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ABSTRACT
Inspired by recent work in ethology and animal training, we
integrate representations for time and rate into a behavior-
based architecture for autonomous virtual creatures. The
resulting computational model of affect and action selection
allows creatures to discover and refine their understanding of
apparent temporal causality relationships which may or may
not involve self-action. The fundamental action selection
choice that a creature must make in order to satisfy its internal
needs is whether to explore, react or exploit. In this
architecture, that choice is informed by an understanding of
apparent temporal causality, the representation for which is
integrated into the representation for action. The ability to
accommodate changing ideas about causality allows the
creature to exist in and adapt to a dynamic world. Not only is
such a model suitable for computational systems, but its
derivation from biological models suggests that it may also be
useful for gaining a new perspective on learning in biological
systems. The implementation of a complete character built
using this architecture is able to reproduce a variety of
conditioning phenomena, as well as learn in real-time using a
training technique used with live animals.

Categories and Subject Descriptors
I.2.6 [Artificial Intelligence]: Learning – concept learning,
induction, knowledge acquisition, parameter learning.

General Terms
Algorithms, measurement, performance, design, reliability,
experimentation, human factors, theory, verification.

Keywords
Autonomous agents, apparent temporal causality, ethology,
synthetic characters, virtual creatures, planning, reactive
systems.

1. INTRODUCTION
In order to survive in a dynamic environment, many self-
regulating systems – both biological and computational –
make use of representations that model important aspects of

the world. Two such representations fundamental for living
systems are the passage of time, and the rate at which they
experience relevant stimuli.

Early models of behavioral conditioning, such as the Rescorla-
Wagner model, minimized the use of representation and speak
simply of animals forming and strengthening associations
between stimuli. While that associative model is successful at
rendering explainable certain phenomena, there is a wide range
of phenomena it is unable to model without substantial
trouble, such as the ability to learn an expected latency of
reinforcement. Recent studies by Gallistel and others have
considered the possibility that models of time and rate are
fundamental to conditioning phenomena. Gallistel and
Gibbon propose two new models – Scalar Expectancy Theory
(SET) and Rate Estimation Theory (RET) – that require an
animal to represent the length of the interval between stimuli,
and the rate of reinforcement associated with various stimuli.
Using these models, the authors are able to account for a
number of conditioning phenomena that can not be explained
using the Rescorla-Wagner model [1], and they do so in a clear
and elegant way.

Similarly, much of the early work in behavior-based artificial
intelligence minimized the importance of representation [2].
The Synthetic Characters group at the MIT Media Lab designs
cognitive architectures for autonomous and semi-autonomous
creatures that inhabit graphical worlds. By using ethological
models to inform our design, we seek to extend the work and
philosophy formulated by Blumberg [3]. We recently built a
layered brain architecture for behavior-based virtual creatures
[4].

Our next goal was to re-implement much of that system’s
learning and action-selection mechanisms in a way that paid
attention to the sort of details that Gallistel attends to in the
SET and RET models. The resulting representations and
mechanisms needed to operate in real-time with dozens of
potential stimuli. We wished to maintain, and hopefully
improve upon, the system’s ability to model a dog training
paradigm and other sorts of learning.

We have arrived at the representations and mechanisms
described here. They are not simply a recreation of SET and
RET. Instead, they represent a hybrid that integrates new
components inspired by Gallistel and Gibbon’s work into the
Synthetic Characters cognitive architecture. A creature
constructed using this new architecture can predict and plan
for future events by discovering causality relationships in the
world. The creature is motivated to learn by a desire to satisfy
its drives, and explain the salient stimuli it perceives. Its
representation of apparent temporal causality is tightly
integrated with its fundamental representation for action
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selection.

1.1 Paper Overview
In Section 2, we introduce the sources of inspiration behind
this work: the philosophy of the Synthetic Characters group,
the layered brain architecture upon which we built this system,
and the ethological model. We then describe the new cognitive
architecture in Section 3. An example produced with our
implementation illustrates the benefits that virtual creatures
obtain by learning about apparent temporal causality on the
job. In Section 4, we discuss our results from both
autonomous agents and ethology points of view.  In Section 5,
we present references to some related work from both fields.

2. Background
2.1 Philosophy: Synthetic Characters Group
The Synthetic Characters group has recently sought insight
into the nature of intelligent behavior by building characters
inspired by the capabilities of dogs. Dog training is applied
operant conditioning, and a domain in which one sees many of
the phenomena described in lab experiments, but in the
context of a whole “behaving” creature. One form of training,
known as “clicker training,” involves the use of a handheld
device called the “clicker” that makes a short, sharp clicking
noise. This noise serves as a precise event marker for the
creature. When repeatedly followed by a treat, the noise of the
clicker becomes associated with a food reinforcer. Clicker
training has been successfully used to train animals ranging
from dogs to dolphins [5].

2.2 Architecture: c4
The Synthetic Characters’ agent-based cognitive architecture
for building virtual creatures, detailed in [4], is composed of
many fairly simple components, each individually
unintelligent, but capable through their interaction of
producing complex cognitive behavior. The systems in a
creature’s brain are divided by function into three parts: a
representation of the internal and external worlds (“represent
the world”), an action selection mechanism (“decide what to
do”), and a navigation and motor system (“figure out how to
do it”).

2.3 Ethology: Time, Rate and Conditioning
Gallistel and Gibbon detail two theories that account for a
broad range of conditioning phenomena [6]. These theories
depend on an animal’s ability to learn temporal intervals
between events, as well as rates of reinforcement. What i s
exciting about these models is that by assuming the existence
of representations for time and rate, Gallistel and Gibbon are
able to easily explain a wide range of disparate conditioning
phenomena.

One main goal of behaviorism is the identification of basic
learning processes that can be described in terms of stimuli
and responses. The experimental paradigm that underlies the
study of conditioning is one in which the subject is presented
with various stimuli. The subject learns associations between
the stimuli.

In Classical (Pavlovian) conditioning, a stimulus that
previously did not elicit a response comes to elicit a response
after it is paired for one or more trials with a stimulus that
already elicits a response.In Operant (Instrumental)
conditioning the consequences of a response increase or

decrease the likelihood that the response will occur again. In
one such procedure, the subject learns that performing a
certain behavior in a context results in a reinforcer such as
food [7]. Most contemporary associative theorists no longer
assume that the association-forming processes in Classical
and Operant conditioning are fundamentally different. Rather,
they are thought to give rise to different associative structures
via a single association-forming process.

2.3.1 Scalar Expectancy Theory: “When”?
Scalar Expectancy Theory, or SET, pertains to the onset of the
conditioned response (CR) following a stimulus onset,
revealing both “when” and “for how long” the CR should
occur. According to SET, when an animal perceives a salient
stimulus, the creature starts an internal timer that records the
(subjective) interval between that stimulus and another salient
stimulus, such as a reinforcer.  Later, when the first stimulus i s
perceived again, the animal starts another timer, and decides
when to respond by using the ratio of the elapsing interval to
the remembered interval.  When the ratio exceeds a threshold,
_1, which is close to but generally less than 1, the subject
responds. The results produced by SET correlate with some
well-established facts about how subjects time the duration
between two events:

• The CR (which suggests the expectation of the second event)
is maximally likely at the reinforcement latency

• The distribution of CR onsets and offsets is scalar, and thus
the temporal distribution of CR initiations and terminations i s
time scale invariant. In other words, when one signal seems to
predict a future event, the approximate size of the window in
which a subject expects that event to occur increases with the
interval.

2.3.2 Rate Estimation Theory: “Whether”?
SET assumes that the animal has already determined whether or
not a stimulus merits a response. In the Rate Estimation
Theory model, this decision is based on an animal’s growing
certainty that a stimulus has a substantial effect on the rate of
reinforcement. Gallistel and Gibbon provide a computational
model for how animals determine the true rates of
reinforcement for each stimulus. The principle of parsimony –
essentially Occam’s razor – is used to find the simplest unique
solution to the problem of determining the rates of
reinforcement.  Mathematical details are found in the
appendices of [6].

2.4 Summary of Our Goal
The previous Synthetic Characters cognitive architecture
could be said to integrate an analysis of the past with an
ability to react to the present. With the new architecture, we
sought to include a representation of the future inspired by
SET and RET. Thus a creature could be informed by salient
stimuli perceived in the recent past, reactive to stimuli
perceived in the present, and able to plan appropriately for the
stimuli predicted to appear in future. This augmentation would
further our ability to create robust creatures that can adapt to
and learn from a dynamic environment.

3. Cognitive Architecture
By itself, a representation for apparent temporal causality
won’t improve the life of a virtual creature. We need to
consider how a creature might use its knowledge of apparent
causality to influence its action selection and help satisfy its
internal needs.



We therefore begin this section with the notion that creatures
have internal needs they seek to satisfy. These are represented
by Autonomic Variables that we combine together into a
multidimensional DriveVector (Section 3.1). We then discuss
the fundamental action selection choice: whether to explore,
exploit or react (Section 3.2). To help the action selection
mechanism make this choice, we integrate a representation o f
apparent temporal causality into the mechanism. This
representation, the “Predictor,” lets a creature reason about
causality relationships between stimuli, thereby providing an
understanding of cause and effect that can accommodate
changing ideas in a dynamic world (Section 3.3). Finally, we
show how these Predictors let us model the effects on a
creature’s emotional state, thereby facilitating learning in
other parts of the architecture (Section 3.4).

3.1 Creatures must satisfy Internal Needs
Our atomic component of internal representation is the
Autonomic Variable. Autonomic Variables each produce a
continuous scalar-valued quantity. Most Autonomic Variables
have drift points – values which they drift toward in the
absence of other input. Some of the creature’s Autonomic
Variables represent Drives such as hunger.  In addition to its
drift point, each Drive also has a set point, the value at which
the drive is considered satisfied. The strength of the drive i s
proportional to the magnitude of the difference between the set
point and its output value. Associated with each Drive is a
scalar drive multiplier that allows the creature to compare the
importance of various drives. Over the course of a creature’s
existence, these multipliers might change, so that the creature
can favor different drives at different times. This mechanism
can create periodic changes in the drives (for example, to
produce a circadian rhythm) and induce drive-based
developmental growth over a creature’s lifespan. Take the
output of all the Autonomic Variables that represent Drives,
and concatenate their scalar output values into a vector, and we
have the DriveVector – a summary of the creature’s current
drive state.
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Figure 1: Three drives, multipliers, and resulting
DriveVector.

Our creatures represent the value of something in the world –
whether an action, a fellow creature, or an object – as a “value
vector” with the same dimensions as the DriveVector. That
vector indicates how the creature believes that thing will affect
its drives. The utility of something in the world at a given
moment can be reduced to a scalar value by taking the dot
product of its value vector with the current DriveVector. The
result parallels the motivational model described by Spier in
that the utility of something reflects the creature’s perceived
drive state [18].

The creature described in Figure 2 has three drives: hunger,
pain avoidance, and curiosity.  These are concatenated into a
three-dimensional DriveVector |d1 d2 d3|.  The creature’s food
source is a shed in which there are sleeping sheep.  If he rattles
the shed, the sheep will scatter and he can feast.  However, the
shed is surrounded by an electrified fence.  Thus, in order to
rattle the shed, the creature will have to endure a painful

electric shock. The value of the “kick the shed” action (middle
of Figure) might look like [-10 20 -3] relative to his drives
[hunger, pain, curiosity], meaning that it will reduce his
hunger drive (good), increase his pain (bad), and slightly
lower his curiosity drive (because kicking stuff is intriguing).
If this creature’s current drives are [5 5 5] for [hunger pain
curiosity], then the value of kicking the shed i s
[5 5 5] · [-10 20 -3] or 35, a positive number suggesting that,
overall, the action will not be such a good thing, as it results
in a net increase in drives.  But, in the absence of other food
sources, the creature’s drives might eventually drift to [10 4
5].  Now hungrier and not in quite as much pain, the dot
product of [10 4 5] and [-10 20 -3] generates a utility of -35; in
other words, an effective strategy for satisfying the current
drives.  (We note that this example is functionally equivalent
to a more mundane experiment wherein a rat is presented with a
lever, surrounded by an electrified floor pad, which when
pressed causes food pellets to be dispensed.)
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Figure 2: The utility of an action varies with the
DriveVector.

Autonomic Variables are also used to model the creature’s
emotional state. We have worked with several models of affect
that create a multidimensional “affective space.” Each axis of
the space is represented by an Autonomic Variable. Yoon
describes the three-axis stance-valence-arousal model in [8]
that was inspired by Russell [9] (see also Ekman’s emotional
states, [10]).

3.2 Action Selection: Explore, Exploit or
React
The fundamental choice a creature must make at every moment
is whether to exploit its knowledge about the world, explore
the world to possibly discover new things, or react t o
recently-observed stimuli.

The action selection mechanism that will integrate these
explore, exploit and react operations should exhibit the
qualities suggested by Brooks in [11]. Every action performed
by the creature should appear and be relevant. The creature’s
behavior should have a high degree of persis tence  and
coherence , in that the creature should be aware of the
appropriate duration of its actions and see them through to
completion, without getting stuck in “mindless loops.” The
selection mechanism itself should be capable of learning and
adaptation.

Figure 4 illustrates how the action selection mechanism
integrates the Explore, Exploit and React operations. On every
timestep, we first check if the creature needs to perform a reflex
action ((1) in the diagram). If not, we check if the active action
is completed (2). If so, the creature selects a drive on the basis
of their relative magnitudes (3). If the curiosity drive i s



chosen, the creature performs an Explore operation. If any
other drive is chosen, the creature performs an Exploit
operation, which is guaranteed to select a new desired action.
After this, the React operation is performed on any newly-
perceived salient stimuli, potentially causing the focus of
attention and desired action to change (4). Thus a reaction can
potentially interrupt the active action.

At the end of the timestep, the mechanism has in fact made
three selections: it has chosen the desired action, the object of
attention, and the target object. The desired action is a high-
level token like “sit,” “kick” or “approach” that describes what
the creature should do. The target object is the object on which
the desired action should be performed. The object of attention
represents the creature’s focus of attention. Each of these three
selections is “winner take all,” in that they are made to the
exclusion of all other options for this timestep.

We now summarize the exploit, explore and reaction
operations.  Details and additional mathematics are found in
[12].

3.2.1 Exploit
The Exploit operation causes the creature to use its knowledge
about the world to select consummatory actions that i t
believes will help satisfy its drives, and appetitive actions
that help move it closer to performing a consummatory action.

The creature can exploit by using its direct perceptions of the
world to choose a new action state with a high utility. This i s
the typical action selection operation performed by a purely
reactive autonomous agent.

A creature with an ability to predict future events can also
exploit by using its TimeLine to react to something it predicts
is about to happen. (The TimeLine, as shown in Figure 3, is a
representation available to the entire action selection
mechanism that organizes perceived salient events in the past
and predicted events in the future.) If a painful stimulus i s
almost certainly about to appear, it should be avoided if at all
possible. Similarly, if a stimulus about to appear will facilitate
a consummatory action, the best course of action might be to
approach the stimulus in preparation for its arrival. These
represent preventative and preparatory actions.

predicted event

perceived event
perceived event

now the futurethe past

Figure 3: The TimeLine: Past, Present & Future Events.

The scalar utility values obtained for all options are used as
input for a histogram probability distribution, from which the
creature selects a single course of action in a winner-takes-all
decision. The spirit of this mechanism is to typically cause the
creature to select the very best available option, while still
occasionally selecting another option that seems very
promising but not necessarily the “best.”

3.2.2 Explore
There are sufficiently many exploration techniques that,
instead of peppering them throughout the action selection
mechanism, we formalize our notion of exploration by
encapsulating its many forms within the Explore operation.
Potential avenues for Exploration include:

• Redirecting the creature’s attention toward an interesting
object.

• Exploring that interesting object by performing actions on
it; perhaps randomly, or perhaps by selecting actions that
produced useful results for similar objects.

• Testing predicting mechanisms in which the creature has low
confidence, possibly by generalizing and discriminating the
trigger contexts that cause them to make predictions.

• Selecting an unusual (rather than obviously useful) action
state.

3.2.3 React
The react operation gives the creature a chance to interrupt its
current behavior and react to the perception of a salient
stimulus.
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Figure 4: Action Selection Mechanism.

The first thing a creature does when it perceives a salient
stimulus – for example, a loud noise – is to try to explain it,
by looking at the TimeLine for a prediction of the event. The
creature’s response (both in terms of affect and action) will be
largely determined by whether or not this event was predicted,
and which action states, good or bad, the event is able to
facilitate.

In addition to performing an action directly facilitated by the
onset of a stimulus, the creature may choose to interrupt its
current behavior in favor of one of essentially 3 suitable
responses: to approach, observe or avoid.

If the creature can’t explain the appearance of a stimulus, it i s
given an opportunity to invent an explanation, marking the
beginnings of the apparent temporal causality process we will
discuss in Section 3.3. For further discussion of “explaining
away” unexpected events using probabilistic reasoning, see
[13].



3.3 Apparent Temporal Causality
The Explore, Exploit and React operations assume that the
creature has the ability to represent apparent temporal
causality relationships. These are  cause-and-effect
relationships that a creature believes it has discovered in its
world. They are apparent, because they are how the world
appears to work to the creature, whether or not the world
actually works that way. They are temporal, because, as in SET,
cause and effect are somehow related in time. And they
represent causality , in that the creature can use them to
generalize from specific examples to arrive at general
principles about how the world works. Similar temporal logic,
as surveyed by de Kleer in [14], has been used in the past to
extend the problem solving abilities of traditional planning
systems [15]. As noted by Moray, four types of cause are
classically distinguished (with classically meaning in the
sense of going back at least to Aristotle). Here we are
discussing an attempt to learn about formal causa l i ty ,
although extending this work to consider other causality types
is an intriguing prospect [16].

3.3.1 First, represent Stimuli
A Stimulus is a signal provider in the creature’s brain that can
serve as a component of an apparent temporal causality
relationship. The stimulus can thus represent a wide range of
potential signals, from Percepts indicating external world
state, to some component of self-action, to an Autonomic
Variable representing a facet of the internal state.

Much discussion in behavioral psychology revolves around
the animal’s perception of the “onset” and “offset” of a
stimulus, suggesting that at some point, the creature
distinguishes between its presence or nonpresence. Thus every
signal provider for a stimulus must provide an activation
threshold.

3.3.2 Predictors represent causality relationships
Now that we have a means for representing stimuli, we need a
way to represent causality relationships between those stimuli.
A Predictor represents an apparent temporal causality
relationship by recording the perceived interval between two
events, where an event is defined as the onset or offset of a
stimulus. The first event is recorded as the Predictor Context.
The second event is recorded as the Predicted Event.  The
interval between the two events is recorded as the Predicted
Interval.
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Figure 5: Predictor.

In Figure 5 we see the basic interaction between a Predictor and
the TimeLine: when an event occurs that causes all of the

stimuli that comprise the Predictor Context to become
concurrently active, the Predictor begins a Trial, causing the
expectation of a future event. Just as in SET, the size of the
time window during which the event is predicted to occur i s
determined by a scalar function of the Predicted Interval. The
importance of this property is depicted in Figure 6, where two
Predictors with significantly differing Predicted Intervals
produce predictions of events that are expected to occur within
time windows of substantially different size. In that figure, the
perceived event at the present time satisfies the Predictor
Context for the two (unrelated) Predictors. Each begins a Trial,
resulting in the prediction of two future events after their
respective Predicted Intervals. The Predicted Interval for
Predictor 2 is twice the length of the Predicted Interval for
Predictor 1, and so the size of the windows in which the two
future events are predicted reflects this.

Figure 6 also illustrates the mathematics of the decision
threshold.  _1 somewhat less than 1 and _2 somewhat greater
than 1 are used to decide when the subject should respond.
When the ratio (te/ ipredictor) between the subjective duration of
the currently elapsing interval (te, which has its zero at the
time when the Trial begins) and the interval encoded in the
Predictor (ipredictor) exceeds the decision threshold (_1), the
creature begins to expect the appearance of the predicted
stimulus. When the ratio exceeds another threshold (_2), the
Predictor ceases to predict the event, and generates an
expectation violation. Thus the Predictor effectively describes
a “window” in which it predicts an event will occur. The
window’s dimensions are _1ipredictor ≤ t e ≤ _ 2ipredictor, where
ipredictor is the Predictor Interval in the Predictor that began this
Trial, _1 is a creature-global constant slightly less than 1, _2 i s
a creature-global constant slightly greater than 1, and te is the
elapsed time since the Trial began (when the Predictor Context
was met).

now the futurethe past predicted event 1

TimeLine

predicted event 2

Predicted Interval: i2=2i1

trialStarter

Predictor 2

Predictor 1

Predicted Interval: i1

trialStarter

te/ i1=? ?
te = i1 te/ i1=? ? te/ i2=? ?

te = i2 te/ i2=? ?

perceived event

Figure 6: The timing of a Predictor window.

An ongoing Trial can expire in one of three ways. If the
predicted event does occur during the time window as
expected, the Trial is declared success fu l . If, without
explanation, the predicted event fails to occur within the time
window, the Trial can be declared a failure. If the predicted
event fails to occur, but an external mechanism can provide an
explanation for why the Trial failed, the Trial is declared
explained. An example of an explained Trial is one in which
the event fails to occur during the predicted time window, but
instead appears shortly before or after that window.

The Predictor keeps track of its short- and long-term reliability
by recording the number of successful, explained and failed
Trials it has generated. We’ll next see how this allows
Predictors, through a process of reinforcement, to learn about
causality on the job.



3.3.3 Learning Causality on the Job
Although some Predictors might be built offline, thus
representing apparent temporal causality relationships the
creature knows a priori, much of this knowledge must be
learned during the creature’s lifetime.

1.  Concern yourself with interesting things.
An immediate challenge for anything but the most trivial of
systems is the tremendous size of the perceptual state-space.
Each stimulus might be considered another dimension of a
massively multidimensional space that is probably only
sparsely populated with areas of perceptual interest. Thus the
first thing we must do is concern the learning mechanism with
only the most interesting things.  To do this, we add a salience
filter between perception and action selection. Two heuristics
determine whether a stimulus passes through the barrier: it can
be interesting on the basis of its novelty (rarely perceived), or
inherent salience (e.g. a loud bang).  

2.  Explain the Unexpected (with new Predictors)
Learning is prompted by the creature’s inability to predict
changes to the stimuli it considers interesting. In terms of the
action selection mechanism described in 3.2, if the React
operation is unable to find a Predictor that explains a salient
stimulus onset, it is provided with an opportunity to generate
a new explanation.

Explanation generation is guided by salient events that are
temporally proximate to the unexpected stimulus. Recent
Perception events on the TimeLine provide a convenient
collection of all such candidates. To generate the appropriate
Predictor, we need simply identify the stimulus (or group of
stimuli) that seems the most likely explanation for the
appearance of the unexplained stimulus.
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Figure 7: Selecting a likely Predictor context.

As illustrated in Figure 7, the explanation generator chooses a
likely explanation that is both salient and temporally
proximate to the unexplained stimulus. (Recall this may be
some component of self-action, or an external perception.) It
then builds a Predictor of the unexplained stimulus with this
explanation as its Predictor Context. Although the particulars
of the function used to select an explanation are unimportant,
its probabilistic nature is crucial. The length of the Predicted
Interval recorded in a new Predictor is equal to the perceived
length of the time between the selected explanation and the
unexplained event. When we have observed additional trials,
the recorded interval is allowed to drift toward the average
interval length.

 3.  Refine Predictors by tracking their reliability
If we find that a Predictor is reliable, our confidence in its
predictive power will increase. On the other hand, if the
Predictor is unreliable, we may either declare it invalid, or
choose to refine it. One way to note changes in a Predictor’s

reliability is to detect differences between its recent and long
term reliability.

The distinction between periodicity and probability is also
important. A Predictor able to ideally predict a periodic
reliability schedule (e.g. “an event will occur on every third
trial”) also requires a periodic function detector (like [17]).
Note that a Predictor that expects an event to occur once every
four times its context is observed causes quite different
expectations than does a Predictor believed to be valid twenty-
five percent of the time on a fixed ratio schedule. The former
will generate a high-confidence expectation every fourth time
the Predictor Context is observed; the latter will generate a
low-confidence expectation every time the Context i s
observed.

A very simple metric for the long-term reliability of a Predictor
is Rpredictor=(sT+eT)/(sT+eT+fT), where sT is the successful trial
count, eT the explained Trial count, fT the failed Trial count.
The Short-term reliability can be computed similarly by taking
into account only several of the most recent Trials.

We guide the refining of a Predictor by determining the
reliability and frequency of salient stimuli that are observed at
the onset of its Trials. If a particular stimulus is both salient
and reliable (often present at the start of successful trials, and
often not present during failures), then that stimulus is a
candidate.

If s_ denotes the number of times a stimulus _ was present
during a successful trial, and f_ denotes the number of times _
was present during a failure, then the equation R_=s_(fT-
f_)/(sTfT+1) satisfies these features. The first factor (s_/ sT)
provides the ratio of successful trials in which the stimulus
was present; the second factor (fT-f_/fT) provides the ratio of
unsuccessful trials in which the stimulus was not present. The
additive term in the denominator prevents division by zero
before we have at least one successful trial and one failed trial.
Thus R_ increases as the stimulus is present in successful
trials, and decreases as the stimulus is present in unsuccessful
trials.

3.3.4 The representation of action reflects
causality
We now have a representation for Prediction, but it will only
be useful to the creature if the action selection mechanism can
take advantage of apparent temporal causality knowledge.
Until now, our discussion of action selection has been rather
general. We have implemented and tested the Predictor
mechanism and concepts presented here by augmenting the
ActionTuple, the fundamental representation of action
originally proposed by Blumberg (see [4]).

TriggerContext Action ObjectContext doUntilContext Results

intrinsic
value

when to do it?

what to do it to?

how long to do it?

why do it: what will be the future results?

and how will this particular action affect me?

what to do?

Figure 8: Anatomy of an (augmented) ActionTuple.

As seen in Figure 8, the ActionTuple encapsulates the concepts
of trigger, action, object, doUntil, and in this new formulation,
results. The TriggerContext indicates external conditions that
must be met in order for the ActionTuple to be activated.



(“When should I do it?”) The Action represents what the
creature should do if the ActionTuple is active. (“What should
I do?”)  The ObjectContext describes necessary conditions on
the things to which that Action can be applied. (“What should
I do it to?”)  The doUntilContext describes the conditions that
cause the ActionTuple to deactivate. (“How long should I do
it?”) The Results slot contains Predictors, as described in the
previous Section, each of which predicts that when the Tuple i s
activated, an event will occur after an interval with a certain
probability. (“What will this cause?”) The Intrinsic Value is a
multi-dimensional value (with the same dimensions as the
DriveVector – see S3.1) that describes the Tuple’s perceived
effect on the creature’s Drives. (“How will this help?”)

In Section 3.3, we indicated that each Predictor has a
corresponding Predictor Context that determines when it
generates expectations. We now see that the Predictors found
in an ActionTuple’s Results slot inherit their Predictor
Context from the ActionTuple in which they are found. The
TriggerContext, Action and ObjectContext slots conveniently
denote external context, self-action, and the target of that
action.

Intrinsic value is provided as a fixed value for some
ActionTuples, which we refer to as consummatory
ActionTuples. These are reinforcers (when they have high-
magnitide, negative intrinsic values which suggest the
satisfying of drives) and also punishment (large, positive
intrinsic values which suggest an increase in drives.)  

Although performing a particular action may not affect the
creature’s drives, an ActionTuple’s predicted Results may
change the world in a way that would facilitate satisfying
drives in the future. Thus the utility of an ActionTuple i s
defined by more than just its intrinsic value. The perceived
value of an ActionTuple is a function of its intrinsic value, and
the perceived value of ActionTuples that could be potentially
activated due to causality information contained in the
Results slot. Importantly, a predicted Result is valuable if and
only if, through some causal chain, it will help satisfy a
currently unsatisfied prerequisite of a consummatory Tuple.
Thus the perceived value of an ActionTuple changes as our
needs change, and as the perceived external conditions in the
world change.The perceived value of an ActionTuple i s
calculated
iinpv()v()pv()predictorsfacilitatedTuplesmmnttkRtÈ˘=+Í˙Î˚ÂÂ

 where vi(t) is

the intrinsic value of Tuple i, Rm the reliability of each
associated Predictor, pvn(t) the perceived value of each Tuple
facilitated by that Predictor, and k a discount factor. In this
implementation, this equation uses a max recursive depth of 4.

3.3.5 Changing ideas about causality
We’ll use an example to show how ActionTuples and the
mechanism described above can represent and learn an
apparent temporal causality relationship. Consider an
experiment wherein a dog is conditioned to salivate upon
hearing a bell ring, because the bell provides a reliable
predictor of the appearance of steak.

We begin with the assumption that the dog has the inherent
idea that consuming steak will reduce his hunger drive. We
construct the consummatory ActionTuple that represents this
relationship (assuming the animal has only two drives, hunger
and sex).

The consummatory act of eating the food is represented by the
ActionTuple depicted on the bottom of Figure 9: with a null
TriggerContext (meaning no external conditions need to be
met), the eat Action in the Action slot, the foodShape stimulus
as an ObjectContext (meaning the action must be performed on
food, and thus can’t be performed unless food is present), and
the notion “until consumed” in the doUntilContext. The
intrinsic value [-10,0] indicates that the creature’s hunger
drive will be reduced if the Tuple is activated. If the creature
has a sufficiently high hunger drive, an action selection
mechanism like the one described in S3.2 would be inclined to
activate this Tuple when the creature perceives food.  

During this experimental procedure, the dog will be presented
with two salient stimuli: the sound of the bell, and the
appearance of a steak. In her attempts to explain these
unexplained stimuli, the dog will, after a time, come to the idea
that the sound of the bell is reliably followed by the
appearance of food. This bell-predicts-steak notion i s
represented by the Tuple shown at the top of the figure. The
TriggerContext for this Tuple is the bellSound, the
ObjectContext null, the Action null, and the doUntilContext
null. The Results slot contains the Predictor indicating that
something with the foodShape property will appear in a few
seconds with 33% reliability. Although the intrinsic value of
the “hearing a bell” Tuple is null (zero), the concept of
perceived value makes its activation seem like a good thing to
the dog. It indicates that the activation of this Tuple reliably
leads to the activation of another Tuple that will satisfy the
hunger drive.

TriggerContext Action ObjectContext doUntilContext Results

nu l l
bellSound
PerceptActivation

hearing a bell predicts food in 5sin English: which itself isn't consummatory

foodShape
Percept in 5s (33%)

TriggerContext Action ObjectContext doUntilContext Results

[-10, 0]
foodShape
PerceptActivationeatAction foodShape

PerceptDeactivation

eating some food until it's gone which satisfies hunger drive

but it would facilitate

context that needs to be satisfied

thus the perceived value of hearing a bell is [-10, 0] * 0.33 = [-3.3, 0]

Figure 9: Perceived Value makes hearing the bell good.

The perceived value of the “hearing the bell” Tuple i s
calculated by the sum of its intrinsic value, and the intrinsic
values of the Tuples it facilitates multiplied by a discount
factor. The discount factor for each term is a function of the
probability that the required stimulus will appear. In this
example, the dog is conditioned that food will appear on
average every one in three trials. Thus the discount factor i s
1/3, and since the perceived effect on the hunger drive of
eating the predicted food is -10, the perceived value of the
“hearing the bell” ActionTuple is -10/3.

TriggerContext Action ObjectContext doUntilContext Results

nu l l

predicts food in 5sin English: which itself isn't consummatory...

foodShape
Percept in 5s (33%)sitAction duration of

sitAction

sitting for an appropriate interval

TriggerContext Action ObjectContext doUntilContext Results

nu l l

predicts food in 5shearing the bell ring which itself isn't consummatory...

foodShape
Percept in 5s (33%)sitAction duration of

sitAction

and sitting for an appropriate interval

bellSound
PerceptActivation

Figure 10: Self-Action Variation of the experiment.



A variation of this experiment (Figure 10) involves only
providing the dog with a reinforcer when it sits down after the
bell rings. In this case, the dog may begin with the hypothesis
(top of figure) that simply sitting down predicts the treat.
Because some of the trials will be reinforced and others will
not, the Predictor will eventually realize that the bell sound
reliably predicts the trial’s outcome. Thus, a new Tuple
(bottom of figure) will be created. The Action is still “sit”, but
now the bell sound has been added to the TriggerContext. The
Results contain a Predictor predicting the foodShape’s onset
in a few seconds. Thus, predictions can, but do not have to,
involve self-action.

3.4 Causality, Affect and Reward Markers
In addition to allowing an agent to select actions, apparent
temporal causality also provides feedback that can inform the
creature’s motivational and affective state.The utility of
something in the world can also be interpreted as a creature’s
affective stance towards something. The creature can use its
affective stance toward a stimulus to generate appropriate
reactions to its onset – and predictions of its impending onset.
A creature can also use the affective stance to determine
whether or not it wishes to encourage the onset of a stimulus.
Thus an interesting effect of the DriveVector approach is that a
creature’s emotional memories of some context are affected by
its current needs.

A creature’s motivational state also affects the action selection
mechanism’s propensity to explore rather than exploit. It thus
has an indirect but important effect on learning by altering the
rate at which the action selection mechanism generates and
refines Predictors.

Our ability to compute the affective value of a stimulus offers
us flexibility in the way we produce reward markers for
machine learning algorithms elsewhere in the system. Many
such algorithms (e.g. the one that drives acoustic category
formation in our acoustic pattern matcher) employ a reward
marker (and sometimes a punishment marker) to inform the
classifier of the results of a recent classification. The
fundamental question is: which stimuli constitute reward
markers? An obvious answer is a stimulus that indicates the
appearance of a reinforcer like food. But there also may also be
times when we can predict the impending onset of a reinforcer
with sufficiently high confidence that we can post the reward
marker before the reinforcer actually appears. Here this occurs
at the moment when we can first predict, with confidence above
a threshold, the future appearance of all the stimuli necessary
to activate a consummatory ActionTuple.

4. Results
The architecture has been demonstrated capable of reproducing
a wide variety of conditioning phenomena, such as those
described in Section 3, as well as providing a robust basis for
an implementation of the clicker training paradigm [25]. From
an agents perspective, this work provides a model for action
selection and learning that integrates apparent temporal
causality into the action selection mechanism of a complete
virtual creature.

The time scale invariance suggested by SET provided an
elegant representation of internal timing in the Predictor
representation. Because they record the perceived interval
between two stimuli and use _-thresholds to generate windows
in which stimuli are predicted, Predictors are able to represent
short intervals with high precision, and exhibit plausible

uncertainty for longer intervals. The implementation
approximates RET by employing the principle of parsimony
when a creature builds reliable predictors to explain its world,
learning only the simplest explanation for how its world
works.

5. Related Work
Tu and Terzopoulos’s physically-based artificial fish model
incorporates perception and action selection [19]. Perlin’s
Improv system is designed to create interactive actors [20].
Damasio’s somatic markers are the precursor to our drive-based
value attribution [21]. The importance of considering perception
and learning together was emphasized by Barlow [24]. Maes and
Drescher discuss reliability [26], [27]. Allen’s work integrates
temporal reasoning into a planning system [15]. deKleer
introduces and describes causal theories [14]. Further
discussion of the application of causality is found in [22].
Pearl’s discussion of “explaining away” events [13] influenced
the Explain operation. See Moray for more on the structure of
mental models [16]. The structure of this work is largely
inspired by Blumberg’s Ph.D. thesis [3]. Gallistel and Gibbon’s
timing model [6] contrasts sharply with the standard model of
conditioning formalized by Rescorla & Wagner [23].

6.  ACKNOWLEDGMENTS
Our thanks to the members of the Synthetic Characters Group,
Whitman Richards and Randy Gallistel for invaluable insight.

7. REFERENCES
[1] Gallistel, C. R. (1990).     The Organization of Learning    . Cambridge,

MA, Bradford Books / MIT Press.

[2] Brooks, R. A. (1991b). “Intelligence Without Representation.”
Artificial Intelligence Journal    47: 139-159.

[3] Blumberg, B. M. (1996). Old Tricks, New Dogs: Ethology and
Interactive Creatures.      Media Lab    . Cambridge, MIT.

[4] Isla, D. A., R. C. Burke, et al. (2001).      A Layered Brain
Architecture for Synthetic Characters   . IJCAI, Seattle.

[5] Wilkes, G. (1994).     Behavior Sampler   , C&T Publishing.

[6] Gallistel, C. R. and J. Gibbon (2000). “Time, Rate and
Conditioning.”     Psychological Review      107: 289-344.

[7] Thorndike, E. (1911).      Animal Intelligence    . Darien, Hafne.

[8] Yoon, S.-Y., B. M. Blumberg, et al. (2000).      Motivation Driven
Learning for Interactive Synthetic Characters   . AA 2000.

[9] Russell, J. (1980). “A circumplex model of affect.”    Journal of
Personality and Social Psychology     39: 1161-1178.

[10] Ekman, P. (1982).     Emotion in the Human Face    . Cambridge, UK,
Cambridge University Press.

[11] Brooks, R. A. (1991a).    Intelligence without Reason, Computers and
Thought lecture    . IJCAI-91, Sidney, Australia.

[12] Burke, R. C., D. A. Isla, et al. (2001).     Creature Smarts: The Art and
Architecture of a Virtual Brain    . Game Developers Conference
2001.

[13] Pearl, J. (1988).     Probabilistic Reasoning in Intelligent Systems:
Networks of Plausible Inference    . San Mateo, California, Morgan
Kaufmann Publishers.

[14] deKleer, J. (1986). “An Assumption-based TMS.”      Artificial
Intelligence Journal    28(2): 127-162.

[15] Allen, J. F. (1991).     Planning as Temporal Reasoning    . The Second
International Conference on Principles of Knowledge
Representation and Reasoning, Morgan Kaufmann.



[16] Moray, N. (1990). “A lattice theory approach to the structure of
mental models.”     Phil. Trans. R. Soc.        Lond.    B(327): 577-583.

[17] Aittokallio, T., M. Gyllenberg, et al. (2000). Testing for Periodicity
of Signals: An Application to Detect Partial Upper Airway
Obstruction during Sleep, Turku Centre for Computer Science.

[18] Spier, E. (1997). From Reactive Behaviour to Adaptive Behaviour:
Motivational Models for Behavior in Animals and Robots. Oxford,
Oxford University: 99.

[19]  Tu, X. and D. Terzopoulos (1994). Artificial Fishes: Physics,
Location, Perception, Behavior. Siggraph.

[20] Perlin, K. and A. Goldberg (1996). “Improv: A System for Scripting
Interactive Actors in Virtual Worlds.” Computer Graphics 29(3).

[21] Damasio, A. (1995). Descarte's Error, Harvard University Press.

[22] Iwasaki, Y. and H. Simon (1986). “Causality in Device Behavior.”
Artificial Intelligence Journal 29(1): 3-32.

[23] Wagner, A. R. and R. A. Rescorla (1972). Inhibition in Pavlovian
conditioning: Application of a theory. Inhibition and Learning. R. A.
Boakes and M. S. Halliday. London, Academic Press.

[24] Barlow, H. (1990). “Conditions for Versatile Learning, Helmholtz's
Unconscious Inference, and the Task of Perception.” Vision
Research 30(11): 1561-71.

[25] Burke, R.C. (2001). It’s About Time: Temporal Representations for
Synthetic Characters.  MS. Thesis, The Media Lab, MIT.

[26] Maes, P. (1989). The Dynamics of Action Selection. IJCAI, Detroit,
Morgan Kaufmann.

[27] Drescher, G. L. (1991). Made-up minds: a constructivist approach
to artificial intelligence. Cambridge, Mass., MIT Press.


