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Abstract— While Reinforcement Learning (RL) is not tra-
ditionally designed for interactive supervisory input from a
human teacher, several works in both robot and software agents
have adapted it for human input by letting a human trainer
control the reward signal. In this work, we experimentally
examine the assumption underlying these works, namely that
the human-given reward is compatible with the traditional RL
reward signal. We describe an experimental platform with a
simulated RL robot and present an analysis of real-time human
teaching behavior found in a study in which untrained subjects
taught the robot to perform a new task.

We report three main observations on how people administer
feedback when teaching a robot a task through Reinforcement
Learning: (a) they use the reward channel not only for feedback,
but also for future-directed guidance; (b) they have a positive
bias to their feedback — possibly using the signal as a
motivational channel; and (c) they change their behavior as they
develop a mental model of the robotic learner. In conclusion, we
discuss future extensions to RL to accommodate these lessons.

I. I NTRODUCTION

Machine learning shall play a significant role in the devel-
opment of robotic assistants that operate in human environ-
ments (e.g., homes, schools, hospitals, offices). Considering
the difficulty of hard-coding all the information needed for
the robot to play a long term role in a dynamic world, human
users will need to be able to easily teach such robots. Various
works have addressed some of the hard problems robots
face when learning in the real-world [1], [2], [3]. However,
learning from a human teacherposes additional challenges
(and benefits) for Machine Learning systems.

Several examples of agents that learn interactively with a
human teacher are based on Reinforcement Learning (RL).
RL has certain desirable qualities, such as the possibility to
explore and learn from unsupervised experience. However,
many also question RL as a viable technique for learning
in complex real-world environments because of practical
problems, such as long training time requirements; non-
scaling state representations; sparse rewards (resulting in
slow utility propagation); and safe exploration strategies.
Many of these considerations are particularly pertinent to
robots using RL, prompting the use of human guidance.
As a result, Reinforcement Learning has been utilized for
teaching robots and game characters, incorporating real-time
human feedback by having a person supply reward and/or
punishment as an additional input to the reward function [4],
[5], [6], [7], [8].

Most of this work models the human input as indis-
tinguishable from any other feedback coming from the
environment, and implicitly assumes people will correctly
communicate feedback as expected by the algorithm. We
question these assumptions and argue that reinforcement-
based learning approaches should be reformulated to more
effectively incorporate a human teacher. To do this properly,
we must understand the human teacher’s contribution:how
does the human teach, andwhat do they try to communicate
to a robot learner? In this work we aim to understand a
human teacher’s contribution in guiding a robot’s active
exploration.

Sophie’s Kitchenis a video game framework for studying
the impact of social interaction for RL. We report results
from a user study with the game, which records a social inter-
action with a Q-Learning agent1. We present observations of
the teaching strategies that the human instructors employed
in training the game agent. To our knowledge, this paper is
the first to explicitly address and report such results, relevant
to any interactive learning algorithm.

In our experiment we find that people try to relay to
the robot information that the algorithm has no means to
interpret, suggesting specific ways in which RL algorithms
should change to accommodate real-time interaction with
human users. Our main findings are threefold:

• In addition to administering feedback, users want to
guide the agent towards an action and give anticipatory
rewards. While delayed rewards have been discussed in
the machine learning literature [9], anticipatory rewards
and guidance are not part of the RL model.

• We find that users givemore positive than negative
feedback, possibly reflecting their opinions on motiva-
tion and human learning, or feeling that their negative
feedback is ignored by the robot. This is at odds with RL
which is usually symmetrical with regard to the valence
of reward.

• We find that users read the behavior of the learner and
adjust their training strategies as their mental model
of the agent changes. Viewing the human input as a
traditional RL reward signal does not take advantage of

1Q-Learning is used as the instrument for this work because it is a
standard and widely understood formulation of RL, thus affording the
transfer of these lessons to any reinforcement-based approach.



the fact that a benevolent teacher adjusts their training
behavior to best suit the learner.

II. RELATED WORK

In addition to the related RL works mentioned above,
several works address the topic of human input for machine
learning systems. Personalization agents and adaptive user
interfaces are examples of software that learns by observing
human behavior, modeling human preferences or activities
[12]. However, our work is concerned with explicit training
where the human teaches the learner through interaction.

Various works address ‘trainable’ software and robotic
agents, exploring explicit human input: learning classification
tasks [13] and navigation tasks [14] via natural language,
robots that learn by demonstration or example [15], [16],
[17], and software agents that learn by example or training
[18], [19]. While somewhat social and natural, many of these
approaches constrain the teacher to a special interaction or
language. Also, in many, the learning problem is essentially
equivalent to programing new tasks through natural inter-
faces, leaving little exploration on the part of the machine.

Active learning [20], [21] is an approach that explicitly
acknowledges a human in the loop. In contrast to the above
works, in active learning it is the algorithm that drives
the interaction by issuing sparse queries to the human.
However, work in that field has not addressed social aspects,
or investigated how humans would want to teach learning
machines, which is the focus of this paper.

III. T HE SOPHIE’ S K ITCHEN PLATFORM

To investigate the ways in which social interaction can
impact machine learning for robots, we have implemented
a Java-based simulation platform,“Sophie’s Kitchen”. So-
phie’s Kitchen is an object-based state-action MDP space
for a single agent, Sophie, using a fixed set of actions on a
fixed set of stateful objects.

A. Sophie’s Kitchen MDP

An object-based state-action worldW = 〈L,O,Σ, T 〉 is
a finite set ofk locationsL = {l1, . . . , lk} and n objects
O = {o1, . . . , on}. Each object can be in one of an object-
specific number of mutually exclusive object states, and in
one of the locations inL. If Ωi denotes the set of states
for object oi, O∗ = 〈Ω1 × . . . × Ωn〉 is the entire object
configuration space. Similarly,L∗ is the object location space
L∗ = 〈L× . . .×L〉. W is also defined by a set of legal states
Σ ⊂ 〈L×L∗×O∗〉. A world states(la, lo1 . . . lon , ω) consists
of the agent’s location, and the location and configuration,
ω ∈ O∗, of each object. Finally,W has a transition function
T : Σ×A 7→ Σ.

In our experiments, we used a “kitchen” world (see Fig. 1),
where the agent (Sophie) learns to bake a cake. This world
has five objects:Flour , Eggs , aSpoon , aBowl (with five
states:empty , flour , eggs , both , mixed ), and aTray
(with three states:empty , batter , baked ). The world
has four locations:Shelf , Table , Oven, Agent (i.e., the
agent in the center surrounded by a shelf, table and oven).

Fig. 1. Sophie’s Kitchen. The vertical bar is the interactive human reward.

The action spaceA is fixed and is defined by four atomic
actions: Assuming the locationsL are arranged in a ring, the
agent can alwaysGO left or right to change location;
she canPICK-UP any object in her current location; she
can PUT-DOWNany object in her possession; and she can
USE any object in her possession on any object in her
current location. The agent can hold only one object at a
time. Each action implements a transition function inT that
advances the world state. For example, executingPICK-UP
<Flour> advances the state of the world such that the
Flour has locationAgent . USEing an ingredient on the
Bowl puts that ingredient in it; using theSpoon on the
both Bowl transitions its state tomixed , etc.

In the initial state, all objects and the agent are at location
Shelf . A successful completion of the task will include
putting flour and eggs in the bowl, stirring the ingredients
using the spoon, then transferring the batter into the tray,
and finally putting the tray in the oven. Some end states
are so-calleddisasterstates (for example—putting the eggs
in the oven), which result in a negative reward (r = −1),
the termination of the current trial, and a transition to state
S0. The kitchen task has on the order of 10,000 states with
between 2 and 7 actions available in each state.

The algorithm implemented for these experiments is a
standard Q-Learning algorithm (learning rateα = .3 and
discount factorγ = .75) [22]. The agent uses a greedy action
selection mechanism, choosing randomly between the set of
actions with the highest Q-values, within a boundβ.

B. Interactive Rewards Interface

A central feature ofSophie’s Kitchenis the interactive
reward interface. Using the mouse, a human trainer can—
at any point in the operation of the agent—award a scalar
reward signalr = [−1, 1]. The user receives visual feedback
enabling them to tune the reward signal to a certain value
before sending it to the agent. Choosing and sending the
reward value does not halt the progress of the agent, which
runs asynchronously to the interactive human reward. If more
than one reward happens to be given to the learner during
one cycle, the agent only sees the most recent one.

Additionally, the interface lets the user make a distinction
between rewarding the whole state of the world or the state
of a particular object (object specific rewards). An object
specific reward is administered by clicking the mouse button



down on a specific object. As visual feedback to the user, the
object is highlighted when pointed on, to indicate that any
subsequent reward will be object specific. In the experiment,
object specific rewards are used only to learn about the
human trainer’s behavior and communicative intent; the
learning algorithm treats all rewards equally, in the traditional
sense of pertaining to the whole state.

IV. EXPERIMENT

We had 18 participants play a game, in which their goal
was to get the virtual robot, Sophie, to learn how to bake a
cake on her own. Participants were asked on a scale of 1 to 7
how experienced they were with machine learning software
and systems (1=no experience, 7=very experienced). We
had an above average (mean=3.7), but reasonably diverse
(standard deviation=2.3) population with respect to machine
learning expertise.

Participants played the training game as long as they felt
necessary. At this point the experimenter tested the agent and
their game score was the degree to which Sophie finished
baking the cake by herself. Participants received between $5
and $10 based on their game score.

Participants were told they could not tell Sophie what
actions to do, nor could they do any actions directly. They
were only able to give Sophie feedback messages with the
mouse, according to the following instructions:

• Drag the mouse UP to make the box more
GREEN, a POSITIVE message. Drag DOWN for
RED/NEGATIVE.

• By lifting the mouse button, the message is sent to
Sohpie, she sees the color and size of the message.

• If you click the mouse button down on an object, this
tells Sophie your message is about that object (as in:
“Sophie, this is what I’m talking about...”). If you click
anywhere else, Sophie assumes your feedback pertains
to everything in general.

The system maintains an activity log, recording time step
and real time of each of the following: state transitions,
actions, human rewards, reward aboutness (if object specific),
disasters, and goals. In addition to this behavioral data,
participants completed a short questionnaire and an informal
interview after the game.

V. RESULTS

Of the 18 participants only one person did not succeed
teaching Sophie the task. During the first day of testing,
four participants had to interrupt their trial due to a software
error. As a result, some of the analysis below includes only
the 13 individuals that finished the complete task. However,
since participants who experienced this error still spent a
significant amount of time training the agent, their data is
included in those parts of the analysis that relate to overall
reward behavior.

A. Guidance vs. Feedback

In Reinforcement Learning, rewards always pertain to the
current state or previous action. In contrast, even though the

Fig. 2. Each player’s percentage of object rewards about the last object of
attention (OOA),show that many rarely correlated with the last OOA.

Fig. 3. 15 of 18 people gave rewards to the bowl and tray when the object
was empty on the shelf. The assumption is that this is guidance rather than
feedback.

instructions clearly stated that communication and rewards
were feedbackmessages, we found that many people as-
sumed that the object specific rewards were future directed
messages or guidance for the agent. In the interview, subjects
had one of two types of responses regarding their use of
object specific rewards: 1) Many said that they used the
object rewards to indicate the desired/undesired object of
attention or next object to use. Similarly, some said they
tried to use the object reward in the above way, but that it
“didn’t seem to work.” 2) A second group of subjects said
they did not understand what the object rewards meant for
the agent. In other words, many subjects reportedly used
or tried to use their reward feedback toguide the agent.
The following behavioral data quantifies this self-reported
guidance behavior.

If people were using the object rewards in the traditional
RL sense, these rewards should always pertain to the last
object the agent used. Figure 2 shows the percentage of
object specific rewards that were given to the last object
the agent used. The graph shows one bar per player, sorted,
indicating that nearly half of the subjects gave object rewards
that were rarely correlated to the last object. Specifically, for
8 people less than 50% of their object rewards pertained to
the last object.

To further examine whether subjects used these rewards in
a future directed way (as a guidance mechanism) we looked
at a single test case: with the agent is facing the shelf, a
positive reward given to either the empty bowl or empty tray
on the shelf couldonly be interpreted as guidance since this
state would not be part of any desired sequence of the task.
Thus, rewards to empty bowls and trays in this configuration
can serve to measure the prevalence of guidance behavior.

Figure 3 shows a graph, with one bar per subject. The Y-



Fig. 4. Ratio of rewards to actions over the first three quarters of the
training sessions shows an increasing trend.

axis indicates the percentage of bowl and tray rewards that
were given when these objects were empty on the shelf. Well
over half of the participants gave a substantial percentage
of bowl and tray rewards to the objects sitting empty on
the shelf, with very few never engaging in this behavior.
This leads to the conclusion that participants tried using the
reward channel to guide the agent’s behavior to particular
objects, giving rewards for actions the agent wasabout to do
in addition to the traditional RL rewards for the last action.

B. Positive Bias in Rewards

Another finding concerns the valence of human rewards.
We found that for many subjects, a majority of rewards given
were positive. The mean percentage of positive rewards at
69.8%. Initially, we thought that this was due to the agent
improving and exhibiting more correct behavior over time
(soliciting more positive rewards). However, examining the
data from the first quarter of training we find that well before
the agent is behaving correctly, the majority of participants
show a positive bias. Fig. 5 shows reward histograms for each
participant’s first quarter of training; the left bar indicates
the number of negative rewards and the right the number of
positive rewards. As can be clearly seen, most participants
tend towards positive rewards.

This positive bias is an interesting area for follow-up
study. One hypothesis is that people are falling into a natural
teaching interaction with the agent, treating it as a social
entity that needs motivation and encouragement. People may
feel bad giving negative rewards to the agent, or feel that it
is important to be both instrumental and motivational with
their communication channel. In interviews a number of
participants mentioned that they believed the agent would
learn better from positive feedback.

Another hypothesis is that negative rewards did not pro-
duce the expected reaction from the robot. A typical RL
agent does not have an instantaneous reaction to either
positive or negative rewards, but in the case of negative
rewards, this could be interpreted as the agent “ignoring”
the human’s feedback. In that case, the user may stop using
them when they feel the agent is not taking their input
into account. In future studies we attempt to remedy this
problem by introducing anUNDObehavior. Many actions

Fig. 5. Histograms of rewards for each individual in the first quarter of their
session. Left column is negative rewards and the right is positive rewards.

(PICK-UP , PUT-DOWN, TURN) have a natural correlate
or opposite action that can be performed in response to
negative feedback. This could add to the responsiveness and
transparency of the agent and balance the amount of positive
and negative rewards seen. We will explore both hypotheses
presented in this section in our future work.

C. Shifting Mental Models

A third set of findings relates to the subjects’ adaptation
to the learner. Informed by related work [6], we expected
people to habituate to the teaching activity and that, as a
result, feedback would decrease over the training session.
However, we found just the opposite to be true: not only did
the ratio of rewards to actions over the entire training session
have a mean of .77 and standard deviation of .18, there was
also anincreasingtrend in the rewards-to-actions ratio over
the first three quarters of training. Fig. 4 shows data for the
first three quarters for training, with each graph including
one bar per individual, indicating the ratio of rewards to
actions. By the third quarter many rewards/action ratios are
approaching or surpassing 1.

We explain this as a shift in mental model; as people
realize the impact of their feedback they adjust their reward
schedule to fit this model of the learner. This hypothesis
finds anecdotal support in the interview responses. Subjects
reported that at some point they realized that their feedback
was helping the agent learn, even if there was no immediate
response from the robot, and subsequently gave more re-
wards. Many users described the agent as a “stage” learner,
one that seems to make large improvements all at once.
This is precisely the behavior one sees with a Q-Learning
agent: fairly random exploration to update a policy, with
the results of learning not seen until the agent restarts after
a failure. Without a-priori understanding of the algorithm,
many participants were quickly able to develop the right
mental model of the agent through the interaction. As a
result, they were encouraged by the learning progress, and
subsequently gave more rewards. It is noteworthy that this



Fig. 6. Percentage of object specific rewards per subject.

Fig. 7. Each bar represents an individual and the height is the percentage
of object rewards. The difference in the first (top) and last (bottom) training
quarters shows a drop off in usage over time.

behavior is contrary to the requirements of traditional RL,
which benefits more from early rewards than from rewards
given later in the process.

A second instance of adaptation can be seen in the delivery
of object-specific rewards. Subjects varied greatly in the
usage of these object rewards (Fig. 6). Further, in examining
the difference between the first and last quarters of training,
we see that many people tried the object specific rewards
at first but stopped using them over time (Fig. 7). In the
interview, many users reported that the object rewards “did
not seem to be working.” Thus, many participants tried to
give object specific rewards in the beginning, but were able
to detect over time that an object specific reward did not
have a different effect on the learning process than a general
reward (which is true, see Sec. III-B). Once they saw that
the object rewards did not meet their expectations or did not
seem to affect the agent’s behavior they revised their mental
model of the learner and stopped using the object rewards.

VI. D ISCUSSION

In this work we have attempted to investigate how Re-
inforcement Learning can be adapted to better suit human-
robot interaction, specifically looking at how humans will
want to teach robots. In humans, teaching and learning is a
collaboration. Teachers direct a learner’s attention, structure
experiences, support learning attempts, and regulate com-
plexity. The learner contributes to the coupling by reveal-
ing their internal state to help guide the teaching process.
Teacher and learner read and respond to each other, to more
effectively guide the learner’s exploration. We believe that
this view can also inform social learning in robots, using
social cues and gestures to achieve transparency and guide
instruction [23], [11].

The findings in this study offer empirical evidence to sup-
port this concept ofpartnershipwhen humans teach artificial
agents. When untrained users are asked to interactively train
a RL agent, we see them treat the agent in a social way,
tending towards positive feedback, guiding the robot, and
adjusting their training behavior as the interaction proceeds,
reacting to the behavior of the learner. Importantly, we see
this tendency even without specifically adding any behavior
to the robot to elicit this attitude. This suggests that there is
a human propensity to treat and understand other entities as
intentional agents, and to adapt to them.

To date, RL does not accommodate for the teacher’s com-
mitment to adapt to the learner, presenting an opportunity
for an interactive learning agent to improve its own learning
environment by communicating more of its internal state to
the human teacher.

Additionally, our findings indicate that the learning agent
can take better advantage of the different kinds of messages
a human teacher is trying to communicate. In common RL, a
reward signal is stationary and is some function of the envi-
ronment. It is usually a symmetrical scalar value indicating
positive or negative feedback for being in the current state or
for a particular state-action pair. Introducing human-derived
real-time reward prompts us to reconsider these assumptions.
We find that with a single communication channel people
have various communicative intents—feedback, guidance,
and motivation. Augmenting the human reward channel will
likely be helpful to both the human teacher and the machine
learning algorithm.

Finally, timing of rewards has been a topic in the RL
community, particularly the credit assignment problem asso-
ciated with delayed rewards. As opposed to delayed rewards,
however, we saw that many human teachers administered
anticipatory or guidance rewards to the agent. While delayed
rewards have been discussed, the concept of rewarding the
action the agent is about to dois novel and will require new
tools and attention in the RL community.

VII. F UTURE WORK

Our findings suggest recommendations for designing Rein-
forcement Learning with human interaction in mind: (1) We
need to embellish the communication channel to account for
the various intentions people wish to convey to the machine,



particularly guidance intentions and motivational messages.
(2) People tune their behavior to match the needs of the
machine learner, and this process should be augmented with
more transparency of the internal state on the part of the
learner. To further understand the impact of social guidance
on a machine learning process, we are running follow-up
studies with a second version of the Sophie video game that
includes the following:

Gaze as a Transparency Behavior:The second version
of our study explores the effect of gazing between the
objects of attention for equally valuable candidate actions
during the action selection phase. This communicates a level
of uncertainty through the amount of gazing that precedes
action. Additionally, this communicates overall task certainty
as the process will speed up when the gazing between actions
is no longer necessary. We expect this transparency behavior
to improve the teacher’s mental model of the learner, creating
a more understandable interaction for the human and a
better learning environment for the machine. Specifically,
we expect more rewards to be administered when the agent
seems uncertain.

Guidance: Having found people try to communicate both
guidance and feedback in their reward message, the next
version of Sophie distinguishes between these two inputs.
Users can still send a normal feedback message using the
left mouse button (Sec. III-B), but they can also use the
right mouse button to communicate attention direction or
guidance. The learning algorithm changes such that if, during
the pre-action phase, the human teacher administers any
guidance input, the algorithm tries to select an action that
contains this object as its object of attention.

Undo: In the next version, the Sophie agent responds to
negative feedback with anUNDObehavior (natural correlate
or opposite action) when possible. This is expected to
increase the responsiveness and transparency of the agent and
could balance the amount of positive and negative rewards
seen. The algorithm changes such that in the step following
negative feedback, the action selection mechanism chooses
the action that ‘un-does’ the last action if possible.

Motivation: One hypothesis about the positive rewards
bias is that people were using the reward channel for
motivation. The next version of the Sophie game allows
explicit encouragement or discouragement of Sophie. This
allows people to distinguish specific feedback about the task
(e.g., “That was good!”) from general motivational feedback
(e.g., “Doing good Sophie!”).

VIII. C ONCLUSIONS

The introduction of a human real-time reward signal brings
about a range of new considerations for robot learning. We
have presented a simulation framework used to study the
impact of human interaction on a machine learning process.
Our experiment with theSophie’s Kitchenvideo game indi-
cates that people can and will adjust their training behavior to
best fit the behavior of the learning agent, and people show
various communicative intents in their rewarding behavior
beyond feedback in the traditional sense. This work calls

for Machine Learning systems that are specifically designed
with human feedback and social guidance in mind, for the
benefit of both human teacher and machine learner.
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