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Abstract

Instance independence is a critical assumption of tra-
ditional machine learning methods contradicted by many
relational datasets. For example, in scientific literature
datasets there are dependencies among the references of a
paper. Recent work on graphical models for relational data
has demonstrated significant performance gains for mod-
els that exploit the dependencies among instances. In this
paper, we present relational dependency networks (RDNs),
a new form of graphical model capable of reasoning with
such dependencies in a relational setting. We describe the
details of RDN models and outline their strengths, most no-
tably the ability to learn and reason with cyclic relational
dependencies. We present RDN models learned on a num-
ber of real-world datasets, and evaluate the models in a
classification context, showing significant performance im-
provements. In addition, we use synthetic data to evaluate
the quality of model learning and inference procedures.

1. Introduction

Relational data pose a number of challenges for model
learning and inference. The data have complex dependen-
cies, both as a result of direct relations (e.g., research pa-
per references) and through chaining multiple relations to-
gether (e.g., papers published in the same journal). The
data also have varying structure (e.g., papers have different
numbers of authors, references and citations). Traditional
graphical models such as Bayesian networks and Markov
networks assume that data consist of independent and iden-
tically distributed instances, which makes it difficult to use
these techniques to model relational data that consist of non-
independent and heterogeneous instances. Recent research
in relational learning has produced several novel types of
graphical models to address this issue. Probabilistic rela-
tional models (PRMs)1 (e.g. [5, 15, 14]) estimate joint prob-

1Several previous papers (e.g., [5]) use the term PRM to refer to a spe-
cific type of model that the originators now call a relational Bayesian net-

ability distributions of relational data and have been evalu-
ated successfully in several domains, including the World
Wide Web, genomic structures, and scientific literature.

In this paper, we present relational dependency networks
(RDNs), an extension of dependency networks [6] for rela-
tional data2. RDN models are a new form of PRM that of-
fer several advantages over the comparable joint models—
relational Bayesian networks (RBNs) [5] and relational
Markov networks (RMNs) [15]. Specifically, the strengths
of RDNs include: (1) an interpretable representation that
facilitates knowledge discovery in relational data, (2) the
ability to represent arbitrary cyclic dependencies, includ-
ing relational autocorrelation, and (3) simple and efficient
methods for learning both model structure and parameters.

Graphical models are an attractive modeling tool for
knowledge discovery because they are a compact represen-
tation of the joint distribution of a set of variables, which
allows key dependencies to be expressed and irrelevancies
to be ignored [2]. The qualitative properties of the model are
encoded in thestructureof the graph, while the quantitative
properties are specified by theparametersof the associated
probability distributions. The models are often easy to in-
terpret because the graph structure can be used to infer de-
pendencies among variables of interest. PRMs maintain this
property as they extend conventional graphical models to re-
lational settings. A compact representation is even more de-
sirable for modeling relational data, because the enormous
space of possible dependencies can overwhelm efforts to
identify novel, and interesting patterns.

The ability to represent, and reason with, arbitrary cyclic
dependencies is another important characteristic of rela-
tional models. Relational autocorrelation, a statistical de-
pendency among values of the same variable on related en-
tities [7], is a nearly ubiquitous phenomenon in relational
datasets. For example, hyperlinked web pages are more

work (Koller, personal communication). In this paper, we use PRM in its
more recent and general sense.

2This work generalizes our previous work on simple RDNs for classi-
fication [12].



likely to share the same topic than randomly selected pages,
and proteins located in the same place in a cell are more
likely to share the same function than randomly selected
proteins. Recent work has shown that autocorrelation de-
pendencies can be exploited to improve classification ac-
curacy, if inferences about related data instances are made
simultaneously (e.g., [3, 15, 12]). However, these rela-
tional autocorrelation dependencies are often cyclic in na-
ture, making it difficult to encode these dependencies with
directed graphical models such as RBNs unless the autocor-
relation can be structured to be acyclic (e.g., with temporal
constraints) [5]. In contrast, undirected graphical models
such as RMNs, and RDNs, can represent arbitrary forms of
relational autocorrelation.

During learning, relational models consider a large num-
ber of features, thus simple and efficient learning tech-
niques are advantageous, particularly for joint models. The
RDN learning algorithm is based on pseudolikehood tech-
niques [1], which estimate a set of conditional distributions
independently. This approach avoids the complexities of es-
timating a full joint distribution and can incorporate existing
techniques for learning conditional probability distributions
of relational data. Relatively efficient techniques exist for
learning both the structure and parameters of RBN mod-
els but the acyclicity constraints of the model precludes the
learning of arbitrary autocorrelation dependencies. On the
other hand, while in principle it is possible for RMN tech-
niques to learn cyclic autocorrelation dependencies, ineffi-
ciencies due to modeling the full joint distribution make this
difficult in practice. The current implementation of RMNs
is not capable of learning model structure automatically, nor
can it automatically identify which features are most rele-
vant to the task; research has focused primarily on parame-
ter estimation and inference procedures. To our knowledge,
RDNs are the first PRM capable oflearningcyclic autocor-
relation dependencies.

We begin by reviewing the details of dependency net-
works for propositional data and then describe how to ex-
tend them to a relational setting. Next, we present RDN
models learned from four real-world datasets and evaluate
the models in a classification context, demonstrating equiv-
alent, or better, performance in comparison to conditional
models. Finally, we report experiments on synthetic data
that show model learning and inference is robust to vary-
ing levels of autocorrelation and that accurate models can
be learned from small training set sizes.

2. Dependency Networks
Graphical models represent a joint distribution over a

set of variables. The primary distinction between Bayesian
networks, Markov networks and dependency networks
(DNs) [6] is that dependency networks are an approximate
representation. DNs approximate the joint distribution with

a set of conditional probability distributions (CPDs), which
are learned independently. This approach to learning is a
relatively simple technique for parameter estimation and
structure learning that results in significant efficiency gains
over exact models. However, because the CPDs are learned
independently, DN models are not guaranteed to specify a
consistentjoint distribution. This precludes DNs from be-
ing used to infer causal relationships and limits the applica-
bility of exact inference techniques. Nevertheless, DNs can
encode predictive relationships (i.e. dependence and inde-
pendence) and Gibbs sampling (e.g. [11]) inference tech-
niques can be used to recover a full joint distribution, re-
gardless of the consistency of the local CPDs.

DN Representation. A DN encodes probabilistic rela-
tionships among a set of variables in a similar manner to
Bayesian and Markov networks, combining characteristics
of both undirected and directed models. DN models con-
sists of a graphG, which encodes thestructureof the model,
and a set of probability distributionsP , which encode the
parametersof the model. Dependencies among variables
are represented with a bidirected graphG = (V,E), where
conditional independence is interpreted using graph sepa-
ration, as with undirected models. However, as with di-
rected models, dependencies are quantified with a set of
conditional probability distributionsP . Consider the set
of variablesX = (X1, ..., Xn) over which we’d like to
model the joint distributionp(x) = p(x1, ..., xn). Each
nodevi ∈ V corresponds to anXi ∈ X and is associated
with a probability distribution conditioned on the other vari-
ables,P (vi) = p(xi|x − {xi}). The parents,pai, of node
i are the set of variables that renderXi conditionally inde-
pendent of the other variables (p(xi|pai) = p(xi|x−{xi}))
andG contains a directed edge from each parent nodevj to
each child nodevi (e(vj , vi) ∈ E iff xj ∈ pai).

DN Learning. Both the structure and parameters of DN
models are determined through learning a set of local con-
ditional probability distributions (CPDs). The DN learning
algorithm learns a separate CPD for each variableXi, con-
ditioned on the other variables in the data (X−{Xi}). Any
conditional learner can be used for this task (e.g. logistic
regression, decision trees). The learned CPD is included in
the model asP (vi), and the variables selected by the con-
ditional learner (e.g.,xi = αxj + βxk) form the parents
of Xi (e.g., pai = {xj , xk}), which is then reflected in
the edges ofG appropriately. If the conditional learner is
not selective, the DN model will be fully connected (i.e.,
pai = x − {xi}). In order to build understandable DNs, it
is desirable to use a selective learner that will learn CPDs
that use a subset of all variables.

DN Inference. Although the DN approach to structure
learning is simple and efficient, it can result in an incon-
sistent network, both structurally and numerically. In other



words, there may be no joint distribution from which each
of the CPDs can be obtained using the rules of probabil-
ity. For example, a network that contains a directed edge
from Xi to Xj , but not fromXj to Xi, is inconsistent—
Xi andXj are dependent butXj is not represented in the
CPD forXi. A DN is consistent if the conditional distribu-
tions inP factor the joint distribution—in this case we can
compute the joint probability for a set of valuesx directly.
In practice, [6] show that DNs will be nearly consistent if
learned from large data sets, since the data serve a coordi-
nating function that ensures consistency among the CPDs.
If a DN is inconsistent, approximate inference techniques
can be used to estimate the full joint distribution and extract
probabilities of interest. Gibbs sampling (e.g., [11]) can be
used to recover a full joint distribution forX, regardless of
the consistency of the local CPDs, provided that eachXi is
discrete and each local CPD is positive [6].

3. Relational Dependency Networks

RDNs extend dependency networks to a relational set-
ting. DNs have been shown to perform comparably to BNs
for a number of propositional tasks [6], thus we expect they
will achieve similar performance levels in relational set-
tings. Also, several characteristics of DNs are particularly
desirable for modeling relational data. First, learning a col-
lection of conditional models offers significant efficiency
gains over learning a full joint model—this is generally true,
but is even more pertinent to relational settings where the
feature space is very large. Second, networks that are easy
to interpret and understand aid analysts’ assessment of the
utility of the relational information. Third, the ability to
represent cycles in a network facilitates reasoning with rela-
tional autocorrelation, a common characteristic of relational
data. Finally, while the need for approximate inference is a
disadvantage of DNs for propositional data, due to the com-
plexity of relational model graphs in practice, all PRMs use
approximate inference.

RDNs extend DNs for relational data in the same way
that RBNs [5] extend Bayesian networks and RMNs [15]
extend Markov networks. We describe the general charac-
teristics of PRMs and then discuss the details of RDNs.

3.1. Probabilistic Relational Models

PRMs represent a joint probability distribution over a re-
lational dataset. When modeling attribute-value data with
graphical models, there is a single graphG that is associ-
ated with the modelM . In contrast, there are three graphs
associated with models of relational data: thedata graph
GD, themodel graphGM , and theinference graphGI .

First, the relational dataset is represented as a typed, at-
tributed graphGD = (VD, ED). For example, consider the
data graph in figure 1a. The nodesVD represent objects in

the data (e.g., authors, papers) and the edgesED represent
relations among the objects (e.g., author-of, cites). We use
rectangles to represent objects, circles to represent random
variables, dashed lines to represent relations, and solid lines
to represent probabilistic dependencies. Each nodevi ∈ VD

is associated with a typeT (vi) = tvi (e.g.,paper). Each ob-
ject typet ∈ T has a number of associated attributesXt =
(Xt

1, ..., X
t
n) (e.g., topic, year). Consequently, each object

vi is associated with a set of attribute values determined by
its typeX

tvi
vi = (Xtvi

vi1
, ..., X

tvi
vin). A PRM model represents

a joint distribution over the values of the attributes through-
out the data graph,x = {xtvi

vi : vi ∈ V, tvi
= T (vi)}.
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Figure 1. PRM (a) data, and (b) model graph.

The dependencies among attributes are represented in
the model graphGM = (VM , EM ). Attributes of an ob-
ject can depend probabilistically on other attributes of the
same object, as well as on attributes of other related ob-
jects inGD. For example, the topic of a paper may be in-
fluenced by attributes of the authors that wrote the paper.
Instead of defining the dependency structure over attributes
of specific objectsXv, PRMs define a generic dependency
structure at the level of object types. The set of attributes
Xt

k = (Xt
vik

: vi ∈ V, T (vi) = t) is tied together and
modeled as a single variable. Each nodevi ∈ VM corre-
sponds to anXt

k, t ∈ T ∧ Xt
k ∈ Xt. As in conventional

graphical models, each node is associated with a probabil-
ity distribution conditioned on the other variables. Parents
of Xt

k are either: (1) other attributes associated with typetk
(e.g., papertopic depends on papertype), or (2) attributes
associated with objects of typetj where objectstj are re-
lated to objectstk in GD (e.g., papertopic depends on au-
thor rank). For the latter type of dependency, if the relation
betweentk andtj is one-to-many, the parent consists of a
set of attribute values (e.g., author ranks). In this situation,
PRMs use aggregation functions, either to map sets of val-
ues into single values, or to combine a set of probability
distributions into a single distribution.

For example, consider the model graph in figure 1b. It
models the data in figure 1a, which has two object types:
paper and author. InGM , each object type is represented by
a plate, and each attribute of each object type is represented
as a node. The edges ofGM characterize the dependencies
among the attributes at the type level.

During inference, a PRM uses theGM andGD to in-



stantiate an inference graphGI = (VI , VE) in a process
sometimes called “rollout”. The rollout procedure used by
PRMs to produce theGI is nearly identical to the process
used to instantiate models such as hidden Markov models
(HMMs), and conditional random fields (CRFs) [9].GI

represents the probabilistic dependencies among all the ob-
ject variables in a single test set (hereGD is different from
the G ′

D used for training). The structure ofGI is deter-
mined by bothGD andGM—each object-attribute pair in
GD gets a separate, local copy of the appropriate CPD from
GM . The relations inGD constrain the way thatGM is
rolled out to formGI . PRMs can produce inference graphs
with wide variation in overall and local structure, because
the structure ofGI is determined by the specific data graph,
which typically has non-uniform structure. For example,
figure 2 shows the PRM from figure 1b rolled out over a
data set of three authors and three papers, whereP1 is au-
thored byA1 andA2, P2 is authored byA2 andA3, andP3

is authored byA3. Notice that there is a variable number
of authors per paper. This illustrates why PRM CPDs must
aggregate—for example, the CPD for paper-type must be
able to deal with a variable number of author ranks.
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Figure 2. Example PRM inference graph.

3.2. RDN Models

An RDN model encodes probabilistic relationships in a
similar manner to DN models, extending the representation
to a relational setting. RDNs use a bidirected model graph
GM with a set of conditional probability distributionsP .
Each nodevi ∈ VM corresponds to anXt

k ∈ Xt, t ∈ T and
is associated with a conditional distributionp(xt

k | paxt
k
).

Figure 1b illustrates an example RDN model graph for the
data graph in figure 1a. The graphical representation illus-
trates the qualitative component (GD) of the RDN—it does
not depict the quantitative component (P ) of the model,
which includes aggregation functions. The representation
uses a modified plate notation; dependencies among at-
tributes of the same object are contained inside the rectangle
and arcs that cross the boundary of the rectangle represent
dependencies among attributes of related objects. For ex-
ample,monthi depends ontypei, while avgrankj depends
on thetypek andtopick for all papersk related to authorj
in GD. Although conditional independence is infered using
an undirected view of the graph, bidirected edges are useful

for representing the set of variables in each CPD. For ex-
ample, in figure 1b, the CPD foryearcontainstopicbut the
CPD for topic does not containtype. This shows inconsis-
tencies that may result from the RDN learning technique.

Learning. The RDN learning algorithm is much like the
DN learning algorithm, except we use a selective relational
classification algorithm to learn a set of conditional models.
The algorithm input consists of: (1) a data graphGD, with a
set of typesT and attributesX, (2) a conditional relational
learnerR, and (3) a search limitc, which limits the length
of paths inGD that are considered inR. For eacht ∈ T ,
and eachXt

k ∈ Xt, the algorithm usesR to learn a CPD
for Xt

k given the set of attributes{Xt
k′ 6=k} ∪Xt′ 6=t, where

t′ is up toc links away fromt in GD. The resulting CPDs
are included inP and are used to formGM .

We use relational probability trees (RPTs) [13] for the
CPD components of the RDN. The RPT learning algorithm
adjusts for biases towards particular features due to degree
disparity and autocorrelation in relational data [7, 8]. We
have shown that RPTs build significantly smaller trees than
other conditional models and achieve equivalent, or better,
performance. This characteristic of the RPTs is crucial for
learning understandable RDN models. The collection of
RPTs will be used during inference so the size of the mod-
els also has a direct impact on efficiency. We expect that
the general properties of RDNs would be retained if other
approaches to learning conditional probability distributions
were used instead, given that those approaches are both se-
lective and accurate.

RPTs extend probability estimation trees to a relational
setting. RPT models estimate probability distributions over
class label values in the same manner as conventional classi-
fication trees, but the algorithm looks beyond the attributes
of the item for which the class label is defined and consid-
ers the effects of attributes in the local relational neighbor-
hood (≤ c links away) on the probability distribution. The
RPT algorithm automatically constructs and searches over
aggregated relational features to model the distribution of
the target variable—for example, to predict the value of an
attribute (e.g., paper topic) based on the attributes of related
objects (e.g., characteristics of the paper’s references), a re-
lational feature may ask whether the oldest reference was
written before1980.

Inference. The RDN inference graphGI is potentially
much larger than the original data graph. To model the full
joint distribution there must be a separate node (and CPD)
for each attribute value inGD. To constructGI , the set of
template CPDs inP is rolled-out over the data graph. Each
object-attribute pair gets a separate, local copy of the ap-
propriate CPD. Consequently, the total number of nodes in
the inference graph will be

∑
v∈VD

|XT(v)|. Rollout facili-
tates generalization across data graphs of varying size—we
can learn the CPD templates from one data graph and apply



the model to a second data graph with a different number of
objects by rolling out more CPD copies.

We use Gibbs sampling (e.g. [11]) for inference in RDN
models. To estimate a joint distribution, the inference graph
consists of a rolled-out network with unobserved variables.
The values of all unobserved variables are initialized to val-
ues drawn from their prior distributions. Gibbs sampling
then iteratively relabels each unobserved variable by draw-
ing from its local conditional distribution, given the current
state of the rest of the graph. After a sufficient number of
iterations, the values will be drawn from a stationary distri-
bution and we can use the samples to estimate probabilities
of interest. For the experiments reported in this paper we
use a fixed-length chain of 2000 samples (each iteration re-
labels every value sequentially), with a burn-in of 200.

4. Experiments

The experiments in this section are intended to demon-
strate the utility of RDNs as a joint model of relational data.
We learn RDN models of four real world datasets to illus-
trate the types of domain knowledge that can be garnered.
In addition, we evaluate the models in a classification con-
text, where only a single attribute is unobserved in the test
set, and report significant performance gains compared to a
conditional model. Finally, we use synthetic data to assess
the impact of training set size and autocorrelation on RDN
learning and inference, showing that accurate models can
be learned at small data set sizes and that the model is ro-
bust to all but extreme levels of autocorrelation. For these
experiments, we used the parametersR = RPT andc = 2.
The RPT algorithm usedMODE, COUNTandPROPORTION
features with10 thresholds per attribute.

The RDN models in figures 3-5 continue with the RDN
representation introduced in figure 1. Each object type is
represented in a separate plate, arcs inside a plate indicate
dependencies among the attributes of a single object and
arcs crossing the boundaries of plates indicate dependen-
cies among attributes of related objects. An arc fromx to
y indicates the presence of one or more features ofx in the
RPT learned fory.

When the dependency is on attributes of objects more
than a single link away, the arc is labeled with small rect-
angle to indicate the intervening object type. For example,
movie genre is influenced by the genres of other movies
made by the movie’s director, so the arc would be labeled
with a smallD rectangle.

In addition to dependencies among attribute values,
RPTs also learn dependencies between the structure of the
relations (edges inGD) and the attribute values. Thisdegree
relationship is represented by a small black circle in the cor-
ner of each plate, arcs from this circle indicate a dependency
between the number of related objects and an attribute value

of a related object. For example, movie receipts is influ-
enced by the number of actors in the movie.

4.1. RDN Models

The first data set is drawn from the Internet Movie
Database (www.imdb.com). We collected a sample of 1,382
movies released in the United States between 1996 and
2001. In addition to movies, the data set contains objects
representing actors, directors, and studios. In total, this
sample contains approximately 42,000 objects and 61,000
links. We learned a RDN model for ten discrete attributes
including actor gender and movie opening weekend receipts
(>$2million). Figure 3 shows the resulting RDN model.
Four of the attributes, movie receipts, movie genre, actor
birth year, and director1st movie year, exhibit autocorre-
lation dependencies. Exploiting this type of dependency
has been shown to significantly improve classification ac-
curacy of RMNs compared to RBNs which cannot model
cyclic dependencies [15]. However, to exploit autocorre-
lation the RMN must be instantiated with a corresponding
clique template—the dependency must be pre-specified by
the user. To our knowledge, RDNs are the first PRM capa-
ble of learningthis type of autocorrelation dependency.
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Figure 3. Internet Movie database RDN.

The second data set is drawn from Cora, a database of
computer science research papers extracted automatically
from the web using machine learning techniques [10]. We
selected the set of 4,330 machine-learning papers along
with associated authors, cited papers, and journals. The
resulting collection contains approximately 13,000 objects
and 26,000 links. We learned an RDN model for seven at-
tributes including paper topic (e.g., neural networks) and
journal name prefix (e.g., IEEE). Figure 4 shows the result-
ing RDN model. Again we see that four of the attributes
exhibit autocorrelation. In particular, notice that the topic
of a paper depends not only on the topics of other papers
that it cites, but also on the topics of other papers written by
the authors. This model is a good reflection of our domain
knowledge about machine learning papers.

The third data set was collected by the WebKB
Project [4]. The data consist of a set of 3,877 web pages



from four computer science departments. The web pages
have been manually labeled with the categories: course, fac-
ulty, staff, student, research project, or other. The collection
contains approximately 4,000 web pages and 8,000 hyper-
links among those pages. We learned an RDN model for
four attributes of the web pages including school and page
label. Figure 5a shows the resulting RDN model.

Paper

MonthType

Topic Year

Journal/
Book
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Book 
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Avg 
Rank

A

P

P

A

Figure 4. Cora machine-learning papers RDN.

The fourth data set is a relational data set containing in-
formation about the yeast genome at the gene and the pro-
tein level (www.cs.wisc.edu/∼dpage/kddcup2001/). The
data set contains information about 1,243 genes and 1,734
interactions among their associated proteins. We learned an
RDN model for seven attributes. The attributes of the genes
included protein localization and function, and the attributes
on the interactions included type and level of expression.
Figure 5b shows the resulting RDN model.
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Figure 5. (a) WebKB, and (b) gene data RDNs.

4.2. Classification Experiments

We evaluate the learned models on classification tasks
in order to assess (1) whether autocorrelation dependencies
among instances can be used to improve model accuracy,
and (2) whether the RDN models, using Gibbs sampling,
can effectively infer labels for a network of instances. To
do this, we compare three models. The first model is a con-
ventional RPT model—an individual classification model
that reasons about each instance independently from other
instances and thus does not use the class labels of related in-
stances. The second model is a RDN model that exploits ad-
ditional information available in labels of related instances
and reasons about networks of instances collectively. The
third model is a probabilistic ceiling for the RDN model.

We use the RDN model but allow the true labels of related
instances to be used during inference. This model shows the
level of performance possible if the RDN model could infer
the true labels of related instances with perfect accuracy.
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Figure 6. AUC results for classification tasks.

Figure 6 shows area under the ROC curve (AUC) results
for each of the three models on four classification tasks. We
used the following prediction tasks: IMDb: movie receipts,
Cora: paper topic, WebKB: page label, Gene: gene loca-
tion. The graph shows AUC for the most prevalent class,
averaged over a number of training/test splits. For IMDb
and Cora, we used 4-5 temporal samples where we learned
models on one year of data and applied the model to the
subsequent year. For WebKB, we used cross-validation by
department, learning on three departments and testing on
pages from the fourth held out department. For Gene there
was no clear sampling choice, so we used ten-fold cross
validation on random samples of the genes. We used two-
tailed, paired t-tests to assess the significance of the AUC
results obtained from the trials. The t-tests compare the
RDN results to each of the other two models. The null hy-
pothesis is that there is no difference in the AUC results
of the two models; the alternative is that there is a differ-
ence. The differences in performance that are significant at
ap < 0.05 level are reported in the graph with asterisks.

On three of the tasks, the RDNs models achieve compa-
rable performance to the ceiling models and on the fourth
(WebKB) the difference is not statistically significant. This
indicates that the RDN model realized its full potential,
reaching the same level of performance as if it had access
to the true labels of related movies. On the Gene data, the
RDN surpasses the performance of the ceiling model, but is
only a probabilistic ceiling—the RDN may perform better
if an incorrect prediction for one object improves the clas-
sification of related objects. Also, the performance of the
RDN models is superior to RPT models on all four tasks.
This indicates that autocorrelation is both present in the data
and identified by the RDN models. The performance im-
provement over RPTs is due to successful exploitation of
this autocorrelation. On the Cora data, the RPT model per-
formance is no better than random because autocorrelation
is the only predictor of paper topic (see figure 4).



4.3. Synthetic Data Experiments

To explore the effects of training set size and autocor-
relation on RDN learning and inference, we generated ho-
mogeneous data graphs with a regular square lattice struc-
ture. With the exception of objects along the outer bound-
ary, each object in the lattice links to four immediate neigh-
bors positioned above, below, left, and right. The first and
last row and column make up theframeof the lattice. In or-
der to control for effects of varying structure, objects in the
frame are not used during learning and inference, although
their attribute values are available to objects in the core for
learning and inference. Thus, training or test sets of sizeN
correspond to a lattice of(

√
N + 2)2 objects, and models

are trained or evaluated on theN objects in the core of the
lattice. Each object has four boolean attributesX1, X2, X3

andX4. We use a simple RDN whereX1 is autocorrelated
(through objects one link away),X2 depends onX1, and
the other two attribute have no dependencies.

We generated the values of attributes using the RDN in
the following way. We begin by assigning each object in the
lattice an initial value forX1 with P (x1 = 1) = 0.5. We
then perform Gibbs sampling over the entire lattice to esti-
mate the values ofX1 conditioned on neighboring values.
The values assigned to each object after 200 iterations are
used as the final labels. We use a manually specified RPT
that assignsX1 values to each object based on theX1 val-
ues of objects one link away inGD. The parameters of this
model are varied to produce different levels of autocorrela-
tion in X1. OnceX1 values are assigned, values forX2 are
randomly drawn from a distribution conditioned on objects’
X1 values. We used the parametersp(x2 = 1) = 0.3 and
p(x1 = 1|x2 = 1) = 1− p(x1 = 0|x2 = 1) = 0.9. Finally,
random values are assigned to the two other attributes with
p(x3 = 1) = p(x4 = 1) = 0.5. Once a dataset is generated,
we measure the proportion of objects withX1 = 1, and any
dataset with a value outside the range[0.4, 0.6] is discarded
and replaced by a new dataset. This ensures consistency in
the distribution ofX1 across datasets and reduces variance
in estimated model performance.

The first set of synthetic experiments examines the effec-
tiveness of the RDN learning algorithm. Figure 7a graphs
the log-likelihood of learned models as a function of train-
ing set size. Training set size was varied at the follow-
ing levels{25, 49, 100, 225, 484, 1024, 5041}. Figure 7b
graphs log-likelihood as a function of autocorrelation. Au-
tocorrelation was varied to approximate the following levels
{0.0, 0.25, 0.50, 0.75, 1.0}. (We graph the average autocor-
relation for each set of trials, which is within 0.02 of these
numbers.) At each data set size (autocorrelation level), we
generated 25 training sets and learned RDNs. Using each
learned model, we measured the average log-likelihood of
another 25 test sets (size 225). Figure 7 plots these mea-
surements as well as the log-likelihood of the test data from

the RDN used for data generation. These experiments show
that the learned models are a good approximation to the true
model by training set size 1000, and that RDN learning is
robust with respect to varying levels of autocorrelation.
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Figure 7. Evaluation of RDN learning.

The second set of synthetic experiments evaluates the
RDN inference procedure in a classification context, where
only a single attribute is unobserved in the test set. We gen-
erated data in the manner described above, learned an RDN
for X1, used the learned models to infer the class labels of
unseen test sets, and measured AUC to evaluate the predic-
tions. These experiments compared the same three models
as section 4.2, and used the same training set sizes and au-
tocorrelation levels outlined above. At each data set size
(autocorrelation level), we generated 25 training and test set
pairs, learned the model on the training set, and inferred la-
bels for the test set.

Figure 8a graphs AUC as a function of training set size
for RDNs compared to RPTs and the ceiling, plotting the
average AUC for each model type. Even at small data set
sizes the RDN performance is close to optimal and signif-
icantly higher than the performance of the RPTs. Surpris-
ingly, the RPTs are able to achieve moderately good results
even without the class labels of related instances. This is be-
cause the RPTs are able to use the attribute values of related
instances as a surrogate for autocorrelation.

Figure 8b plots average AUC as a function of autocorre-
lation for RDNs compared to RPTs and the ceiling. When
there is no autocorrelation, the RPT models perform opti-
mally. In this case, the RDNs are slightly biased due to
excess structure. However, as soon as there is minimal auto-
correlation, the RDN models start to outperform the RPTs.
At the other extreme, when autocorrelation is almost per-
fect the RDNs experience a large drop in performance. At
this level of autocorrelation, the Gibbs sampling procedure
can easily converge to a labeling that is “correctly” auto-
correlated but with opposite labels. Although all 25 tri-
als appeared to converge, half performed optimally and the
other half performed randomly (AUC≈ 0.50). Future work
will explore ways to offset this drop in performance. How-
ever, the utility of RDNs for classification is clear in the



range of autocorrelations that have been observed empiri-
cally [0.25,0.75].
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Figure 8. Evaluation of RDN inference.

5. Discussion and Conclusions

In this paper we presented RDNs, a new form of PRM.
The primary advantage of RDN models is the ability to learn
and reason with relational autocorrelation. We showed the
RDN learning algorithm to be a relatively simple method
for learning the structure and parameters of a probabilistic
graphical model. In addition, RDNs allow us to exploit ex-
isting techniques for learning conditional probability distri-
butions. Here we have chosen to exploit our prior work on
RPTs, which constructs parsimonious models of relational
data, but we expect that the general properties of RDNs
would be retained if other approaches to learning condi-
tional probability distributions were used, given that those
approaches are both selective and accurate.

The results of the real and synthetic data experiments
indicate that collective classification with RDNs can of-
fer significant improvement over conditional approaches to
classification when autocorrelation is present in the data—a
nearly ubiquitous characteristic of relational datasets. The
performance of RDNs also approaches the performance that
would be possible if all the class labels of related instances
were known. Future work will compare RDN models to
RMN models in order to better assess the quality of the
pseudolikelihood approximation of the joint distribution. In
addition, we are exploring improved inference procedures
that consider the autocorrelation dependencies in the data
in order to improve inference accuracy and efficiency.
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