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Abstract

This paper describes a Bayesian approach to the ab-
straction of sensor dynamics using a new clustering
algorithm for time series to learn prototypical behav-
iors of a robot’s sensory inputs. Each sensor stream
reading is modeled as a Markov chain (Mc). The
abstraction process is performed by an unsupervised
clustering algorithm returning the most probable set
of clusters capturing the robot’s sensory experiences.
In order to increase efficiency, the algorithm uses an
heuristic search strategy merging the closest MCs ac-
cording to a measure of similarity based on entropy.

Introduction

We are developing methods whereby autonomous
agent — a mobile robot — can learn about its actions
and their effects in its environment. The methods in
this paper accomplish two kinds of learning from ex-
perience; first, learning Markov chain (MC) representa-
tions of the dynamics in sensor time series, and second,
clustering these time series by their dynamics to dis-
cover prototype experiences. For example, the robot
has learned clusters that correspond to passing an ob-
ject and moving toward an object. It is important
to the goals of our project that the robot’s learning
should be unsupervised, which means we do not tell our
algorithms — either explicitly or implicitly through a
training signal — which Mcs and clusters to learn. The
robot learns those that are supported by its experience.
It can use these chains and clusters to recognize its ac-
tivities when it repeats them and to predict how the
activities will unfold.

The techniques in this paper differ from other meth-
ods of finding Markov chain models and clusters
(e.g., (Rosenstein & Cohen 1998; Rosenstein et al.
1997)) in being fundamentally Bayesian. A Bayesian
approach is particularly well suited for these tasks be-
cause it frames the learning process as continuous up-
dating rather than a batch analysis of data. Further-
more, a Bayesian approach provides a principled way to
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integrate prior and current evidence; prior knowledge
representing past experience is updated, by processing
current evidence, into posterior knowledge and this in
turn will be the prior knowledge when future data are
seeing. As the robot gains more experience, it requires
proportionately more evidence to modify or discount
its prior conclusions.

While these methods are general, they have been
developed to implement learning in a Pioneer 1 mobile
robot. The Pioneer 1 is a small platform with two
drive wheels and a trailing caster, and a two degree
of freedom paddle gripper. For sensors the Pioneer 1
has shaft encoders, stall sensors, five forward pointing
and two side pointing sonars, bump sensors, a pair of
IR sensors at the front and back of its gripper, and
a simple vision system that reports the location and
size of color-coded objects. Our configuration of the
Pioneer 1 has roughly forty sensors, though the values
returned by some are derived from others.

We show how MCs can represent the dynamics of sen-
sory experiences. A MC represents a dynamic process
as a transition probability matrix. For each experience
the robot has, we construct one such matrix for each
sensor. Each row in the matrix represents a state of
the sensor, and the columns represent the probabilities
of transition from that state to each other state of the
sensor on the next time step. The result is a set of con-
ditional probability distributions, one for each state of
the sensor, that can be learnt from the past experi-
ences of the agent. After m experiences, the robot has
learned m transition matrices for each sensor. Next, a
Bayesian clustering algorithm groups experiences that
produce similar transition probability matrices. Each
group is then characterized by its average or prototyp-
ical dynamics. The learned model of dynamics enables
the agent to classify its current experience by comput-
ing the probability of an experience being in a particu-
lar cluster given sensor readings, and to predict future
experiences, conditional on current input and cluster
membership.



The rest of the paper is organized as follows. After
reviewing background material on McCs, we describe a
learning method to induce the transition probability
matrix of a MC from sensor readings, and then de-
scribe the Bayesian clustering algorithm to sequentially
merge streams that induce similar MCs.

Markov Chains

The dynamics of a sequence of sensory values can
be modeled by a Markov Chain (Mc). The sen-
sor X is regarded as a random variable taking val-
ues 1,2,...,s. The process generating the stream
r = (a:l,:cz,...,mi_l,a:i,..) is a Mc if p(X =
xe|(x1, T2, ..., Te—1)) = p(X = z¢|z—1) for any z; in z.
In words, the probability of the transition z; 1 — x4
is only a function of z; 1 or, by letting X; be the
variable representing the sensor values at time ¢, X,
is conditionally independent of Xy, X, ..., X;_2 given
X;_1. The assumption of conditional independence al-
lows us to represent a MC by a vector of probabilities
po = (Po1,Po2, ---, Pos ), denoting the distribution of Xg
(the initial state of the chain) and a matrix of transi-
tion probabilities:

Xi
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where p;; = p(Xy = j|X¢—1 = i). By using the
Chapman-Kolmogorov Equations (Ross 1996), the ex-
pected value of X is pg P! which, for increasing values
of t, gives the average trajectory.

Discovering Markov Chains

During its interaction with the world, the robot records
the values of about 40 sensors every 1/10 of a second.
In an extended period of wandering around the labora-
tory, the robot will engage in several different activities
— moving toward an object, losing sight of an object,
bumping into something — and these activities will
have different sensory signatures. Because we insist
that the robot’s learning is unsupervised, we do not
tell the robot which activities it is engaging in, or even
that it has switched from one activity to another. In-
stead we define a simple event marker — simultaneous
change in three sensors — and we define an episode
as the period between event markers. Each transition
matrix is built from the data from one sensor for one
episode. Then we cluster transition matrices with sim-
ilar dynamics.

Learning A Markov Chain From Sensor
Readings

Suppose the robot has generated a stream of the sen-
sor X for one episode. The transition probabilities
(pi;) are unknown parameters to be inferred. The sen-
sor stream can be summarized into an s X s contin-
gency table with the frequencies of transitions n;; =
n(Xt_l =3 — Xt = j)

X
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These counts are used to estimate the parameters p;;.

An intuitive way to estimate p;; is to use the relative
frequencies of transitions, so that the probability of the
transition X;_; = ¢ — X; = j, that we will denote as
i — j, is just the ratio between the number of times
the transition has been observed and all observations
on the variable in state i: p;; = n;;/n;. However, this
method estimates the transition probability p;; as 0
whenever n;; = 0. Thus, when the chain is observed
over a relatively short time interval, or a transition
probability is small, it is very easy to conclude that
some transition is impossible. A Bayesian estimation
of the transition probabilities overcomes this problem,
and uses any prior knowledge about the process. The
unknown probabilities p;; are regarded as random vari-
ables themselves. Before data collection, knowledge
of the stochastic process (gathered, for instance, from
past experience) is used to elicit a prior distribution
for p(pi;). The information conveyed by the current
episode is then used to update the prior distribution
of p(ps;), providing a posterior distribution via Bayes’
theorem:

_ p@ij)p(NIpi;N)
p(N)

where p(N|p;;) is the joint probability of the data N,
and p(N) is the marginal probability. Once the poste-
rior distribution is found, the estimate of the unknown
probabilities (p;;) are computed as the expected prob-
ability value given the data.

p(pij|N)

pij = E(pij|N) = /pijp(Pij|N)dpij-

This value is called the posterior expectation. (Ramoni
& Sebastiani 1999) provide a more detailed description
of the rationale of this operation.



For estimation purposes,it is convenient to repre-
sent the chain as a Bayesian Belief Network (BBN) in
which the variable at time ¢ — 1, say X;_1, is a par-
ent of the variable X; at time ¢ (Heckerman, Geiger,
& Chickering 1995). Thus, the learning problem is
that of estimating the conditional probability table of
X¢|X¢—1 and the solution is well known (Spiegelhal-
ter & Lauritzen 1990). The basic idea is to assume a
conjugate prior distributions for (p;;) that is a product
of s independent Dirichlet distributions with hyper-
parameters (a1, ...,@;s) (ag; > —1). We use the no-
tation D(a;1, ..., ;s) to denote a Dirichlet distribution
whose density function is proportional to []; pfj"j , and
the overall prior density is []; pf‘j"j . When positive, the
hyper-parameters represent the prior knowledge via a
table P, of counts of an imaginary sample of size a,
where o = Eij o5 is the global prior precision:

X
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and the prior probability of the transition ¢ — j is the
J —th prior mean (a;; +1)/(a; +s) and o = ) . ;5.
The prior variance is (aj; + 1)(a; + 5 — ;) /[(0s +
5)%(a; + s + 1)], which is a decreasing function of «;
when the prior means are fixed. Since small vari-
ance implies a large precision about the mean, «; is
the local precision about the conditional distribution
X¢|X¢—1 = i and it shows the level of confidence about
the prior specification. This family of distributions is
rich enough to represent different levels of prior knowl-
edge. When a;; = 0 for all ¢, j, then the table of fic-
titious counts represents lack of prior knowledge, and
the prior probabilities of transitions are all uniform.

If no data are missing, the posterior distribution of
(pij) is still a product of independent Dirichlet distri-
butions, with hyper-parameters given by summing up
Pc and N and hence a;; +n;j. Thus, the Bayesian es-
timate of the transition probability p;; is the posterior
mean

N 7} +ni; +1
Pij o;+n;+8
a,-j—}—l a; + s % n;

a;+8s a;+n; +s n; a; +n; +8

and the estimate of the transition probability matrix is

N

P = (i;). The estimate p;; turns out to be a weighted

average of the prior value (a;; + 1)/(a; + s) and the
standard estimate n;;/n;, with weights that depend
on the prior precision a; and the sample size n;. As
the sample size n; becomes large relative to «;, the
estimate p;; will approach n;; /n; and the effect of the
prior input is overcome by data. However, when «;
is large relative to n; the effect of the prior input is
dominating. Note also that the posterior variance of
Dij is (Ozij + ng; + D(a; +n; + s — Qij — TL”)/[(Ozz +
n; + 8)%(a; + n; + s + 1)] that is a decreasing function
of the posterior precision a; + n;. Hence, the quantity
a; + n; can be taken as a measure of the confidence in
the estimates: the larger the sample size, the stronger
the confidence in the estimate.

The result shows another interpretation of the
hyper-parameters. The quantity a;; + 1 gives an ad-
justment to the probability that would be computed as
observed relative frequency. In particular, one effect is
that the estimate of a transition probability will not
be zero if, a priori, the transition is not believed to be
impossible.

Ezxample. The table below reports the frequencies of
transition observed in a stream of 296 readings for the
sensor vis—-a-x, which represents the horizontal loca-
tion of an object in the visual field. The sensor re-
turns continuous values in the range -140, 140. We
discretized these values into 5 equally spaced bins la-
beled 1 to 5.

1 2 3 4 5
110 0 O 0 0
210 0 O 0 0
310 0 2288 2 O
410 0 1 50 2
5(0 0 O 1 11

With a prior global precision o = 0 (corresponding to
uniform prior probabilities), the learned transition ma-
trix is:

1 2 3 4 5
0.20 020 0.20 0.20 0.20
0.20 0.20 0.20 0.20 0.20
0.00 0.00 0.99 0.01 0.00
0.00 0.00 0.02 093 0.05
0.02 0.02 0.02 0.09 0.86

P=

U W N =

This matrix represents (to those of us familiar with
the robot and its activities) an episode in which an
object was in the visual field but not near the robot
(the values 3, 4 and 5 represent the range -28,140.)
The high confidence on the distributions of transitions
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Figure 1: Markov Chain induced from data. Dotted
lines represent rare transitions and dashed lines un-
known transitions.

from state 3 and 4 (respectively 230 and 53 derived
from the sample sizes n3 and n4) essentially rules out
the possibility that either states 1 or 2 can be reached
from 3 and 4. However, the small number of transitions
observed from state 5 (ns = 12) does not rule out the
possibility of transitions from 5 to either 1, 2 or 3 and
the lack of information about transitions from states
1 and 2 results in these transitions getting uniform
probabilities with a large uncertainty.

A summary of the induced Mc is in Figure 1 in which
dotted paths represent rare transitions and the dashed
paths from states 1 and 2 represent unknown transi-
tions.

Clustering

The second step of the learning process is to cluster
MCs based on their dynamics. The available data is
a set S = {S;} of m episodes (not necessarily of the
same length) for each sensor sensor X. As we saw in
the previous section, the data from one sensor and one
episode can produce a MC. The challenge is to identify
¢ < m clusters for each sensor, or said differently, to
group the m McCs for each sensor into ¢ clusters that
have similar dynamics and represent ¢ different activi-
ties.

Suppose, initially, to know that the robot was en-
gaged in only c¢ different activities, some of which were
repeated, and suppose we can identify those activities

Xt X
e —0

Figure 2: Clusters of several Markov Chains. The cat-
egorical variable C' represents the cluster membership.

by attaching, to each episode, the value of a dummy
variable C' — taking ¢ values — that represents the
activity. This is equivalent to assuming that the pro-
cess generating the data, i.e. the m sequences, is a
directed graphical model M., as that shown in Figure
2, in which the variable C' denotes the cluster mem-
bership and specifies a transition probability matrix
for each activity.

The model M, is specified by the distribution of C,
and the conditional probability tables of X¢|X;_1,C =
k, one for each value of C. For example, if C' has only
two categories, and hence there are two clusters corre-
sponding to two activities, the conditional probability
table of X;|X; 1,C =k is

Xy
C Xt—l 1 2 e S
1 1 P11 Pri2 -+ Plis
2 D121 P122 -+ Pi2s
S DPis1 P1s2 - DPiss
2 1 P211 P12 -+ P2is
2 D221 P22 -+ P2ss
S P2s1 P2s2 to P2ss

The top-half matrix P; = (p1;;) contains the tran-
sition probabilities p(X; = j|X¢1 = i,C = 1)
for the MC in cluster 1, while the bottom-half ma-
trix P, = (py;;) contains the transition probabilities
p(Xy = j|X¢—1 = i,C = 2) for the MC in cluster 2.
The variable C' is defined by its probability distribu-
tion which, in this example, is specified by p(C = 1)
and p(C = 2) = 1—p(C = 1). As the number of
categories of C' increases, there will be an increasing
number of Mcs, identified by the conditional probabil-



ity tables Py = (pki;) containing the transitions proba-
bilities p(X; = j|X¢—1 = i,C = k), and the probability
distribution of C will be specified by pr = p(C = k)
(k =1,...,¢). The probabilities (pg;j,pr) are the un-
known parameters to be induced from data. We can
then collect the frequencies of transitions ¢ — j for
each cluster k, say ny;;, into the ¢ x s x s contingency
table shown in Table 1 and use this data to estimate
the transition probability matrix, for each cluster, as
we did in the previous section.

However, in the original data set, the variable C' is
not observed because we do not tell the algorithm the
clusters to learn. The goal is to let the robot discover
the number of different activities it was engaged with
— hence the number of categories of C — and to map
each episode to one of these activities. Technically, this
is equivalent to discovering the variable C' and hence
the model M, that originated the data. The novelty
of our approach is to regard this as a model selection
problem in a Bayesian framework. The key idea is
to find the model that makes the observed data most
likely and it works as follows.

The number of states of the variable C' is unknown,
but the fact that there are initially m episodes imposes
a bound, since C' can have a number of categories that
is any integer c between 1 and m. For any c, there is
then the problem of mapping each episode to one of
the ¢ categories to produce ¢ clusters. Each of these
combination — number of categories of C' and map-
ping — identifies a model M.. If we could explore the
set of all models, we would evaluate the posterior prob-
ability of each model and then select the one with the
largest posterior probability. Let p(M,.) be the prior
probability of M.. By Bayes’ Theorem, the posterior
probability of M., given the sample S is

_ p(Mc)p(S|Mc)

p(s)
The quantity p(S) is the marginal probability of the
data, and since p(S) is constant for every model, in
the comparison between different models it is sufficient
to consider p(M.)p(S|M.). In particular, if, a priori,
all models are equally likely, the comparison can be
based on the marginal likelihood p(S|M.), which is a
measure of how likely the data are if the model M,
is true. The quantity p(S|M.) can be computed from
the dependencies specified by the model M., and these
are the marginal distribution of C, i.e., (py), and the
conditional distribution of X;|X;_ 1 = i,C = k, i.e.,
(prij). Formally, p(S|M.) is found as solution of the
multiple integral

p(M.|S)

/p(5|pkijapk)p(pkijapk)d(pkij)d(pk)

X
C  Xi_1 1 2 s Nki
1 ni11 MN112 . Nits | N1t
2 Ni21  Mi22 - Mi2s | N2
S Nis1 N1s2 s Niss Nis
k 1 Mgl Nk12 + Nkls | Nkl
2 Tk21  Mg22 -t Ngas | Nk2
S Nks1 Nks2 ce Nkss Nks
c 1 Nell  Mel2 0 Mels | MNel
2 Ne21 MNe22 0 Ne2s | Ne2
S Nes1 Nes?2 ce Ness Nes

Table 1: Transition probability matrices for model M..

where p(S|prij, pr) is the probability of the observed
sample S, given M., and is a function of the unknown
probabilities (pri;, pr), and p(pkij, pk) is their prior dis-
tribution. Thus, we need to specify p(pgij,pr) and
P(S|Prij> Pr)-

As in the previous section, the prior distribution
for (prij) is a product of Dirichlet distributions, one
for each row of Table 1. The prior distribution can
be described in terms of an equivalent table of prior
counts ay;; that represent the prior belief about the
probability of transitions if this model were true. The
prior distribution of (py) is conveniently represented
by a Dirichlet distribution D(ay,...,a.), that is inde-
pendent of the other distributions associated with the
conditional probabilities (pi;).

Conditional on M., data are summarized into the
¢ X s X s contingency table shown in Table 1. Let
Ngi = ; ki be the number of transitions observed
from state 7 in cluster k. Let also m; be the number of
episodes that are merged into cluster k. The observed
frequencies (ng;;) and (my), are the data relevant to
learning the probabilities (pg;;) and (pg) respectively,
and together with the prior hyper-parameters are all
is needed to compute p(S|M.), which is given by two
components

p(S|M.) = p(S|C)p(S|X¢, Xi-1,C)

and



p(SIC) = F(g(%o—é)m) HZ:l F(Of{ﬁ(;_k;nk)

T'(ag; + sm
p(S| X, X4—1,C) = H;?:l F(ak(z' _ﬁznki o ;cznk)
% Hs I‘(akij + Ngij + mk)

=t T(owij + ma)

where T'(-) denotes the Gamma function. This result
can be derived by applying a standard technique as
shown, for instance, in (Cooper & Herskovitz 1992).
Note that, once a most probable model is found, the
transition probability matrix in cluster & — obtained
by merging my episodes — can be estimated with
the same approach described in the previous section.
Hence,

Pris = Qkij + Nksj + Mg
ki — -
J Qi + Ngi + SMy

We also have the posterior distribution of the variable
C that is Dirichlet, with updated parameters oy, +my.
These quantities can be in the robot’s reasoning, as
we will show in the next section. We conclude this
section by suggesting a possible choice of the hyper-
parameters. Since it seems infeasible to ask for prior
hyper-parameters for all the models considered during
the search process, we can use uniform prior distribu-
tions for all the transition probability matrices consid-
ered at the beginning of the search process. The initial
m X s X s hyper-parameters are set equal to a/(ms?)
and, when two MCs are similar and the correspond-
ing observed frequencies of transitions are merged to-
gether, their hyper-parameters are summed up. Thus,
the hyper-parameters of a cluster corresponding to the
merging of my, initial MCs will be mya/(ms?). In this
way, the specification of the prior distribution requires
only the elicitation of the prior global precision a whose
magnitude measures the degree of confidence in the
prior model. Similarly, the hyper-parameters associ-
ated with the prior distribution of p; can be chosen
uniformly, by setting aj = &'/m initially and, when
two episodes are merged, the corresponding hyper-
parameters are summed up.

A Heuristic Search

Clearly, as m increases, the exhaustive search in the
set of all possible models becomes intractable and a
heuristic search strategy is required. The solution we
propose is to use a measure of similarity between es-
timated transition probability matrices to guide the
search process. The algorithm performs a bottom-up
search by merging the closest MCs and evaluating if the
resulting model is more probable of the model where
these MCs are separated. When this is the case, the

procedure replaces the two MCs with the cluster re-
sulting by their merging and tries to cluster two other
MCs. Otherwise, as a safety measure, the algorithm
tries to merge the second best, the third best, and so
on, until the set of pairs is empty.

For each sensor X, the algorithm applies the follow-
ing procedure:

Input: A set S of sensor readings sequences.
Output: A set of transition matrices.

Initialization: Initialize as follows:

MATRIX ESTIMATION: For each sequence S; € S,
estimate the transition probability matrix P; as
described above and define the set T, = {P;} of
all transition probability matrices.

LIKELIHOOD ESTIMATION: Compute the marginal
likelihood p(S|M.), where M, represents the
model in which each episode is generated by a dif-
ferent Mc, and set B = p(S|M.). Note that, in
this initial step, ¢ = m = |S]|

DISTANCE: Create the set D of the pairwise dis-
tances between each transition probability matrix
in T, according to some measure.

SORT: Sort the set D in descending order of dis-
tance.

Iteration: Iterate until B does not increase any
longer, then return 7.:

CLUSTERING: Create the cluster C by merging the
transition frequencies of the two closest transition
probability matrices P, and 15]-. Estimate the re-
sulting transition probability matrix Py,. Create
the set T, by replacing P; and 13J by P;. Create
the set D' by inserting each distance between B,
and each other PZ- in T, in the ordered set D and
by removing the distances from P; and P;.

LIKELIHOOD ESTIMATION: Compute the marginal
likelihood p(S|M.), where M, represents the
model in which the episodes S; and S; are sup-
posed to be generated by Pj.

CLOSURE: If p(S|M.) > B, set B = p(S|M.), re-
place T, by T!, D by D' and iterate. Otherwise,
remove the first element of D and call the iteration
on T.,.

The distance measure guiding the process can be any
distance between probability distributions. Let P, and
P, be matrices of transition probabilities of two MCs.
Since they are both a collection of s probability distri-
butions, and rows with the same index are probability
distributions conditional on the same event, a measure



of similarity can be an average of the Kulback-Liebler
distance (KL- distance) (or the cross entropy) between
corresponding rows. Let pi;; and py;; be the prob-
abilities of the transition ¢ — j in two MCs labeled
with transition probability matrix P; and P,. The KL-
distance of these two probability distributions is

S
DPiij
Dy (p1isp2i) = E p1ijlog —L.
j=1 D2ij

The average distance between P; and P, is then
D(P1,P,) = 3 ;Du(pii,p2i)/s-  We have that
D(P1,P,) >0and D(P,,R,) =0iff P, = P,.

Prototypical Dynamics

In this section we report some results of applying the
MC and cluster learning algorithms. In an experimen-
tal trial lasting about 30 minutes, the robot’s activities
were divided into 42 episodes by the criterion men-
tioned earlier: An episode ends when three or more
sensors’ values change simultaneously. In all, the data
include 11,118 values for each sensor.

Our prior hyper-parameters are computed by dis-
tributing the global prior precision uniformly so that
the only external input is the specification of the global
prior precision « associated with the transition proba-
bility matrices, and o/ associated with the variable C.
A global prior precision @ = 1050(1/210 — 1) ensures
that, with 42 initial episodes, each transition probabil-
ity matrix is based on prior counts ag;; = 1/210 — 1
and the initial adjustment in the 42 transition prob-
ability tables is 1/210. This choice of a implies that,
in the event of merging the 42 episodes into only one
cluster, the adjustment to the estimates of the condi-
tional probabilities is 1/5 corresponding to prior hyper-
parameters o;; = 1/5— 1 so that each conditional dis-
tribution would count on an initial local precision equal
to -4. The global prior precision chosen for o' is 0, so
that ap = 0 for all ¥ and this determines an initial
adjustment of 1 to the computation of the posterior
distribution of C' when the 42 episodes are assumed to
be generated from different MCs.

The global prior precisions a and o' seem to have
an effect on the number of clusters induced from the
episodes. Increasing a results in increasing the number
of clusters, while with small values of a the tendency
is to merge all the episodes into one cluster. With
o =1050(1/210 — 1), the algorithm produces two clus-
ters of dynamics for the sensor related to vis-a-x, the
horizontal location of an object in the visual field. A
summary is given in Figures 3 and 4, where we continue
to represent rare transitions with dotted paths, and
dashed paths are unknown transitions derived from not
observing relevant cases in the streams.

0.959
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Figure 3: Markov Chain represented by the first clus-
ter.

The first cluster represents the sensor dynamics
when an object is not close to the robot. The tran-
sitions are limited to states 3, 4 and 5 that correspond
to the range -28, 140. The initial state 1 can be reached
from state 5, and this represents the fact that the ob-
ject appears and disappears from the visual field. How-
ever, since the estimate of the probability of transitions
5 — 1 and 1 — 5 are derived from only two cases ob-
served in all the episodes merged into cluster 1, the
confidence in these estimate is very low. The second
cluster, on the other hand, represents the sensor dy-
namics for an object not far from the robot, since tran-
sitions are essentially limited among the first 4 states.
The prior specification does not rule out the possibil-
ity that either state 1 or 5 be reached from state 4.
However, in the 12 episodes merged to create cluster
2, the transitions 4 — 5 and 4 — 1 were never ob-
served, while state 4 was reached only once from state
3. A similar number of clusters was found for the other
sensors taking 5 values. Sensors taking binary values
produced a larger number of clusters.

This analysis can be extended to provide the robot
with tools for recognizing the cluster it is in, given sen-
sor data. Suppose the robot sensor related to vis-a-x
records the new transition 1 — 2. It can infer clus-
ter membership by applying Bayes theorem. The first
cluster is obtained by merging 30 episodes. Since the
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Figure 4: Markov Chain represented by the second
cluster.

global precision adopted is o' = 0, the posterior distri-
bution of C' turns out to be D(30,12), from which we
estimate that, conditional on the data, the probability
that C = 1 — i.e. that cluster membership is 1 and
hence the object is not near the robot — is 0.7. Hence,
the probability that C' = 2 — i.e. that cluster mem-
bership is 2 and hence the object is not far from the
robot — is 0.3. The probability of observing the tran-
sition 1 — 2 when C = 1 is 0.05, and becomes 0.013
when C' = 2. A simple application of Bayes Theorem
returns p(C = 1]0.2 — 0.4) = 0.90 so that the robot is
able to detect that, conditional on this new observed
transition, it is more likely that it is in cluster 1.

Conclusions

This paper described a new approach to capture the
dynamics of sensory inputs as a Bayesian unsupervised
classification problem. The method uses MCs to cap-
ture the dynamic processes resulting from the interac-
tion between the robot and its environment and then
classifies these processes in prototypical experiences.
In the examples of this paper, we limited our attention
to first order MCs, in which each state in time is affected
only by its immediate temporal predecessor. The rep-
resentations of the sensory inputs obtained with this
simple temporal model were enough to produce inter-
esting results in the autonomous modeling process of
the robot. However, it is worth noting that the method
presented here is not limited to this order of McCs, but

can be used to model and classify more complex tempo-
ral processes, involving dependencies at different time
spans.
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