences.

In traditional applications, the mixture components
jointly explain the data by sharing responsibility for each
data point (i.e., p(z) = Zivzl w; p(x|6;), where 6; repre-

sents the parameters of the i*" component and w; is the

weight given to that component, constrained by Zﬁl w; =
1). The learning problem is to estimate the parameters, 6;,
the weights, w;, and the number of components, N, that
maximize the total data likelihood. In our context, however,
motif occurrences do not overlap temporally, and so only
one mixture component can be used to explain each frame
of data and the set of components must jointly explain the
data in a temporally exclusive manner. The pattern recogni-
tion community has developed efficient algorithms for solv-
ing such problems, principally for the purpose of continuous
speech recognition (Young, Russell, & Thornton 1989). In

Algorithm 1 Density-based Motif Discovery

Input: Time series data (.5), subsequence length (w), number of
nearest neighbors to use (k), distance measure

Output: Set of discovered motifs including motif models and
occurrence locations

1. Collect all subsequences, S; of length w from the input
data S

2. Locate the k-nearest neighbors for each subsequence:
knn(Si) = Si,luk
3. Estimate the density for each subsequence: den(S;) o
1/di8t(Si, Sz,k)
4. Identify local maxima according to density:
mazima(S;) = Si : VS; ; den(Si) > den(S;,5)
5. Initialize the set of motif HMMs with a single background
model: H = {bg}
6. For each motif seed in mazima(S;):
(a) Construct seed;, a HMM learned from the %" density
maxima and its k-nearest neighbors
(b) Fitthe existing models plus the seed model (HUseed;)
to the time series data

7. Greedily select the best motif seed:
m = arg maz log p(S|H U seed)

8. Test for stopping criteria for H U seed.; if test fails set
H = H U seed,, and goto Step 6

9. Re-estimate motif models in H and return H/{bg}

typical speech systems, each word is modeled by a HMM
(commonly this is a composite model built from HMMs rep-
resenting the relevant phonemes) and then each utterance is
recognized by finding the mapping from word HMMs to the
speech signal that maximizes the log-likelihood of the utter-
ance (HTK 2007; Rabiner & Juang 1993). In our algorithm,
HMMs constructed from motif seeds (i.e., a local maxima
in density space along with its k-nearest neighbors) take the
place of the word models.

Although traditional parameter estimation methods for
HMMs, such as the Baum-Welch algorithm, typically fail
when applied to so few training examples, a simple con-
struction algorithm is sufficient to capture the characteris-
tics of each motif. Deficiencies in the resulting model are
countered by the competitive continuous recognition frame-
work and by a round of full parameter re-estimation using
all identified motif occurrences. The HMM construction al-
gorithm builds a model with a left-right topology and with
the number of states equal to half the user-specified subse-
quence length (see Figure 3). Each training sequence is di-
vided into equal-length, overlapping segments correspond-
ing to each state. Each state has a Gaussian observation
distribution with parameters estimated from its associated
segment.

In order to select the best motif from the set of candidates,
we directly optimize the conditional data likelihood by com-



Figure 3: HMM construction: each sequence in the training set
is divided into equal-size, overlapping segments from which the
parameters of a Gaussian distribution are estimated for each state.

puting the optimal mapping for each seed and then selecting
the one that results in the highest likelihood (Algorithm 1:
Steps 5 - 7). This procedure is equivalent to ranking motif
seeds by information gain, which is calculated as the change
in data log-likelihood when the motif candidate is included
in the set of discovered motifs. Thus, information gain is
used as a contextual measure of motif quality that combines
occurrence similarity and frequency. Viewed this way, we
see how information gain and density are complementary.
Information gain provides a global measure of motif qual-
ity relative to the data and other motif models, while density
provides an efficient local measure useful for focusing com-
putational resources on promising regions of subsequence
space.

The final component of our approach is responsible for
detecting when to stop adding motifs to the mixture model
(Step 8). Previous methods used simple stopping criteria
that rely on the restrictive assumptions or additional in-
formation that they require. For instance, the methods of
Chiu et al. (2003), Minnen et al. (2007), and Tanaka and
Uehara (2005) search for additional motifs until no pair of
subsequences lie within the same neighborhood. Denton’s
method (2005) continues searching until no subsequence lies
in a region with density above a threshold estimated based
on an assumed random-walk noise model.

In contrast, our approach uses the density estimate of each
motif, computed after all occurrences have been detected, to
determine when to stop. The algorithm searches for a local
minima in the smoothed derivative of the motif densities,
which corresponds to an inflection point in the curve rep-
resenting the motif densities. This inflection point marks
the transition from well-supported motifs (high density) to
spurious motifs (low density). Although the usefulness of
this heuristic method is demonstrated through the empiri-
cal results presented in the next section, developing a more
well-grounded approach for estimating the correct number
of motifs is a major part of our ongoing research.

Experimental Results

We have evaluated our approach to multivariate motif dis-
covery using four data sets. The evaluation compares the
discovered motifs to manually labeled patterns known to ex-
ist in the data and then computes the accuracy of the match
by considering the number of correct detections, missed
occurrences, false detections, and incorrect identifications.
Note that this is a difficult error metric for continuous recog-
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Figure 4: Graph of accuracy vs. number of discovered motifs
for the exercise and TIDIGITS data sets. Our algorithm automati-
cally selected seven motifs for the exercise data (truth: six + back-
ground) and 15 for the TIDIGITS data (truth: 11 + background).

nition systems and can actual give negative rates if a system
reports too many false detections.

The first data set was captured during an exercise regime
composed of six different dumbbell exercises. An Xsens
MT9 inertial motion sensor was attached to the subject’s
wrist and readings from a three-axis accelerometer and gy-
roscope were recorded at 100Hz. In total, roughly 27.5
minutes of data was captured across 32 sequences. For
the experiment, the data was resampled at 12.5Hz lead-
ing to 20,711 frames. The data contains six different ex-
ercises and 864 total repetitions (roughly 144 occurrences
of each exercise). Each frame is composed of the raw three-
axis accelerometer and gyroscope readings leading to a six-
dimensional feature vector.

The second evaluation uses the publicly available TIDIG-
ITS data set (Leonard & Doddington 1993). We evaluate
our method on a subset of the available data consisting of
77 phrases composed of spoken digits. The data contains
11 classes (zero through nine plus “oh”) and 253 total digit
utterances (roughly 23 occurrences of each digit). We ex-
tract MFCCs over a range from zero to 4kHz using a frame
period of 10ms and a window size of 25ms. This feature
extraction process leads to a final data set containing 11,917
frames (see Figure 6).

Figure 4 shows the accuracy rate of our algorithm for the
exercise and TIDIGITS data sets for different numbers of
discovered motifs. In both cases, the algorithm identified all
of the real motifs as well as additional motifs that correspond
to recurring background patterns. Not surprisingly, the first
unexpected motif learned from both data sets represents si-
lence, either literally in the case of the TIDIGITS data or as
a period of very little motion in the case of the exercise data.

Although the graphs show performance measured across
a range of motifs, our approach automatically estimates the
correct number as previously described. For the exercise
data, the algorithm estimated seven motifs, leading to an
accuracy of 95.7% initially and 97.0% after parameter re-
estimation. This is significantly better than earlier meth-
ods. For comparison, the best parameter settings for Min-
nen et al.’s approach (2007) resulted in 12 motifs with an ac-
curacy of 92.8%, but locating this parameter setting required
considerable search over the various parameter settings fol-
lowed by manual selection based on a comparison to the
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Figure 5: Comparison of motif accuracy on the exercise and
TIDIGITS data sets.

known motifs. Our method, in contrast, only required a sin-
gle run. Similarly, the best parameter setting for Chiu ez al.’s
method (2003) leads to an accuracy of 82.6% and required
an even more extensive manual search than Minnen’s algo-
rithm.

On the spoken digits data, our algorithm estimated 15
motifs corresponding to an accuracy of 89.7% initially and
91.7% after model re-estimation. The best parameter setting
led Minnen et al.’s method to find 11 motifs with an accu-
racy of 68.0%, while Chiu ef al’s algorithm also found 11
motifs with an overall accuracy of 71.5%. See Figure 5 for
a summary of these results.

The final two data sets are taken from the UCR Time Se-
ries Data Mining Archive (Keogh & Folias 2002) and have
been used to demonstrate the generality of previous mul-
tivariate motif discovery algorithms (Tanaka, Iwamoto, &
Uehara 2005; Minnen et al. 2007). The data represents
shuttle telemetry (6D, 1000 frames) and ECG readings (8D,
2500 frames). Both data sets contain a single motif, which
our algorithm correctly identifies. In addition, our algorithm
detects the motif occurrences with 100% accuracy, includ-
ing one partial occurrence in the ECG data that the previous
methods failed to detect.

Related Work

Researchers from bioinformatics, data mining, and artificial
intelligence have looked at variations of the motif discovery
problem. Within the bioinformatics community, researchers
have focused on discrete, univariate sequences such as those
that represent nucleotide sequences. For instance, MEME
uses expectation maximization (EM) to estimate the param-
eters of a probabilistic model for each motif (Bailey & Elkan
1994). GEMODA unifies several earlier methods but re-
quires computing pair-wise distances between subsequences
leading to a quadratic expected run time (Jensen et al. 2006).
Finally, Blekas et al. (2003) adapted a method for spatial
greedy mixture learning to sequential motif discovery, which
inspired our use of continuous recognition and information
gain.

Data mining researchers have developed several meth-
ods for motif discovery in real-valued, univariate data.
Chiu et al. (2003) use a local discretization procedure and
random projections to find candidate motifs in noisy data.
Denton’s (2005) approach is more closely related to our
method as it avoid discretization and frames subsequence

clustering in terms of kernel density estimation. Her method
differs from ours in many ways including the use of the
Euclidean distance metric and the assumption of a random-
walk noise model and univariate data.

Minnen et al. extend Chiu’s approach by supporting mul-
tivariate time series and automatically estimating the neigh-
borhood size of each motif. Tanaka et al. (2005) also extend
Chiu’s works to support multidimensional data and variable-
length motifs. Their method uses principal component anal-
ysis to project multivariate data down to a single dimension
and then applies a univariate discovery algorithm. They re-
port promising results for several data sets, but it is straight-
forward to show that the first principal component does not
generally capture sufficient information to learn from mul-
tivariate signals. Finally, Oates (2002) developed the PE-
RUSE algorithm to find recurring patterns in multivariate
sensor data collected by robots. PERUSE allowed a robot to
detect perceptual patterns in its sensor data and found many
recurring phrases when applied to speech. PERUSE is also
one of the few algorithms that can handle non-uniformly
sampled data, but it suffers from some computational draw-
backs and stability issues when estimating motif models.

Discussion & Future Work

The strength of our approach stems from formulating mo-
tif discovery in terms of subsequence density estimation and
greedy mixture learning. Both density and information gain
provide principled measures of motif quality for which effi-
cient algorithms have been developed. The major drawback
of our approach is the need to specify a canonical subse-
quence length used to compute an initial density estimate.
Although the continuous recognition system allows the fi-
nal motif occurrences to vary in length, the initial restriction
can lead to poor density estimates and increases the burden
on users to specify an accurate value. To improve this situ-
ation, we are investigating the feasibility of searching over
a range of subsequence lengths. Our current formulation
should scale naturally to this more general problem since
it already handles overlapping subsequences and redundant
motif seeds.

By reinterpreting previous methods as subsequence den-
sity estimation, we can draw some interesting comparisons.
For instance, the methods of Chiu et al. (2003) and Min-
nen et al. (2007) both search for pairs of similar subse-
quences using a very efficient discrete representation and
random projection method. This can be seen as a rough
density approximation based on a single nearest neighbor.
Viewed this way, it makes sense to experiment with their
approach as a way of finding candidate motif seeds for use
with our greedy mixture learning framework.

Our primary goal for future research is to generalize the
meaning of multivariate motifs. Currently, a motif must ex-
ist across all of the dimensions. For derived features such
as MFCCs in speech, this definition is reasonable. For other
scenarios such as mobile robotics and distributed sensor sys-
tems, a more realistic definition allows motifs to exist across
only a subset of the dimensions. Our current research is fo-
cused on developing an efficient algorithm for discovering
such “sub-dimensional” motifs.
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Figure 6: First six MFCCs extracted from the utterance “one zero eight eight one five three.” The center bars show the
discovered motifs (top) and ground truth labels (bottom). The discovered occurrences are quite accurate, though the first

“eight” was not detected.

Conclusion

Equating time series motifs with regions of high density in
the space of all subsequences provides a principled frame-
work in which to design a discovery algorithm. We use
density estimation to identify promising candidate motifs
and rely on a continuous recognition system within a greedy
mixture learning framework to select motifs and detect ad-
ditional occurrences. Evaluation of this approach on speech
and on-body sensor data demonstrate that it can discover
motifs with higher accuracy than previous methods while
requiring fewer user-specified parameters.
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