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Abstract

Schema learning is a way to discover probabilistic, comsinst, pre-

dictive action models (schemas) from experience. It inetudheth-
ods for finding and using hidden state to make predictionsenagcu-
rate. We extend the original schema mechanism [1] to hanbigary

discrete-valued sensors, improve the original learniitgria to handle
POMDP domains, and better maintain hidden state by usingnsalpre-
dictions. These extensions show large improvement oveotiginal

schema mechanism in several rewardless POMDPs, and agkigMew

prediction error in a difficult speech modeling task. Furtiee compare
the extended schema learner to the recently introducedctixedstate
representations [2], and find their predictions of nexpstetion effects
to be approximately equal in accuracy. This work lays thexftation for
a schema-based system of integrated learning and planning.

1 Introduction

Schema learningis a data-driven, constructivist approach for discovegrapabilistic ac-
tion models in dynamic, controlled systems. Schemas, agitded by Drescher [1], are
probabilistic units of cause and effect reminiscent of HRbperators [3]. A schema pre-
dicts how specific sensor values will change as differenbastare executed from within
particular sensory contexts. The learning mechanism afswvkrs hidden state in order
to make schema predictions more accurate.

In this work we have generalized and extended Dreschergnaili mechanism to learn
more accurate predictions by using improved criteria bottdfscovery and refinement of
schemas as well as for creation and maintenance of hidden $thile Drescher’s work
included mechanisms for action selection, here we focukisixely on the problem of
learning schemas and hidden state to accurately model tHd.wio several benchmark
POMDPs, we show that our extended schema learner produp@fcsintly better action
models than the original. We also show that the extendeddegerforms well on a com-
plex, noisy speech modeling task, and that its predictimui@cy is approximately equal
to that of predictive state representations [2] on a set d¥PBs, with faster convergence.

1This use of the ternschemaderives from Piaget’s usage in the 1950s; it bears no relation to
database schemas or other uses of the term.



2 Schema Learning

Schema learning [1] is an approach to learning probaluilastiion models of an environ-
ment so that the effects of agent actions can be predictedndiy, a schema learner
is fitted with a set of sensor$ = {s1,s2,...} and a set of actiongl = {ay,as,...}
through which it can perceive and manipulate the envirorinfeensor values are discrete:
s] means thas; has valuej. As it observes the effects of its actions on the environment
the learner constructs predictive units of sensorimotaseand effect calleschemasA

schemaC - R essentially says, “If | take actiom; in situationC, | will see resultR.”
Schemas thus have three components: (1) the cofitext{cy, ca, ..., c,} , which is a set

of sensor conditions; = s§ that must hold for the schema to be applicable, (2) the action
that is taken, and (3) the result, which is a set of sensoritond R = {r1,72,...,7m}
predicted to follow the action. A schema is said t@lpglicableif its context conditions are
satisfiedactivatedif it is applicable and its action is taken, andsiocceedf it is activated

and its predicted result is obtained. Schema quality is aredsbyreliability, which is the

probability that activation culminates in succef!(C > R) = prob(Ri1|Ct, a;r))-

Note that schemas are not rules telling an agent what to thenahey are descriptions of
what will happen if the agent takes a particular action inec#fr circumstance. Also note
that schema learning has no predefined states such as thwskifita POMDP or HMM;

the set of sensor readingsthe state. Because one schema’s result can set up another
schema’s context, schemas fit naturally into a planningddgmain which they are chained
from the current situation to reach sensor-defined goals.

2.1 Discovery and Refinement

Schema learning comprises two basic phadiessoveryin which context-free action/result
schemas are found, amdfinementin which context is added to increase reliability. In
discovery, statistics track the influence of each actipron each sensor conditiosy..
Drescher’s original schema mechanism accommodated amlyysivalued sensors, but we
have generalized it to allow a heterogeneous set of sertsatrsake on arbitrary discrete
values. In the present work, we assume that the effects afnsctre observed on the
subsequent timestep, which leads to the following critefar discovering action effects:

count(ag, si(tﬂ)) > 04, (1)

wheref, is a noise-filtering threshold. If this criterion is met, tlgarner constructs a
schema) - si , where the empty sefi, means that the schema is applicable in any sit-
uation. This works in a POMDP system because it means thatiirg a; in some state
causes sensgy. to give observatior, implying that such a transition exists in the underly-
ing (but unknown) system model. The presumption is that welater learn what sensory
context makes this transition reliable. Drescher’s oagisiscovery criterion generalizes
in the non-binary case to:

prob(si(t+1)|at)

; — > 90(17 (2)
prob(sfn(tﬂ) @)

whered,; > 1 anda; meansas was not taken at time Experiments in worlds of known
structure show that this criterion misses many true actifates.

When a schema is first discovered, it has no context, so i@biky may be low if the
action only has its effect in particular situations. Scheitheerefore begin to look for con-



| Criterion || Extended Schema Learner | Original Schema Learner
. ; prob(s? | lar)
Discovery count(at, s} ;1)) > 0a Prob(oL 1y > Bod
Binary sensors only
iy i Jy
Refinement Rel(C'U {s,;} — R) > 9 Rel(C'U {s%} — R) <9
Rel(C — R) Rel(C — R)
Annealed threshold Static threshold
Binary sensors only
Synthetic ltem Creation 0<Rel(C X R)< 0 0<Rel(C X R)< 0
No context refinement possible Schema is locally consistent
Synthetic Item Maintenancg Predicted by other schemas | Average duration

Table 1:Comparison of extended and original schema learners.

text conditions that increase reliability. The criteriam fidding a context conditiosf, to a
schema® %5 R is:

Rel(CU{sl} %5 R)

= > 0, (3
Rel(C %5 R)

wheref. > 1. In practice we have found it necessary to anfgab avoid adding spurious
context. Once the criterion is met, a child scheffa”> R is formed, wher&’ = CUs.

2.2 Synthetic Items

In addition to basic discovery and refinement of schemass¢hema mechanism also dis-
covers hidden state. Consider the case where no contexitiomsdare found to make a
schema reliable. There must be unperceived environmexdtdrs on which the schema’s
reliability depends (see [4]). The schema learner theeefveates a new binary-valued
virtual sensor, called aynthetic itemto represent the presence of conditions in the envi-
ronment that allow the schema to succeed. This addressesatieealiasing problem by
splitting the state space into two parts, one where the satmroceeds, and one where
it does not. Synthetic items are saidr&ify the host schemawhose success conditions
they represent; they have valug the host schema would succeed if activated, and value
otherwise. Upon creation, a synthetic item begins to actrasmaal sensor, with one excep-
tion: the agent has no way of directly perceiving its valugedfion and state maintenance
criteria thus emerge as the main problems associated withetjc items.

Drescher originally posited two conditions for the creatid a synthetic item: (1) a schema
must be unreliable, and (2) the schema must be locally demsjsneaning that if it suc-
ceeds once, it has a high probability of succeeding againtivated soon after the first
success. The second of these conditions formalizes thenatisn that a well-behaved
environment has persistence and does not tend to radidalyge from moment to mo-
ment. This was motivated by the desire to capture Piagetianservation phenomena.”
While well-motivated, we have found that the second condit®simply too restrictive.
Our criterion for creating synthetic itemsls< Rel(C - R) < 6, subject to the con-
straint that the statistics governing possible additimuaitext conditions have converged.
When this criterion is met, a synthetic item is created andaateforth treated as a normal
sensor, able to be incorporated into the contexts and sasutither schemas.

A newly created synthetic item is grounded: it representateser conditions in the world
allow the host schema to succeed when activated. Thus, upigatéon of the host schema,
we retroactivelyknow the state of the synthetic item at the time of activaiibnf the
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Figure 1: Benchmark problems. (left) Theflip system. All transitions are deterministic. (right)

The float/reset system. Dashed lines represdlioat transitions that happen with probability 0.5,
while solid lines represent deterministiset transitions.

schema succeedeliptherwise). Because the synthetic item is treated as asenscan
discover which previous actions led to each synthetic iteates and the synthetic item
can come to be included as a result condition in other schei@ase we have reliable
schemas that predict the state of a synthetic item, we caim bednow its state non-
retroactively, without having to activate the host scherbe synthetic item’s state can
potentially be known just as well as that of the regular ses)sand its addition expands
the state representation in just such a way as to make sepsictions more reliable.
This use of schemas to predict synthetic item state is inrastito [1], which relied on the
average duration of synthetic item states in order to ptedem. Table 1 compares our
extended schema learning criteria with Drescher’s origiriteria.

3 Empirical Evaluation

In order to test the advantages of the extended discovdigeneent, and synthetic item
criteria, we compared four versions of schema learning. firsetwo were basic learners
that made no use of synthetic items, but discovered and dficteemas using our extended
criteria in one case, and the direct generalizations of éhess original criteria in the other.
The second pair added the extended and original syntheticritechanisms, respectively,
to the first pair.

Our first experimental domains are based on those used inTlay have a mixture of
transient and persistent hidden state and, though smalhau-trivial?> The flip system

is shown on the left in Figure 1; it features deterministensitions, hidden state, and
a null action that confounds simplistic history approacteebandling hidden state. The
float/reset system is illustrated on the right side of Figure 1; it featuboth deterministic
and stochastic transitions, as well as a more complicatitehistate structure. Finally, we
use a modifiefloat/reset system in which the¢ action from the two right-most states leads
deterministically to their left neighbor; this reveals m@bout the hidden state structure.

To test predictive power, each schema learner, upon takirgion, uses the most reliable
of all activated schemas to predict what the next value ofi sg@nsor will be. If there is

no activation of a reliable schema to predict the value of iqudar sensor, its value is

predicted to stay constant. Error is measured as the freofimcorrect predictions.

In these experiments, actions were chosen uniformly atmandnd learning was allowed

to continue throughot. No learning parameters are changed over time; schemas stop
being created when discovery and refinement criteria caagerierate them. Figure 2
shows the performance in each domain, while Table 2 sumesatiie average error.

2E.qg. [5] showed thdftip is non-trivial because it cannot be modeled exactly by k-Markov fisode
and its EM-trained POMDP representations require far more than the mimimmber of states.

Note that because a prediction is made before each observation, #reailm does not con-
tribute to the learning upon which its predicted value is based.
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Figure 2: Prediction error in several domains. The z-axis represents timesteps and thaxis
represents error. Each point represents average error ovami@éteps. In the speech modeling
graph, learning is stopped after approximately 4300 timesteps (showvtinebyertical line), after
which no schemas are added, though reliabilities continue to be updated.

| Learner || flip | float/reset] modified f/r |
Extended|| 0.020 | 0.136 0.00716
Extended baselingl 0.331 | 0.136 0.128
Original || 0.426 | 0.140 0.299
Original baseline|| 0.399 | 0.139 0.315

Table 2:Average error. Calculated over 10 independent runs of 10,000 timesteps each.

3.1 Speech Modeling

The Japanese vowel dataset [6] contains time-series tiagardf nine Japanese speakers
uttering theaevowel combination 54-118 times. Each data point consist2afontinuous-
valued cepstral coefficients, which we transform into 12sesnwith five discrete values
each. The data is noisy and the dynamics are non-statioeamebn speakers. Each utter-
ance is divided in half, with the first half treated as the@ttf speaking and the latter
half ase. In order to more quickly adapt to discontinuity resultingrh changes in speaker,
reliability was calculated using an exponential weightifighore recent observations; each
relevant probabilityy was updated according to:

1 if event occurred at time
pre1=apt +(1—a) { 0 otherwise : )

The parametet is set equal to the current prediction accuracy so that dseckaccuracy
causes faster adaptation. Several modifications were seayder tractability: (1) schemas
whose reliability fell below a threshold of their parentsliability were removed, (2) con-



text sizes were, on separate experimental runs, restriocteglo and three items, and (3)
the synthetic item mechanisms were deactivated. Figurs@ayis results for this learner
compared to a baseline weather prediétor.

3.2 Analysis

In each benchmark problem, the learners drop to minimunr efter no more than 1000
timesteps. Large divergence in the curves corresponds wéation of synthetic items and
the discovery of schemas that predict synthetic item stateall divergence corresponds
to differences in discovery and refinement criteriaflimand modifiedloat/reset, the ex-
tended schema learner reaches zero error, having a compiet of the hidden state, and
outperforms all other learners, while the extended bagsisiae outperforms both original
learners. Irfloat/reset, all learners perform approximately equally, reflectingttfact that,
given the hidden stochasticity of this system, the bestreelfer action- is one that, with-
out reference to synthetic items, gives a prediction.o8urprisingly, the original learner
never significantly outperformed its baseline, and evefopmed worse than the baseline
in flip. This is accounted for by the duration-based maintenanesgrahetic items, which
causes the original learner to maintain transient syrtliein state longer than it should.
Prediction-based synthetic item maintenance overconie$riitation.

The speech modeling results show that schema learning daicanhigh-quality action
models in a complex, noisy domain. With a maximum of thregedrconditions, it aver-
aged only 1.2% error while learning, and 1.5% after learsiogped, a large improvement
over the 30.3% error of the baseline weather predictor. Nuwieallowing three instead
of two context conditions dropped the error from 4.6% to 129d from 9.0% to 1.5% in
the training and testing phases, respectively, demoimgjrtite importance of incremental
specialization of schemas through context refinement.

All together, these results show that our extended schearade produces better action
models than the original, and can handle more complex dam8&ynthetic items are seen
to effectively model hidden state, and prediction-basehteaance of synthetic item state
is shown to be more accurate than duration-based mainteriarROMDPs. Discovery
of schemas is improved by our criterion, missing fewer legite schemas, and therefore
producing more accurate predictions. Refinement usingrtheaed generalization of the
original criterion performs correctly with a lower falsegikive rate.

4 Comparison to Predictive State Representations

Predictive state representations (PSRs; [2]) are relatedhiema learning both because of
their predictive nature and because of the way they handtiehi state. Instead of schemas,
PSRs rely on the notion of tests. A teds a series of alternating actions and observations
ap00a101 . . .ay0,. Inthe PSR framework, the state of the environment is remtesl as
the probabilities that each of a set of core tests would yiisldbservations if the corre-
sponding actions were taken. Once learned, a PSR impladtlines states as equivalence
classes that have the same core test probabilities (thisamwes aliasing relative to imme-
diate observations). These states provide a basis foorearhent learning. [2] shows that
linear PSRs are at least as compact and general as POMDMs,[Bll8hows that PSRs
can learn to accurately maintain their state in several PENMEblems.

A schema is similar to a one-step PSR test, and schema ligjiabughly corresponds to
the probability of a PSR test. Schemas differ, however,anttiney only specify context and
result incrementally, incorporating incremental histeiy synthetic items, while PSR tests
incorporate the complete history and full observatiores @ll sensor readings at once) into

“A weather predictor always predicts that values will stay the same asgyesently.



| Problem|[| PSR | Schema Learnef Difference| Schema Learning Steps

flip || O 0 0 10,000
float/reset|| 0.11496 | 0.13369 0.01873 10, 000
network || 0.04693 | 0.06457 0.01764 10,000
paint || 0.20152 | 0.21051 0.00899 30,000

Table 3:Prediction error for PSRs and schema learning on several POMDP<%rror is averaged
over 10 epochs of 10,000 timesteps each.

a test probability. A multi-step test can say more about tiveenit state than a schema, but
is not as useful for regression planning because there isayatevextract the probability
that a particular one of its observations will be obtainelisTs why PSRs are more useful
as state for reinforcement learning, while schemas areiLfefexplicit planning.

We compared the predictive performance of PSRs with thatleéma learning on some
of the POMDPs from [5]. One-step PSR core tests can be usegktlicpobservations:
as an action is taken, the probability of each observatidghasmaximum probability of
all activated one-step core tests that terminate in thatrohton. We choose the most
probable observation as the PSR prediction. This allowows/aluate PSR prediction
performgnce using the same error measure (fraction ofriecopredictions) as in schema
learning:

In our experiments, the extended schema learner was fiostedl to learn until it reached
an asymptotic minimum error (no longer than 30,000 stepsarhing was then deactivated,
and the schema learner and PSR each made predictions owigsacge@andomly chosen
actions. Table 3 presents the average performance for pacbah.

The parameters for the PSR required 1-10 million timestefdsetlearned [5], while the
schema learner used no more than 30,000 steps. Also, lgaienPSR parameters re-
quired knowledge of the underlying POMDP model of each sy$8, whereas the schema
learner starts with no model and receives only sensorinigtormation.

5 Related Work

Aside from PSRs, schema learning is also similar to oldekwotearning planning oper-
ators, most notably that of Wang [7], Gil [8], and Shen [9].e$h approaches use obser-
vations to learn classical, deterministic STRIPS-likerapars in predicate logic environ-
ments. Unlike schema learning, they make strong assumttairthe environment does
not produce noisy observations. Wang and Gil further asswerceptual aliasing.

Other work in this area has attempted to handle noise, bytinrthe problem of context

refinement. Benson [10] gives his learner prior knowledgaeuailaction effects, and the
learner finds conditions to make the effects reliable witthnedolerance for noise. One
advantage of Benson’s formalism is that his operators aratidnal, rather than atomic
over a single timestep. Balac et al. [11] use regressiors tredind regions of noisy,

continuous sensor space that cause a specified action tonwheydegree of its effect.

Finally, Shen [9] and McCallum [12] have mechanisms for hiagdstate aliasing. Shen
uses differences in successful and failed predictionsentify pieces of history that reveal
hidden state. His approach, however, is completely noisgeirant. McCallum’s UTree
algorithm selectively adds pieces of history in order to mmze prediction of reward. This
has almost the expressive power of synthetic items, buhsyiotitems can be turned on

SUnfortunately, not all the POMDPs from [5] had one-step core testswerdbe probability of
every observation given every action. We restricted our comparisaihe four systems that had at
least two actions for which the probability of all next-step observationkldmidetermined.



probabilistically, so their power is slightly greater. Alsynthetic items are created to aid
general sensor prediction, which contrasts with UTreesk-&pecific focus on reward pre-
diction. Schema learning, PSRs, and the UTree algorithralbhéghly related in that they
selectively and statistically track history informatianitnprove predictive performance.

6 Discussion and Future Work

We have shown that our extended schema learner producestceaation models for a
variety of POMDP systems and for a complex speech modelsig Ehe extended schema
learner performs substantially better than the originad,@ompares favorably in predictive
power to PSRs while appearing to learn much faster. Buildnofpabilistic goal-regression
planning on top of the schemas is a logical next step; how&vaucceed with real-world
planning problems, we believe that we need to extend thailgamechanism in several
ways. For example, the schema learner must explicitly laadfions whose effects occur
over an extended duration instead of after one timestepleBnaer should also be able to
directly handle continuous-valued sensors. Finally, tln@ent mechanism has no means
of abstracting similar schemas, e.g., to reduge® 2 andz? % 23 toz? & 20!
We intend to explore mechanisms for addressing this praoblem
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