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ABSTRACT

We present an algorithm for the separation of multiple speak-
ers from mixed single-channel recordings by latent variable
decomposition of the speech spectrogram. We model each
magnitude spectral vector in the short-time Fourier transform
of a speech signal as the outcome of a discrete random process
that generates frequency bin indices. The distribution of the
process is modelled as a mixture of multinomial distributions,
such that the mixture weights of the component multinomials
vary from analysis window to analysis window. The compo-
nent multinomials are assumed to be speaker specific and are
learnt from training signals for each speaker. We model the
prior distribution of the mixture weights for each speaker as
a dirichlet distribution. The distributions representing mag-
nitude spectral vectors for the mixed signal are decomposed
into mixtures of the multinomials for all component speakers.
The frequency distribution i.e the spectrum for each speaker
is reconstructed from this decomposition.

1. INTRODUCTION

The problem of separating speakers from mixed monaural
recording has historically been approached from the angle of
frequency selection. To separate the signal for any speaker,
the time-frequency components of the mixed signals that are
dominated by the speaker are reconstructed from the resulting
incomplete time-frequency representation. The actual selec-
tion of time-frequency components for any speaker may be
based on perceptual principles (e.g. [1]) or on statistical mod-
els (e.g. [2]) and may be either binary or probabilistic (e.g.
[3]).

In this paper, we follow an alternate approach that at-
tempts to construct entire spectra for each of the speakers,
rather than partial spectral descriptions. Typically, in this ap-
proach, characteristic spectro-temporal structures, or “bases”,
are learnt for the individual speakers from training data. Mixed
signals are decomposed into linear combinations of these bases.
Signals for individual speakers are separated by recombining
their bases with appropriate weights. Jang et al [4] derive
the bases for speakers through independent component analy-
sis of their signals. Smaragdis [5] derives them through non-
negative matrix factorization of their magnitude spectra. Oth-

ers have derived bases through vector quantization, Gaussian
mixture models, etc.

The algorithm presented in this paper identifies typical
spectral structures for speakers through latent-variable decom-
position of their magnitude spectra. It is based on a statistical
model used by [6] that assumes that spectral vectors of speech
are the outcomes of a discrete random process that generates
frequency bin indices. By this model, each analysis window
(frame) of the speech signal represents several draws from
this process. The magnitude spectrum for the frame repre-
sents a scaled histogram of the draws. The distribution of the
random process itself is modelled as a mixture multinomial
distribution. The mixture weights of the component multi-
nomials are modelled to have a prior dirichlet distribution.
The component multinomials are assumed to be fixed across
frames for any speaker. The component multinomials and the
prior dirichlet distributions for each speaker are learned from
unmixed signals using iterative procedures.

The spectrum of a mixed signal is modelled as the his-
togram of repeated draws from a two-level discrete random
process. Within each draw, the random process first draws
a speaker from the mixture, then a specific multinomial dis-
tribution for the speaker, and finally a frequency index from
the multinomial. The component multinomial distributions
and the dirichlet distribution parameters for each speaker are
known a priori, having been learnt from training data. The
technique is therefore a supervised one, since the actual iden-
tities of the speakers in the mixed signal as well as a priori
knowledge of the component multinomial distributions is re-
quired. In order to separate the spectrum for each speaker,
maximum likelihood estimates of the mixture weights of all
component multinomials and the a priori probabilities of the
speakers are obtained for each frame. The separated spectrum
for the speaker within the frame is finally obtained as the ex-
pected value of the number of draws of each frequency index
from the mixture multinomial distribution for the speaker.

The rest of the paper is organized as follows: In sec-
tion 2, we briefly describe the latent dirichlet variable model
for magnitude spectra. In section 3, we describe the algo-
rithms for learning multinomial component distributions for
speakers and for separation of mixed signals. In section 4, we
present some experimental results. Finally in section 5, we
discuss the results and possible extensions of this work.



2. THE LATENT DIRICHLET VARIABLE MODEL

At the outset it is assumed that all speech signals are con-
verted to sequences of magnitude spectral vectors (simply re-
ferred to as spectral vectors henceforth) through a short-time
Fourier tranform. the term “frequency” in the subsequent dis-
cussion actually refers to the frequencies represented in these
spectral vectors.

The latent dirichlet variable model is a generalization of
the latent variable model used by Raj et al [6]. It is a gen-
erative probabilistic model which is an adaptation of latent
dirichlet allocation [7].

The model assumes that each spectral vector of a speech
signal is the result of several draws from a discrete random
process that generates frequency bin indices. The generative
process for each draw can be described as follows:

• Let θ be a K-dimensional dirichlet random variable that
takes values in the (K − 1) simplex (a k-vector θ lies
in the (k − 1) simplex if θi ≥ 0,

∑k

i=1
θi = 1) and has

the following probability density

p(θ|α) =
Γ(

∑K

i=1
αi)∏K

i=1
Γ(αi)

θα1−1

i . . . θαK−1

K (1)

Generate an observation of θ.

• Let z be a variable that takes values {1, 2, . . .K}. Gen-
erate a value of z from the probability distribution de-
fined by the vector θ, i.e.

p(z = k) = θk (2)

• Let β be a K×F matrix describing frequency probabil-
ities, where F is the number of discrete frequencies in
the FFT. The ij-th element of the matrix βij is the prob-
ability of drawing frequency j when the hidden variable
z takes the value i, i.e.

βij = p(f = j|z = i) (3)

Generate a value of the frequency using the multino-
mial distribution given by the k-th row of β, where k is
the value of z generated in the previous step.

Thus, the overall mixture multinomial distribution model
for a given frame of the spectrum can be written as

p(f) =

K∑

k=1

θs
kβs

kf (4)

where θs has a prior dirichlet distribution with parameter vec-
tor αs. The superscript s indicates that the terms are specific
to the speaker.

The latent dirichlet variable model for the spectrum of a
mixed speech signal has an additional level in the hierarchy.

A fraction of the spectral content in each frequency is derived
from each speaker. Hence, an intial latent variable s first se-
lects a speaker and then a frequency is selected according the
generative model for that particular speaker. The overall dis-
tribution for the spectral vector is given by

p(f) =
∑

s

p(s)

K∑

k=1

θs
kβs

kf (5)

where p(s) is the a priori probability of the s-th speaker.

3. SINGLE CHANNEL SPEAKER SEPARATION

The algorithm comprises a learning stage where the compo-
nent multinomial distributions for speakers are learnt, and a
separation stage where the learnt parameters are used to sep-
arate speech.

3.1. Learning the parameters for speakers

In the learning stage, the mutinomial distributions βs and the
dirichlet parameter vector αs are learnt for each speaker from
a set of training recordings for the speaker. Let Of,t represent
the value of the f -th frequency band in the t-th spectral vector.
Let θk,t represent the value of θk that has been estimated for
the t-th spectral vector.

The terms of equation 4 are initialized randomly and rees-
timated through iterations of the following equations, which
are derived through the expectation maximization algorithm:

pt(z|f) =
θz,tβ

s
zf∑

z′ θz′,tβ
s
z′f

(6)

βs
zf =

∑
t pt(z|f)Of,t∑

t

∑
f ′ pt(z|f)Of ′,t

(7)

θz,t =

∑
f pt(z|f)Of,t∑

z′

∑
f pt(z′|f)Of,t

(8)

The θ values that have been estimated for all time frames are
then used to estimate α for the speaker using an iterative pro-
cedure, see [8] for details. Figure 1 shows a few examples
of typical βs

zf distributions learnt for a female and a male
speaker.

3.2. Separating speakers from mixed signals

The process of separating the spectra of speakers from a mixed
signal has two stages. The parameters pt(s) and θs

z,t for the t-
th analysis frame are estimated by iterations of the following
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Fig. 1. Typical Component Multinomial Distributions

equations, derived using EM algorithm:

pt(s, z|f) =
pt(s)θ

s
z,tβ

s
zf∑

s′ pt(s′)
∑K

k=1
θs′

k,tβ
s′

kf

(9)

pt(s) =

∑K

k=1

∑
f pt(s, k|f)Of,t

∑
s′

∑K

k=1

∑
f pt(s′, k|f)Of,t

(10)

θs
z,t =

∑
f pt(s, z|f)Of,t + αs

z − 1
∑K

k=1
(
∑

f pt(s, k|f)Of,t + αs
k − 1)

(11)

Once all terms have been estimated, the mixture multino-
mial distribution for the s-th speaker in the t-th analysis frame
is obtained as

pt(f |s) =

K∑

k=1

θs
k,tβ

s
kf (12)

According to the model, the total number of draws of any
frequency is the sum of the draws from the distributions for
the individual speakers, i.e.

Of,t =
∑

s

Of,t(s) (13)

where Of,t(s) is the number of draws of f from the s-th
speaker. The expected value of Of,t(s), given the total count
Of,t is hence given by

Ôf,t = E[Of,t(s)] =
pt(s)pt(f |s)Of,t∑

s′ pt(s′)pt(f |s′)
(14)

Ôf,t(s) is the estimated value of the f -th component of the
spectrum of the s-th speaker in the t-th frame. The set of
Ôf,t(s) values for all values of f and t are composed into a
complete sequence of spectral vectors for the speaker. The

phase of the short-term Fourier transform of the mixed signal
is combined with the reconstructed spectrum and an inverse
Fourier transform performed to obtain the time-domain signal
for the speaker.

Note: Since the spectra are assumed to be histograms in the
model, every spectral component must be an integer. To ac-
count for this, we assume that the observed spectrum is in fact
a scaled version of the histogram. The unknown scaling fac-
tor does not appear in equations 7, 8 and 10 since it is factored
equally in the numerator and the denominator. However, it is
present in equation 11 and we choose its value empirically.

4. EXPERIMENTAL EVALUATION

Mixture Mixture

Reconstructed Sample 1 Reconstructed Sample 2

Original Sample 1 Original Sample 2

Fig. 2. Example of the output of the separation algorithm

Experiments were conducted to evaluate the speaker sep-
aration performance of the proposed algorithm on synthetic
mixtures of signals from a male speaker and a female speaker.
A set of 5 utterances from the TIMIT database comprising ap-
proximately 15 seconds of speech was used as training data
for each speaker. All signals were normalized to 0 mean and
unit variance to ensure uniformity of signal level. Signals
were analyzed in 64 ms windows with 32 ms overlap between
windows. Spectral vectors were modelled by a mixture of 100
multinomial distributions. Thus, a set of 100 multinomial dis-
tributions were learnt from the training data for each speaker.

Mixed signals were obtained by digitally adding test sig-
nals for both speakers. The length of the mixed signal was set
to the shorter of the two signals. The component signals were
all normalized to 0 mean and unit variance prior to addition,
resulting in mixed signals with 0dB SNR for each speaker.
The mixed signals were separated using the method outlined
in section 3.2. We empirically chose the value of the unknown



scaling factor for equation 11 to be 10000.
Figure 2 shows an example of spectrograms of separated

signals obtained for the speakers. The spectrograms of the
original signals, the mixed signal and both separated signals
are shown. It can be seen from the figure that considerable
separation has been achieved for both speakers. Examples of
separated signals can be obtained at
http://cns.bu.edu/∼mvss/courses/speechseg/.

5. OBSERVATIONS AND CONCLUSIONS

The proposed speaker separation algorithm is observed to be
able to extract separated signals with significantly reduced
levels of the competing speaker.

The proposed algorithm, which is an adaptation of La-
tent Dirichlet Allocation (LDA, see [7]), is an extension and
generalization of the method used by Raj et al [6]. Raj et al
used the idea of probabilistic latent semantic indexing (PLSI,
see [9]) but it has been shown ([10]) that PLSI is a maximum
a posteriori estimated LDA model under a uniform dirichlet
prior.
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