1

Generalizing Plans to New Environments in Relational MDPs

Carlos Guestrin Daphne Koller

Chris Gearhart Neal Kanodia

Computer Science Department, Stanford University
{guestrin, koller, cmg33, nkanodia} @cs.stanford.edu

Abstract

A longstanding goal in planning research is the ability to gen-
eralize plans developed for some set of environments to a
new but similar environment, with minimal or no replanning.
Such generalization can both reduce planning time and al-
low us to tackle larger domains than the ones tractable for
direct planning. In this paper, we present an approach to
the generalization problem based on a new framework-of
lational Markov Decision Processes (RMDPsAn RMDP

can model a set of similar environments by representing ob-
jects as instances of different classes. In order to generalize
plans to multiple environments, we define an approximate
value function specified in terms of classes of objects and, in
a multiagent setting, by classes of agents. This class-based
approximate value function is optimized relative to a sam-
pled subset of environments, and computed using an efficient
linear programming method. We prove that a polynomial
number of sampled environments suffices to achieve perfor-
mance close to the performance achievable when optimizing
over the entire space. Our experimental results show that our
method generalizes plans successfully to new, significantly
larger, environments, with minimal loss of performance rel-
ative to environment-specific planning. We demonstrate our
approach on a real strategic computer war game.

Introduction

S . o 1 ST T Foo FIREGElET 0 0it Y
r ¥ %\\
A -
R

Figure 1:Freecraft strategic domain with 9 peasants, a barrack, a
castle, a forest, a gold mine, 3 footmen, and an enemy, executing the
generalized policy computed by our algorithm.

researci15; 16, and even earlier in traditional plannifg].

This problem is a challenging one, because it is often unclea
how to translate the solution obtained for one domain to an-
other. MDP solutions assign values and/or actions to states
Two different MDPs €.g, two Freecraft scenarios), are typ-
ically quite different, in that they have a different setdan
even number) of states and actions. In cases such as this, the
mapping of one solution to another is not well-defined.

Our approach is based on the insight that many domains
can be described in terms of objects and the relations batwee
them. A particular domain will involve multiple objects fro
several classes. Different tasks in the same domain will typ

Most planning methods optimize the plan of an agent in dcally involve different sets of objects, related to eachent
fixed environment. However, in many real-world settings, anin different ways. For example, in Freecraft, differentk&s
agent will face multiple environments over its lifetime,dan might involve different numbers of peasants, footmen, ene-
its experience with one environment should help it to penfor mies, etc. We therefore define a notion aktational MDP
well in another, even with minimal or no replanning.
Consider, for example, an agent designed to play a stratéramework[10]. An RMDP for a particular domain pro-
gic computer war game, such as theecraftgame shown
in Fig. 1 (an open source version of the popwsarcraft
game). In this game, the agent is faced with many scenahow the dynamics and rewards of an object in a given class
ios. In each scenario, it must control a set of agents (osunit depend on the state of that object and of related objects.
with different skills in order to defeat an opponent. Mos#-sc

(RMDP), based on th@robabilistic relational model (PRM)

vides a general schema for an entire suite of environments,
or worlds, in that domain. It specifies a set of classes, and

We use the class structure of the RMDP to define a value

narios share the same basic elemersourcessuch as gold function that can be generalized from one domain to another.
and wood;units such as peasants, who collect resources aniVe begin with the assumption that the value function can
build structures, and footmen, who fight with enemy units;be well-approximated as a sumwilue subfunctionfor the
andstructures such as barracks, which are used to train foot-different objects in the domain. Thus, the value of a global
men. Each scenario is composed of these same basic builBreecraft state is approximated as a sum of terms correspond
ing blocks, but they differ in terms of the map layout, typesing to the state of individual peasants, footmen, gold, \ate.
of units available, amounts of resources, etc. We would likehen assume that individual objects in the same class have
the agent to learn from its experience with playing some scea very similar value function. Thus, we define the notion
narios, enabling it to tackle new scenarios without sigaific of a class-based value functipmwhere each class is associ-
amounts of replanning. In particular, we would like the &gen ated with aclass subfunctionAll objects in the same class
to generalize from simple scenarios, allowing it to deahwit have the value subfunction of their class, and the overaleva
other scenarios that are too complex for any effective gann function for a particular environment is the sum of value-sub
The idea of generalization has been a longstanding goal ifunctions for the individual objects in the domain.
Markov Decision Process (MDP) and reinforcement learning A set of value subfunctions for the different classes imme-

diately determines a value function for any new environmenb € O[w][C], w specifies a set of objects € p[C.L], de-
in the domain, and can be used for acting. Thus, we can conmotedo.L. For example, in a world containing 2 peasants,
pute a set of class subfunctions based on a subset of envirowe would haveQO[w][Peasant] = {Peasantl, Peasant2};
ments, and apply them to another one without replanning. if Peasantl is building a barracks, we would have that

We provide an optimality criterion for evaluating a class- Peasant1.BuildTarget= Barrackl.
based value function for a distribution over environmeaitsl ~ The dynamics and rewards of an RMDP are also de-
show how it can, in principle, be optimized using a linear-pro fined at the schema level. For each class, the schema
gram. We can also “learn” a value function by optimizing SPecifies anaction C'A, which can take on one of sev-
it relative to a sample of environments encountered by thé&ral valuesbom|[C.A]. For example.Dom[Peasant. A] =
agent. We prove that a polynomial number of sampled eniWait, Mine, Harvest, Builgl Each.clasf is also associ-
vironments suffice to construct a class-based value fumctio@ted with atransition modelP®, which specifies the proba-
which is close to the one obtainable for the entire distiiut glltyiféﬁtiﬁggﬂ?rgxte;tgg Qfeiﬁesféﬁo?,f tgrlle?qbgﬂgn((:jl?rslz

. . . s n,

over environments. Finally, we show how we can .'mprovestatges and actions of all of the objects linkedto
the quality of our approximation by automatically discever
ing subclasses of objects that have “similar” value funtio PY(S¢ | Sc,C.A,Sc.r,,C.Li.A,...,Sc.L,,C.Li.A). (1)
~ We present experiments for a computer systems admin-gor example, the status of a barracRarrack.Status,
istration task and two Freecraft _tasks. Our results ShOVﬂepends on its status in the previous time step, on
that we can successfully generalize class-based value funfhe task performed by any peasant that could build it
tions. Importantly, our approach also obtains effectivé-po (Barrack.BuiltBy. Task, on the amount of wood and gold, etc.
cies for problems significantly larger than our planningoalg ~ The gransition model is conditioned on the stateof.;,
rithm could handle otherwise. which is, in general, an entire set of objeotsy the set of
. . peasants linked to a barrack). Thus we must now provide
2 Relational Markov Decision Processes a compact specification of the transition model that can de-
A relational MDP defines the system dynamics and rewardspend on the state of an unbounded number of variables. We
at the level of a template for a task domain. Given a particucan deal with this issue using the ideaagfgregation[10].
lar environment within that domain, it defines a specific MDPIn Freecraft, our model uses tloeunt aggregatot, where
instantiated for that environment. As in the PRM frameworkthe probability thaBarrack.Statugransitions fromJnbuiltto
of [10], the domain is defined via schemawhich speci- Built depends or[Barrack.BuiltBy. Task = Built], the num-

fies a set ofobject classe€ = {C4,...,C.}. Each class berof peasants ifBarrack.BuiltBy whoseTaskis Build.
C is also associated'with a set sfate variablesS|[C)| = Finally, we also define rewards at the class level. We as-
{C.54,...,C.Sy}, which describe the state of an object in sume for simplicity that rewards are associated only wigh th

that class. Each state varialileS has adomainof possible states of individual objects; adding more global depenigsnc
valuesDom|[C.S]. We defineS¢ to be the set of possible is possible, but complicates planning significantly. Wertkfi
states for an object itv, i.e., the possible assignments to the a reward functionR® (S¢, C.A), which represents the con-
state variables of’. tribution to the reward of any object ifi. For example, we
For example, our Freecraft domain might may have a reward function associated withEnemy class,
have classes such adPeasant, Footman, Gold; which specifies a reward of 10 if the state of an enemy object
the class Peasant may have a state variable is Dead RE"*™ (Enemy.State= Dead = 10. We assume
Task whose domain is Dom[Peasant.Task = that the reward foeach objects bounded byR,,,,...
{Waiting, Mining, Harvesting, Building and a state Given a world, the RMDP uniquely definegjeoundfac-
variable Health whose domain has three values. In thistored MDPII,,, whose transition model is specified (as usual)
case,Speasant Would haves4 - 3 = 12 values, one for each as a dynamic Bayesian network (DBN§J. The random vari-

combination of values fofaskandHealth ables in this factored MDP are the state variables of the in-
The schema also specifies a set lotks £[C] = dividual objectso.S, for eacho € O[w][C] and for each

{L1,...,L;} for each class representing links between ob-S € S[C]. Thus, the state of the system at a given point in

jects in the domain. Each link.L has arangep[C.L] = C’. time is a vector defining the states of the individual objétts

For example Peasant objects might be linked t@Barrack the world. For any subset of variabl&sin the model, we de-
objects —p[Peasant.BuildTargef = Barrack, and to the fines[X]to be the part of the instantiatiarthat corresponds
global Gold and Wood resource objects. In a more com- to the variablesX. The ground DBN for the transition dy-
plex situation, a link may relat€’ to many instances of a namics specifies the dependence of the variables atttirrie
classC’, which we denote by[C.L] = {C’}, for example, on the variables at time The parents of a variable S are
p[Enemy.My_Footmen = {Footman} indicates that an instance the state variables of the objeetsthat are linked t®. In our
of the enemy class may be related to many footman instancesxample with the two peasants, we might have the random
A particular instance of the schema is defined via avariablesPeasantl.Task Peasant2.Task Barrackl.Status
world w, specifying the set of objects of each class; we useetc. The parents of the tinte+ 1 variableBarrackl.Statu$
O[w][C] to denote the objects in clags, andOw] to de- are the timet variablesBarrackl.Statu$, Peasantl.Task
note the total set of objects in. The worldw also spec- Peasant2.Task Gold1.AmountandWood1.Amount
ifies the links between objects, which we take to be fixed The transition model is the same for all instances in the
throughout time. Thus, for each link.L, and for each same class, as in (1). Thus, all of thé&tatusvariables for

B . enemy could end up being linked to a set of footmen,
p[Enemy.My_Footmen = {Footman}. In this case, the
transition model of the health of an enemy may depend
on the number of footmen who are not dead and whose
action choice is to attack this enemyP™™(St..., |

S'Enemy, 1S Enemy.My_Footmen, Enemy.My_FootmenA]). Finally, we
must define the template for the reward function. Here there

PR T by = vy T IR is only a reward when an enemy is dedﬁnemy(SEnemy).

We now have a template to describe any instance of
@)) the tactical Freecraft domain. In a particular world,

) we must define the instances of each class and the
tored MDP for a world with 2 footmen and 2 enemies. with 2 footmen and 2 enemies will have 4 objects:

barrack objects share the same conditional probability dis- {FootmanlFootman2EnemylEnemy2. Each footman
tribution. Note, however, that each specific barrack dependwill be linked to an enemy: FootmarMy Enemy =
on the particular peasants linked to it. Thus, the actuamiar Enemyl and Footman@y Enemy = Enemy2. Each en-
in the DBN of the status variables for two different barrack€my will be linked to both footmen: Eneniyly_Footmen=

objects can be different. Enemy2Mly_Footmen= {FootmanlFootman3. The tem-
tions for the individual objects: specific ("2v2") world yield a well-defined factored MDP,
IIoye, as shown in Fig. 2(b). I
R(s,a)=>_ > R(s[S,],al0.4]). . . .
&ee vcomliCl 3 Approximately Solving Relational MDPs

. . There are many approaches to solving MOPS. An ef-
Thus, for reward function for th&nemy class described fective one is based on linear programming (LP): 5¢tT)

?g?_ve, O,[L:{ overatl)l reV}/%rd Lunctltr)rﬂ miﬁ t%lvtent sttate will bedenote the states in an MDP and A(II) the actions. If
Imes the number ot dead enemies at state. S(II) = {si1,...,sn}, our LP variables aréd/, ..., Vy,

It remains to specify the actions in the ground MDP. ThewhereVi representd’(s;), the value of state;. The LP for-
RMDP specifies a set of possible actions for every object iy, ation is:

the world. In a setting where only a single action can be taken

at any time step, the agent must choose both an object tdMlinimize: 3=, a(s;)V; ;

act on, and which action to perform on that object. Here, Subjectto: V; > R(s;,a) +v)_, P(s} | si,a)Vk

the set of actions in the ground MDP is simply the union Vs; € S(II), a € A(II).
UsewDomlo.A4]. In a setting where multiple actions can be
performed in parallel (say, in a multiagent setting), it htig The state relevance weights(s;), ..., a(sy) in the objec-

be possible to perform an action on every object in the domaiive function are any set of positive weightg(s;) > 0.

at every step. Here, the set of actions in the ground MDP is a |n our setting, the state space is exponentially large, with
vector specifying an action for every objest,c.,.Dom[o.A]. one state for each joint assignment to the random variables
Intermediate cases, allowing degrees of parallelism, la® a .S of every objecté.g, exponential in the number of units in
possible. For simplicity of presentation, we focus on thé-mu the Freecraft scenario). In a multiagent problem, the numbe
tiagent case, such as Freecraft, where, an action is amassigf actions is also exponential in the number of agents. Thus
ment to the action of every unit. this LP has both an exponential number of variables and an
Example 2.1 (Freecraft tactical domain) Consider a sim- exponential number of constraints. Therefore the exact sol
plified version of Freecraft, whose schema is illustratedtion to this linear program is infeasible.

in Fig. 2(a), where only two classes of units partici- We address this issue using the assumption that the

pate in the game: C = {Footman, Enemy}. Both value function can be well-approximated as a sum of
the footman and the enemy classes have only one stalecal value subfunctionsassociated with the individual
variable each, Health, with domairDom[Healtl = objects in the model. (This approximation is a special
{Healthy, Wounded, Dead The footman class contains case of the factored linear value function approach used
one single-valued link:p|[Footman.My_Enemy = Enemy. in [6].) Thus we associate a value subfunctidn with
Thus the transition model for a footman’s health will every object inw. Most simply, this local value function
depend on the health of its enemypfotmn(sr | can depend only on the state of the individual obj8gt

SFootman, SFootman.My.Enemy), 1.€., If a footman’s enemy is In our example, the local value subfunctidrgnemys for

not dead, than the probability that a footman will be- enemy objecEnemylmight associate a numeric value for
come wounded, or die, is significantly higher. A foot-each assignment to the varialimemylHealth A richer
man can choose to attack any enemy. Thus each foo&pproximation might associate a value function with pairs,
man is associated with an actioFootman.A which se- or even small subsets, of closely related objects. Thus, the

lects the enemy it is attackifg. As a consequence, an) _ _
B world requires a small extension of our basic representation. We
A model where an action can change the link structure in theomit details due to lack of space.

function Vrootman1 for Footmanlmight be defined over the does not help us provide a value function for objects in other
joint assignments oFootmanlHealth and EnemylHealth, ~ worlds, especially worlds with different sets of objects.
where FootmanlMy_Enemy = Enemyl We will repre- To obtain generalization, we build on the intuition that dif
sent the complete value function for a world as the sunferent objects in the same class behave similarly: theyeshar
of the local value subfunction for each individual object the transition model and reward function. Although they dif
in this world. In our example worldu(= 2v=2) with fer in their interactions with other objects, their locaht-

2 footmen and 2 enemies, the global value function willbution to the value function is often similar. For example,

be: Vae(Fl.Health E1Health F2.Health E2.Health) = it may be reasonable to assume that different footmen have a
Vrootman F1.Health ELHealth) + Vepemy{ E1.Health) + similar long-term chance of killing enemies. Thus, we liestr
Vrootmand F2.Health E2.Health) + Venemy4 E2. Health). our class of value functions by requiring that all of the abge

Let T', be thescopeof the value subfunction of objeet in a given class share the same local value subfunction.
i.e., the state variables that, depends on. Given the local Formally, we define alass-based local value subfunc-
subfunctions, we approximate the global value function as: tion V. for each class. We assume that the parameteriza-
tion of this value function is well-defined for every object
Vo(s) = Z Vo(s[T%))- @ 5incC. This assumption holds trivially if the scope b
0€0[w] is simply S¢: we simply have a parameter for each as-
As for any linear approximation to the value function, the Sighment toDom[S¢]. When the local value function can
LP approach can be adapted to use this value function re@iSC depend on the states of neighboring objects, we must
resentatiorf14]. Our LP variables are now the local compo- d€finé the parameterization accordingly; for example, we

nents of the individual local value functions: might have a parameter for each possible joint state of a
linked footman-enemy pair. Specifically rather than defin-
{Vo(to) : 0 € Olw], t, € Dom[T,]}. (3) ing separate subfunctionBroomant and Veoomana We de-

In our example, there will be one LP variable for each jointfine a class-based subfunctidfootman Now the contri-
assignment of 1.HealthandE1.Healthto represent the com- bution of Footmanlto the global value function will be
ponents oVrooman: Similar LP variables will be included for Viootmar F1.Health E1LHealth). — Similarly Footman2 will

the components Ofrootmana Venemys @NdVenemya contributeVegotmar F2.Health I_EZ.Hea_Ith). 3
As before, we have a constraint for each global stated A class-based value function defines a specific value func-
each global action: tion for each worldw, as the sum of the class-based local
value functions for the objects in:
220 Vo(8[To]) 232, R(s[S,], alo. A+ @)
Y Pols' | 5,0) 5, Vo(s'[T)); Vs, a. Vols) =2 >, Vols[To). ®)

This transformation has the effect of reducing the number of CECocOLLIC]

free variables in the LP to (the number of objects) times the This value function depends both on the set of objects in the
number of parameters required to describe an object's localorld and (when local value functions can involve related ob
value function. However, we still have a constraint for eachjects) on the links between them. Importantly, although ob-
global state and action, an exponentially large number. jects in the same class contribute the same function into the
Guestrin, Koller and Par6] (GKP hereafter) show that, summation of (5), the argument of the function for an object
in certain cases, this exponentially large LP can be solvedk the state of that specific object (and perhaps its neighbor
efficiently and exactly. In particular, this compact sadati In any given state, the contributions of different objedtthe
applies when the MDP is factoredg, represented as a same class can differ. Thus, every footman has the same local
DBN), and the approximate value function is decomposedalue subfunction parameters, but a dead footman will have a
as a weighted linear combination of local basis functioss, alower contribution than one which is alive.
above. Under these assumptions, GKP present a decomposi-
tion of the LP which grows eE(ponentiaIIy %nly in tirduced "5 Finding Generalized MDP Solutions
tree widthof a graph determined by the complexity of the With a class-level value function, we can easily generalize
process dynamics and the locality of the basis function. ~ from one or more worlds to another one. To do so, we as-
This approach applies very easily here. The structure opume that a single set of local class-based value funcliens
the DBN representing the process dynamics is highly facis & good approximation across a wide range of warldds-
tored, defined via local interactions between objects. -Simisuming we have such a set of value functions, we can act in
larly, the value functions are local, involving only singlb- ~ any new worldw without replanning, as described in Step 3
jects or groups of closely related objects. Often, the ieduc ©f Fig. 3. We simply define a world-specific value function as
width of the resulting graph in such problems is quite small,in (5), and use it to act.

allowing the techniques of GKP to be applied efficiently. We must now optimizé/c in a way that maximizes the
. . value over an entire set of worlds. To formalize this intniti
4 Generalizing Value Functions we assume that there is a probability distributi®(w) over

Although this approach provides us with a principled waythe worlds that the agent encounters. We want to find a sin-
of decomposing a high-dimensional value function in certai gle set of class-based local value functigis: } c<c thatis a
types of domains, it does not help us address the generalizgood fit for this distribution over worlds. We view this task a
tion problem: A local value function for objects in awodd one of optimizing for a single “meta-level” MDH*, where

nature first chooses a world, and the rest of the dynam- for these worlds only. The resulting class-based value-func
ics are then determined by the MDE,. Precisely, the state tion can then be used for worlds that were not sampled.
space ofiI* is {so} Ul {(w,s) : s € S(II,)}. The transi- We will start by sampling a sé® of m worlds according
tion model is the obvious one: From the initial stagenature to P(w). We can now define our LP in terms of the worlds
chooses a world: according toP(w), and an initial state in in D, rather than all possible worlds. For each warlth D,

w according to the initial starting distributiaR? (s) over the ~ Our LP will contain a set of constraints of the form presented
states inu. The remaining evolution is then done according toN E: (4). Note that in all worlds these constraints shaee th
w’s dynamics. In our example, nature will choose the numbeéll.?]réag?nsvl%’tévEgh reprgr?%n'f our class-based value function.
of footmen and enemies, and define the links between them, P 'S given by

which then yields a well-defined MDég, Iloye. Variables: {Vc(te) : C € C,te € Dom[T¢]}.
5.1 LP Formulation Minimize: XY 5 Y cce Yocomicl
The meta-MDHI* allows us to formalize the task of finding a > PO(t.)Ve (ts)
generalized solution to an entire class of MDPs. Specificall to €T, wito) VO Te):
we wish to optimize the class-level parametersifgr not for Subjectto: 3 oce D oeoiw)io) Vo (slTo]) =
a single ground MDRI,,, but for the entirdT*. c

We can address this problem using a similar LP solu- Locopuc) 7 (sl alo.A)+
tion to the one we used for a single world in Sec. 3. The Yo Pu(s' | 8,a) Y cce
variables are simply parameters of the local class-levekeva ;)
subfunctions{Vo(tc) : C € C,tc € Dom[T¢]}. For 2ocoluic Ve (s'[To]);
the constraints, recall that our object-based LP formatati Vw e D, Vs € S(IL,),a € A(IL,);
in (4) had a constraint for each stat@and each action vector (8)

a = {a,}ocolw)- IN the generalized solution, the state spacewhere PO(T,) is the marginalization of’(S,,) to the vari-

is the union of the state spaces of all possible worlds. Ougples inT',. For each world, the constraints have the same
constraint set fofI* will, therefore, be a union of constraint {om as the ones in Sec. 3. Thus, once we have sampled

sets, one for each world, each with its own actions: worlds, we can apply the same LP decomposition techniques
Vu(s) >3, R°(s[So],a0) + v, Pu(s' | 5,a)Vu(s'); of GKP to each world to solve this LP efficiently. Our gener-
Yw, Vs € S(IL,), a € A(IL,); alization algorithm is summarized in Step 2 of Fig. 3.
(6) The solution obtained by the LP with sampled worlds wiill,

where the value function for a world}, (s), is defined at in general, not be equal to the one obtained if all worlds are
the class level as in Eq. (5). In principle, we should have artonsidered simultaneously. However, we can show that the
additional constraint for the statg. However, with a natural quality of the two approximations is close, if a sufficientmu
choice of state relevance weights this constraint is elimi- per of worlds are sampled. Specifically, wittpalynomial
nated and the objective function becomes: number of sampled worlds, we can guarantee that, with high
o 14+~ probability, the quality of the value function approxintati
Minimize: =" > P(w)PJ(s)V.(s); (7) obtained when sampling worlds is close to the one obtained
2 4 s€S, when considering all possible worlds.

if PO(s) > 0,Vs. In some models, the potential number Theorem 5.1 Consider the following class-based value func-

of objects may be infinite, which could make the objectivetions (each with: parameters).)’ obtained from the LP over
function unbounded. To prevent this problem, we assum@ll Possible worlds by minimizing Eq. (7) subject to the con-
that the P(w) goes to zero sufficiently fast, as the num- straints in Eq. (6);) obtained from the LP with the sampled
ber of objects tends to infinity. To understand this assumpworlds in (8); andV* the optimal value function of the meta-
tion, consider the following generative process for sagct MDP II*. For a number of sampled worlds polynomial in
worlds: first, the number of objects is chosen according td1/e,In1/5,1/(1—7),k, Ay, 1/k3), the erroris bounded by:
P(#); then, the classes and links of each object are cho- _ N

sen according taP(w; |). Using this decomposition, we V" =Vl1,p, < IV* = Vl1,p, +eRmaa;

have thatP(w) = P(§)P(w; | £). The intuitive assump- ith probability at leastl — &, for anys > 0 ande > 0;

tion iescrlbed above can be formalized \as_; P_(ﬁ = n) < where| V|1 p, = Y, ces. P(w)PY(s) |V.,(s)|, and R4z
Kkye”#"; for somery > Ay > 0. Thus, the distributio®(#) s the maximum per-object rewardll

pvgr nugn%etr) of objects can be'cnosden arpitrz;rily, as long as The proof, which is omitted for lack of space (see online ver-
's bounded by some exponentially decaying function. sion of this paper), uses some of the techniques developed by

5.2 Sampling worlds de Farias and Van Rdy] for analyzing constraint sampling
The main problem with this formulation is that the size of in general MDPs. However, there are two important differ-
the LP — the size of the objective and the number of conences: First, our analysis includes the error introduceenwvh
straints — grows with the number of worlds, which, in most sampling the objective, which in our case is a sum only over
situations, grows exponentially with the number of possibl a subset of the worlds rather than over all of them as in the
objects, or may even be infinite. A practical approach to adLP for the full meta-MDP. This issue was not previously ad-
dress this problem is teamplesome reasonable number of dressed. Second, the algorithm of de Farias and Van Roy re-
worlds from the distributionP(w), and then to solve the LP lies on the assumption that constraints are sampled accprdi

to some “ideal” distribution (the stationary distributionthe ~ 1 Leaming Subclasses:

optimal policy). Unfortunately, sampling from this digtu- e Input:

tion is as difficult as computing a near-optimal policy. Irrou — Aset of training worldsD.

analysis, after each world is sampled, our algorithm exploi — Aset of featuresF,,[o].

the factored structure in the model to represent the cantdra e Algorithm:

exactly, avoiding the dependency on the “ideal” distriboti (a) Foreachw € D, compute an object-based value function,
. . as described in Sec. 3.

6 Learning Classes of Objects (b) Apply regression tree learning di{F.,[o],V.) : o €

The definition of a class-based value function assumes that Olw],w € D}.

all objects in a class have the same local value function. In (€) Define a subclass for each leaf, characterized by the fea-
many cases, even objects in the same class might play differ- ture vector associated with its path.

ent roles in the model, and therefore have a different impacg- Computing Class-Based Value Function:

on the overall value. For example, if only one peasant has e Input:

the capability to build barracks, his status may have a great — A set of (sub)class definitiorn&

impact. Distinctions of this type are not usually known in ad — Atemplate for{V¢ : C € C}.

vance, but are learned by an agent as it gains experience with ~ — A set of training worldsD.

a domain and detects regularities. e Algorithm:
We propose a procedure that takes exactly this approach: (a) Compute the parameters fov: : C € C} that optimize

Assume that we have been presented with &>sef worlds the LP in (8) relative to the worlds .

w. For each worldv, an approximate value function,, = 3. Acting in a New World:

> ocolw) Yo Was computed as described in Sec. 3. In addi- 4 jhpyt:

tion, each object is associated with a set of feattgls|. For — Aset of local value function§Vc : C € C}.

example, the features may include local information, sich a — A set of (sub)class definitior&

whether the object is a peasant linked to a barrack, or not, as — Aworld w.

well as global information, such as whether this world con- e Algorithm: Repeat

tains archers in addition to footmen. We can define our “train (a) Obtain the current state

ing data”D as{(F,[o],V,) : 0 € Olw],w € D}. (b) Determine the appropriate clagsfor eacho € O[w] ac-
We now have a well-defined learning problem: given this cording to its features.

training data, we would like to partition the objects into (c) Definey,, according to (5). _

classes, such that objects of the same class have similgr val ~ (d) Use the coordination graph algorithm of GKP to com-

pute an actior that maximizesk(s,a) + v >_,, P(s’ |
s,a)V.(s).
(e) Take actioru in the world.

functions. There are many approaches for tackling such a
task. We choose to use decision tree regression, so as to con-
struct a tree that predicts the local value function paranset
given the features. Thus, each split in the tree correspands Figure 3: The overall generalization algorithm.

a feature inF, [o]; each branch down the tree defines a subsefyere |ower for this second approach. We experimented with
of local value functions irD whose feature values are as de- the multiagent computer network example$gh using vari-
fined by the path; the leaf at the end of the path is the averaggys network topologies and “pair” basis functions that ngo
value function for this set. As the regression tree learalRg states of neighboring machines (§6B. In one of these prob-
gorithm tries to construct a tree which is predictive abbett |ems, if we have, computers, then the underlying MDP has
local value function, it will aim to construct a tree whereth gn states and™ actions. However, the LP decomposition

mean at each leaf is very close to the training data assigned jgorithm uses structure in the underlying factored model t
that leaf. Thus, the leaves tend to correspond to objects&ho golve such problems very efficiend§].

local value functions are similar. We can thus take the lgave We first tested the extent to which value functions are

characterized by the combination of feature values spdcifie
by the path to the corresponding leaf. This algorithm is sum
marized in Step 1 of Fig. 3. Note that the mean subfunction
a leaf is not used as the value subfunction for the correspond|,ss partition. In this case, the learning algorithm fiarted

ing class; rather, the parameters of the value subfunctien a e computers into three subclasses illustrated in Fig): 4(b
optimized using the class-based LP in Step 2 of the algor'thmserver’, ‘intermediate’, and ‘leaf’. In Fig. 4(a), we sefat

7 Experimental results ‘server’ (third column) has the highest value, because a bro

W luated lizati lqorith wo d . _ken server can cause a chain reaction affecting the whole net
€ evaluated our generalization aigorithm on two domanSy, o while ‘leaf’ value (first column) is lowest, as it cartno
computer network administration and Freecraft.

affect any other computer.

7.1 Computer network administration We then evaluated the generalization quality of our class-
For this problem, we implemented our algorithm in Matlab, based value function by comparing its performance to that of
using CPLEX as the LP solver. Rather than using the full LPplanning specifically for a new environment. For each topol-
decomposition of GKH6], we used the constraint genera- ogy, we computed the class-based value function itam-
tion extension proposed [13], as the memory requirements pled networks of up t®0 computers. We then sampled a

ject gave to the assignmeStatus= working for instances
of the ‘three legs’ topology. These values cluster into¢hre
lasses. We used@'ART® to learn decision trees for our

O Class-based value function
% Leaf B 'Optimal’ approximate value function
O Utopic expected maximum value

O No class

[NENES

WwhNDhoO®ANDMO

9
W Learnt

=" % Intermediate
classes

Intermediate Server

"™ Intermediate

©oww w
Max-norm error of value function

Estimated policy value per agent

tedl i

% Leaf

Ring Star Three legs Ring Star Three legs

b) © @ o)
Figure 4:Network administrator results: (a) Training data for learning classg€|ésses learned for ‘three legs’; (c) Generalization quality
(evaluated by20 Monte Carlo runs ol 00 steps); (d) Advantage of learning subclasses. Tactical Freeapf:footmen against 3 enemies.

new network and computed for it a value function that usedor a world with 3 footmen and 3 enemies, shown in Fig. 4(e).
the same factorization, but with no class restrictions. sThi The resulting policy (which is fairly complex) demonstiate
value function has more parameters — different parametersuccessful coordination between our footmen: initially al
for each object, rather than for entire classes, which atie op three footmen focus on one enemy. When the enemy be-
mized for this particular network. This process was repkate comes injured, one footman switches its target. Finallyervh
for 8 sets of networks. The results, shown in Fig. 4(c), in-the enemy is very weak, only one footman continues to at-
dicate that the value of the policy from the class-basedevalutack it, while the others tackle a different enemy. Using thi
function is very close to the value of replanning, suggestin policy, our footmen defeat the enemies in Freecraft.
that we can generalize well to new problems. We also com- The factors generated in our planning algorithm grow ex-
puted a utopic upper bound on teepectedralue of the opti- ponentially in the number of units, so planning in larger mod
mal policy by removing the (negative) effect of the neigtsor els is infeasible. Fortunately, when executing a policy, we
on the status of the machines. Although this bound is looseinstantiate the current state at every time step, and asten
our approximate policies still achieve a value close to it. lection is significantly fastef6]. Thus, even though we can-
Next, we wanted to determine if our procedure for learn-not execute Step 2 in Fig. 3 of our algorithm for larger sce-
ing classes yields better approximations than the ones olmarios, we can generalize our class-based value functian to
tained from the default classes. Fig. 4(d) compares the maxwvorld with 4 footmen and enemies, without replanning using
norm error between our class-based value function and thenly Step 3 of our approach. The policy continues to demon-
one obtained by replanning. The graph suggests that, bstrate successful coordination between footmen, and we aga
learning classes using our decision trees regression teee p beat Freecraft’s policy. However, as the number of units in-
cedure, we obtain a much better approximation of the valuereases, the position of enemies becomes increasinglyrimpo

function we would have, had we replanned. tant. Currently, our model does not consider this featurd, a
in a world with 5 footmen and enemies, our policy loses to
7.2 Freecraft Freecraft in a close battle.

In order to evaluate our algorithm in the Freecraft game, we In the strategic model, the goal is to kill a strong enemy.
implemented the methods in C++ and used CPLEX as the LFhe player starts with a few peasants, who can collect gold or
solver. We created two tasks that evaluate two aspects of thgood, or attempt to build a barrack, which requires both gold
game: long-term strategic decision making and local tattic and wood. All resources are consumed after eBuwitd ac-
battle maneuvers. Our Freecraft interface, and scenaoios ftion. With a barrack and gold, the player can train a footman.
these and other more complex tasks are publicly available a he footmen can choose to attack the enemy. When attacked,
http://dags. stanford. edu/ Freecraft/. FOI each task we designed the enemy loses “health points”, but fights back and may kill
an RMDP model to represent the system, by consulting #he footmen. We solved a model with 2 peasants, 1 barrack, 2
“domain expert”. After planning, our policies were evaket footmen, and an enemy. Every peasant was related to a “cen-
on the actual game. To better visualize our results, wdral’” peasant and every footman had a “buddy”. The scope
direct the reader to view videos of our policies at a websiteof our local value function included triples between redate
http://robotics. stanford. edu/ ~guestrin/ Research/ General i zation/ . objects. The resulting pollcy is quite interesting: thesmas
This website also contains details on our RMDP model. It isgather gold and wood to build a barrack, then gold to build a
important to note that, our policies were constructed relat footman. Rather than attacking the enemy at once, this foot-
to a very approximate model of the game, but evaluatesman waits until a second footman is built. Then, they attack
against the real game. the enemy together. The stronger enemy is able to kill both
In the tactical model, the goal is to take out an opposingootmen, but it becomes quite weak. When the next footman
enemy force with an equivalent number of units. At eachis trained, rather than waiting for a second one, it attalsks t
time step, each footman decides which enemy to attack. Theow weak enemy, and is able to kill him. Again, planning in
enemies are controlled using Freecraft's hand-builtesiat large scenarios is infeasible, but action selection caneloe p
We modelled footmen and enemies as each having 5 “heald@rmed efficiently. Thus, we can use our generalized value
points”, which can decrease as units are attacked. We usedlénction to tackle a world with 9 peasants and 3 footmen,
simple aggregator to represent the effect of multiple &ttac without replanning. The 9 peasants coordinate to gather re-
ers. To encourage coordination, each footman is linked to gources. Interestingly, rather than attacking with 2 faaim
“puddy” in a ring structure. The local value functions indéu the policy now waits for 3 to be trained before attacking. The
terms over triples of linked variables. We solved this model3 footmen kill the enemy, and only one of them dies. Thus,

we have successfully generalized from a problem with aboualthough we have successfully applied our class-value-func

108 joint state-action pairs to one with oved'3 pairs.

8 Discussion and Conclusions

In this paper, we have tackled a longstanding goal in plapnin
research, the ability to generalize plans to new envirorisen
Such generalization has two complementary uses: First we
can tackle new environments with minimal or no replanning.I

X . n
Second it allows us to generalize plans from smaller traetab
environments to significantly larger ones, which could ret b
solved directly with our planning algorithm. Our experimen
tal results support the fact that our class-based valuditumc
generalizes well to new plans and that the class and subcla
structure discovered by our learning procedure improves th
quality of the approximation. Furthermore, we succesgfull .
demonstrated our methods on a real strategic computer garr}%?
which contains many characteristics present in real-wayid P
namic resource allocation problems.

tions to new environments without replanning, there are do-
mains where such direct application would not be sufficient
to obtain a good solution. In such domains, our generalized
value functions can provide a good initial policy, which twbu

be refined using a variety of local search methods.

We have assumed that relations do not change over time.
many domains€.g, Blocksworld or Robocup), this as-
sumption is false. In recent work, Guestehal. [7] show
thatcontext-specific independencan allow for dynamically
changing coordination structures in multiagent environtse
Similar ideas may allow us to tackle dynamically changing
Telational structures.

In summary, we believe that the class-based value func-
ns methods presented here will significantly furtherape
cability of MDP models to large-scale real-world tasks.

Acknowledgements We are very grateful to Ron Parr for many

Several other papers consider the generalization problenyseful discussions. This work was supported by the DoD MURI
Several approaches can represent value functions in genemogram, administered by the foICe of Naval Research under Grant
terms, but usually require it to be hand-constructed for théV00014-00-1-0637, and by Air Force contract F30602-00-28059
particular task. Otherl2; 8; 4 have focused on reusing so- under DARPA's TASK program.
lutions from isomorphic regions of state space. By compariReferences

son, our method exploits similarities between objects\evol [4]
ing in parallel. It would be very interesting to combine thes
two types of decomposition. The work of Boutiliet al.[1]

on symbolic value iteration computes first-order value func
tions, which generalize over objects. However, it focuses o
computing exact value functions, which are unlikely to gen-[3]
eralize to a different world. Furthermore, it relies on ttseu

of theorem proving tools, which adds to the complexity of thel4]
approach. Methods in deterministic planning have focused o
generalizing from compactly described policies learnedifr
many domains to incrementally build a first-order poli&y (5l
11]. Closest in spirit to our approach is the recent work of 6l
Yoonet al.[17], which extends these approaches to stochasti[:
domains. We perform a similar procedure to discover classe[s,]
by finding structure in the value function. However, our ap-
proach finds regularities in compactly represented valoe-fu
tions rather than policies. Thus, we can tackle tasks such gg]
multiagent planning, where the action space is exponéntial
large and compact policies often do not exist.

The key assumption in our method is interchangeabilityl9]
between objects of the same class. Our mechanism for learn-
ing subclasses allows us to deal with cases where objecf%o]
in the domain can vary, but our generalizations will not be
successful in very heterogeneous environments, where mo@tl]
objects have very different influences on the overall dynam-[lz]
ics or rewards. Additionally, the efficiency of our LP solu-
tion algorithm depends on the connectivity of the undedyin 13
problem. In a domain with strong and constant interactions
between many object.g, Robocup), or when the reward [14]
function depends arbitrarily on the state of many objeeis,(
Blocksworld), the solution algorithm will probably not b e
ficient. In some cases, such as the Freecraft tactical dpmaifi5]
we can use generalization to scale up to larger problems. In
others, we could combine our LP decomposition techniqué16]
with constraint sampling2] to address this high connectiv-
ity issue. In general, however, extending these technitues [17]
highly connected problems is still an open problem. Finally

(2]

C. Boutilier, R. Reiter, and B. Price. Symbolic dynamic pro-
gramming for first-order MDPs. IRICAI-01, 2001.

D.P. de Farias and B. Van Roy. On constraint sampling for
the linear programming approach to approximate dynamic pro-
gramming.Submitted to Math. of Operations Resear2001.

T. Dean and K. Kanazawa. Probabilistic temporal reasoning.
In AAAI-88 1988.

T. G. Dietterich. Hierarchical reinforcement learning with the
MAXQ value function decomposition.Journal of Artificial
Intelligence Resear¢ii3:227-303, 2000.

R. E. Fikes, P. E. Hart, and N. J. Nilsson. Learning and execut-
ing generalized robot plangrtf. Intel,, 3(4):251-288, 1972.

C. E. Guestrin, D. Koller, and R. Parr. Multiagent planning
with factored MDPs. INIPS-14 2001.

C. E. Guestrin, S. Venkataraman, and D. Koller. Context
specific multiagent coordination and planning with factored
MDPs. InAAAI-02, 2002.

M. Hauskrecht, N. Meuleau, L. Kaelbling, T. Dean, and
C. Boutilier. Hierarchical solution of Markov decision pro-
cesses using macro-actions.UAI, 1998.

R. Khardon. Learning action strategies for planning domains.
Atrtificial Intelligence 113:125-148, 1999.

D. Koller and A. Pfeffer. Probabilistic frame-based systems.
In AAAI, 1998.

M. Martin and H. Geffner. Learning generalized policies in
planning using concept languages KR, 2000.

R. Parr. Flexible decomposition algorithms for weakly coupled
markov decision problems. WAI-98, 1998.

D. Schuurmans and R. Patrascu. Direct value-approximation
for factored MDPs. INNIPS-14 2001.

P. Schweitzer and A. Seidmann. Generalized polynomial ap-
proximations in Markovian decision processek.of Mathe-
matical Analysis and Application410:568 — 582, 1985.

R. Sutton and A. Barto.Reinforcement Learning: An Intro-
duction MIT Press, Cambridge, MA, 1998.

S. Thrun and J. O’Sullivan. Discovering structure in multiple
learning tasks: The TC algorithm. I&GML-96, 1996.

S. W. Yoon, A. Fern, and B. Givan. Inductive policy selection
for first-order MDPs. InJAI-02, 2002.

