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Abstract

In this paper we describe an algorithm designed for learning perceptual organization of an autonomous agent. The learning
algorithm performs incremental clustering of a perceptual input under reward. The distribution of the input samples is modeled
by a Gaussian mixture density, which serves as a state space for the policy learning algorithm. The agent learns to select
actions in response to the presented stimuli simultaneously with estimating the parameters of the input mixture density. The

feedback from the environment is given to the agent in the form of a scalar valueewara, which represents the utility

of a particular clustering configuration for the action selection. The setting of the learning task makes it impossible to use
supervised or partially supervised techniques to estimate the parameters of the input density. The paper introduces the notion

of weak transduction and shows a solution to it using an expectation maximization-based framework. © 2002 Published by
Elsevier Science B.V.

Keywords: EM algorithm; Weak transduction; Weakly labeled data

1. Introduction to a set of voice commands. After hearing an utteranee
the agent performs an action. The trainer would likes
Designing the perceptual system for autonomous to have the agent respond correctly by providing (pos?
agents is often a difficult task. The autonomy of the sibly noisy) rewards and punishments after observirg
agent implies that the behavior of the agent is contin- the actions that it performs in response. In this sces
uously modified as the agent collects new experiencesnario the agent needs to learn two things: (a) parame-
and observes outcomes of the actions that it decidesterized equivalence classes in the space of utterances;
to take. A typical setting of the reinforcement learn- and (b) what action to select upon observing a sample
ing task formulates a reward function, or a function from one of these classes. The first problem is that af
according to which the world outside the agent's body clustering under reward, while the second is the typ- 44
rewards or punishes the agent for taking actions. ical policy learning task of reinforcement learning. 45
Since the reward function is rarely known, the agent ~ There exist a number of algorithms permitting learnss
has to experiment with the world to approximate this ing of policies of action selection given that the persz

function from a just few samples and findpalicy, ceptual system provides a good set of features. Bait
which lets the agent select its actions such that the how can such features be efficiently estimated while
average reward intake is maximized. the policy learning is taking place? This paper focuses

To give a concrete example, imagine the situation on the solution to the problem by embedding a simpla
where an agent is trained by a human trainer to respondassociative search algorithm into an expectation mag
imization (EM) paradigm. 53

The task ofon-line estimation of the perceptual or-s4

* Corresponding author. L . . . .
P g ganization and the policy of action selection is cass
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here as a problem ofraulti-armed bandit with hidden
state and is solved iteratively within the EM frame-

To learn the policy of the action selection the learms2
ing algorithm developed here usesrarmed bandit 103

work. The hidden state is represented by a parame-model (see, e.g., [8]). The multi-state policy is esties

terized probability distribution over states tied to the
reward. The parameterization is formally justified, al-
lowing for smooth blending between likelihood- and
reward-based costs.

In addition, in this paper we introduces the notion
of weak transduction in order to properly place the

mated with the aid of the reinforcement pursuit algoes
rithm of Thathachar and Sastry [9], which is applieds
to a set of states simultaneously. 107

A problem similar to the one presented here was
explored by Likas [2], who used a variant of the REe9
INFORCE algorithm [11] to learn vector quantizatiomo

solution among the existing techniques used for unsu- on the batch data, aided by a reward signal. 111
pervised and transductive problems. The technique of probability matching for reinforcer12
The paper proceeds as follows: after introducing ment learning used here is similar to that shown Ims
the multi-state bandit problem, Section 3 describes a Sabes and Jordan [7]. Using this technique, the algor
modification of the reinforcement pursuit algorithm rithm presented here constructs a reward-dependest
that allows us to include the estimation of the hidden probability distribution to guide the algorithm towardsie
state. Section 4 justifies modifications to the EM al- the configuration resulting in higher value of the exi7
gorithm, which permits the inclusion of the reward in- pected reward. 118
formation into the parameter estimation and to solve
the problem of learning perceptual organization along
with policy learning. The two parts of the estimation 2. Agent training
procedure are brought together in Section 5, which
presents the complete reinforcement-driven EM algo-  Let us for a moment return to the example of theo
rithm. Experiments with this algorithm showing the agent training and introduce some notation. The train:
results for different objectives are presented in Section ing consists of a series of steps, where superscriptiz-
6. The paper concludes with Section 7, which points dicates the number of the step. At each step the trainar
out contributions and some of the problems with the randomly selects a state, out of a finite set o statesi24
algorithm. (see Fig. 2a). From that state the trainer producesizmn
observation for the agent!, according to the proba-i26
bility distribution p*(x|s). The chosen state switches7
the trainer to one of its “reward modes”, where anys
The work of this paper is based on the EM algo- action,a”, that the agent might perform in responses
rithm [1,6,12] extended to situate it within the context to x” will be rewarded, punished or ignored, by digso
of reinforcement learning and to take advantage of pensing to it a reward;, from a probability distribu- 131
the additional information that is available as a result tion conditioned on both trainer’s state and the agents
of interaction with the environment. Neal and Hinton action, p*(r|s, a). 133
[4] show a view of the EM algorithm that makes the To clarify this, let us use an example. “A statef3s
extensions made in this paper possible. This view is of the trainer corresponds to the trainer’'s desire 1@
concisely presented by Minka in [3]. evoke a particular response from the agent. For exs
At a certain parameter setting and binary reward, ample, the trainer might choose to have the agest
the algorithm shown here can be viewed as an on-line go away. The external manifestation of that states
version of therEM, presented by Nigam et al. [5], for (s = want-it-to-go-away) might be a verbal commantie
learning with partially labeled data (albeit for a Gaus- “Go away!"(x" =" Go away!”). At this point the 140
sian mixture) and transductive inference [10]. How- agent might erroneously choose to come up closer
ever, the problem solved by the algorithm described (a" = approach-trainer). The trainer lets the agent
here is in general more difficult than the problem to get away with it this time by not punishing it4s
of transductive clustering, which Nigam’s algorithm (drawing a value of 0 from the probability distribuz44
solves as it does not have access to exact labels fortion p*(r|s = want-it-to-go-awaya = approached- 145
the input data. trainer). 146

119

1.1. Related work
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Environment model
(1) Nature can be in one of a discrete set of sta‘tes{s,»}l.K:l;
(2) Nature selects a statg, from a probability distributiorp*(s);
(3) From a conditional distributiop™*(x|s = s;) nature generates an observatidn
(4) Upon observing the agent taking an actidn nature produces
a reward from the distributiop™*(r|s = s;, a = a™).

The goal of the agent is to learn how to respond to Which places it in the category afssociative search 186
the commands given to it by the trainer to maximize With hidden state. 187
the intake of the reward. To solve this problem we pro-  If the state space is modeled with a mixture distniss
pose an agent architecture that consists of two parts—abution, then the problem can be described as follovyss
perceptual model and apolicy. The perceptual model given an observation, estimate the state of the wortd
is a set of clusters in the input space, while the policy from a finite set of states§ = {s;}. Given the belief 191
is a probability distribution, which for a given state about the state membership, select an action (labed),
gives a probabmty with which every agent’s action which will result in the maximum amount of eXpeCtecb3

would produce a reward. payoff received once the action is performed. Witha
The agent's task is then to estimate parameters of that payoff, update the parameters of the policy of the

the model shown in Fig. 2b. In that figupe(x|s) is action selection and of the input distribution. This sews

the probability model of a category which is sub- tion will deal with solving the problem of policy esti-197

ject to parameter estimatiopy(s|x") is abelief state, mation for such a setup. 198

calculated for the incoming observation from current

model parametergi(als) is apolicy, thatis related to  3.1. Multi-state bandit problem 199

the past correlations between state, action and reward;

andp(a|x") is the probability distribution from which Due to the assumption that the observations ave

the action is selected upon observirly independent of each other, this problem can be fost

It is important to note that the perceptual organi- mulated as a multi-stat&v-armed bandit [8]. The 202
zation of the agent cannot be formed by providing it N-armed bandit is a gambling device with a set\of 203
with supervised examples of correct perceptual class arms (see Fig. 1). Each arm has a probability distribygz
assignment. The trainer can only judge the quality tion associated with it, according to which the samplg
of the agent’s perceptual organization based in the reward is drawn every time the arm is pulled. Mosggs
actions the agent selects in response to the externalfrequently the reward generating process is assungd
stimuli. to be stationary or, at most, slowly varying. 208

Now imagine that the bandit can be in any one gf,

M states, each of which have different distributiongg

3. Estimation of the associative policy of the reward. Before each trial the bandit switches
to a new state and produces an observatiénfrom

The policy in the problem addressed here has a spe-
cial and simple character—since all observations are
assumed to be equally likely and independent—the reward
trainer can produce any observation (e.g., utterance or
gesture) at will—there is no need to keep the history as
a part of the action context. In other words, the agent’s arm
behavior does not change the state of the world, which
only changes at random. The task of the policy esti-

:invae“;r;;:;‘hssrfg ?ezlmgglii Sh?;ttlglgyl(sjftf)rrrir(])?dgz)cslg;’va- Fig. 1. The 10-arrr_1ed bandit model. Each of the 1Q arms p_rodl_Jces

. N . a reward by drawing a sample from a corresponding distribution.
tions to be stored. However, it is complicated by the Each box signifies the reward distribution with some mean (hori-
necessity of perceptual learning, or state estimation, zontal bar) and variance (height of the box).
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Fig. 2. (a) A generative model of the environment, shown as a 2-state 4-armed bandit. The bandit randomly switches between two states,
according to a sample drawn fropr*(s). After selecting the states;, an observationy” is produced from a distributiop*(x|s). (b)

The estimator consists of two parts—a perceptual model and a policy. Upon receiving the obsexVatitve, distributionp(a|x™) is
constructed and an action is selected by drawing a sample from it. Upon delivery of the reward parameters of both the policy and the
perceptual model are updated.

213 the distribution associated with this state (see Fig. 2a). based on the reward received from the bandit aftes
214 The player’s goal is to identify this state and perform pulling the arma by, e.g., an exponentially weightedsz

215 action selection and model update for that state. When sample-average method 238
216 the state is perfectly known the problem reduces to
217 M independentV-armed bandits. It is more difficult Qi(a,s) = Q1-1(a,s) + alr — Q;-1(a, s)). (1) 239

218 when the state is hidden and must be estimated. Based on the value o, (a, s), the pursuit method 240

) ) updates its action preference modgsla|s), such that 241

219 3.2. Solutions with known state the action with the highest value of, (a, s) increases 242
) the probability of being selected by a small fractionss

220 When the state is exactly known, then the solu- ,, - actions that are currently found to be suboptimala

221 tion for the multi-state bandit is achieved by indepen- yacrease their probability correspondingly. kgt = 245
222 dently solving a set of single-state bandits. A vari- arg max (0, (a, 5)), then 246

223 ety of action-value methods, such asample average,

224 reinforcement comparison andreinforcement pursuit, 5 (a*(s) = p,(a*|s) + y (1 — py(a*|s)), 248
225 have been proposed to solve the single-state bandit . .

226 problem?! The general idea is to stochastically search Pr+1(@ls) = Pr(als) +y (0 — pi(als)),
227 the action space while updating the estimate of the re- (2) 250
228 ward function. A probability distribution over the ac- ] )

220 tion spacedction preference) is built based on thises-  1he convergence of the pursuit method is dependesnt

230 timate and action selection is done via sampling from UPon values ofr andy, which in all experiments of 252
231 this distribution. this paper are set to be= 0.1 andy = 0.01. In addi- 253

23 The simplest pursuit method, adapted for the tion, it is readily combined wittz-greedy techniques2sa

Va #a*. 249

233 multi-state agent, maintains an estimate of the pay- t© allow for non-stationary environments. 255
234 Off structure of the bandit via action-value func-
235 tion, Q;(a, s). This function is updated at each step 3.3. Solutions with hidden state 256

1 A classical method for solving bandit problems, which includes In the presence of the hidden state the problemzef

balancing of exploration with exploitation involves computation timating th timal action b difficutt
of the so called Gittins indices. This method provides an optimal estimaling the optimal action becomes more dailticuzts

solution to a large class of problems, but assumes the knowledge The uncertainty about the state can be dealt with iy
of prior distribution of possible problems. distributing the reward proportionally to the currernso
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belief about the state membership of the observation 4.1. Weak transduction 302
x™,
Most of the bandit search algorithms allow for for- The EM algorithm is a powerful tool for solving unso3

mulating a policy, or a probability distribution over supervised and transductive problems. It is often used
actions, given a statey(als). This is an arbitrary dis-  as a clustering algorithm with the objective of maxses
tribution which only expresses the current estimate of mizing the likelihood of the data. This is a good heurisss
“action preferences”. The action is selected by sam- tic to use for learning perceptual organization wheor

pling the conditional probability distributiop(a|x"), no other evidence is available. However, by using aus
which can be calculated from the belief state and the unsupervised technique for learning the perceptual oses
policy, by marginalizing the jointp(a, s|x™) ganization, one disregards its utility for the agent. 310
The utility of a perceptual configuration is measurea

plalx™y =" pla,slx™) = plals, x") p(s|x") by the reward that the agent collects while using it
s 5 Therefore, an algorithm is sought, which while capas

_ ZP(GlS)P(SlJC") A3) ble of Iear_ning from patterns in the input data alon_m

p can be “directed” with the reward to choose a difis

) ) _ ferent configuration providing higher payoff. That isie
The action selection now takes into account the uncer- the solution should be an EM-type algorithm, whichz
tainty about the state, encoded in the state posterior.yyoy|d allow the inclusion of reward into its objectiveis
For the purpose of bandit updates, the reward is dis- for state estimation, while learning the policy of acio

tributed amongV bandits in proportion to their con-  +ion selection. 320
tribution to p(alx") The EM algorithm is frequently used fomnsuper- 321
i vised clustering of data by spatial proximity in thez2

Qi(a,s) = Qi-1(a, 5) + a(rp(s|x™) — Qr-1(a, 5)). space of features. For a given number of clusters the
(4) algorithm proceeds iteratively first to calculate fromes

. . the current cluster statistics the probability of data tes
The action preference update equations, Eq. (2) arepe generated by each cluster, a state postefiety); 326

left unchanged. and then to average the data, weighted by this poste-
rior to update cluster statistics. 328

When the data comes with the known state attgbo

4. Clustering under reward bution, s* = z, then the posterior of each data pointo
turns into a deterministic function, having 1 at the sled:

Given the agent’s architecture in Fig. 2b it is clear of the corresponding state and O elsewhere: 332

that the agent is not provided with direct supervision
for the task of state estimation. This is because the
feedback from the trainer rewards its action selection Averaging with respect to this posterior, let us call it4
and not the sample classification in its perceptual sys- poi(s|x), results in the parameter estimation to dess
tem. On the other hand, for the purposes of percep- compose into several independesnpervised estima- 336
tual clustering this situation is better than having no tion problems. 337
feedback at all, since it does provide some degree of When only part of the data has an exact labélk= 338
guidance, however small. z, then the solution to the clustering problem resulis

State estimation under reward can be performed in a mixture of the supervised solution for the labeledo
with the aid of the EM algorithm, which is often used data and the unsupervised solution for the unlabeked
for unsupervised clustering. This section introduces set. This is an example dfansduction, where the 342
a technique for including the reward function into knowledge from the labeled data is transduced onto the
the EM re-estimation procedure. The new objective unlabeled. The setting of a transductive classificatien
function is simply implemented in the EM framework is illustrated in Fig. 3a. In the figure the superviseds
while allowing the algorithm to “fall back” to the un-  solution disregards the additional indirect informaticias
supervised mode if no reward is provided. provided by the density of the unlabeled data, whiter

pG" =z =1 p(s" #zlx) =0. (5) s
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Fig. 3. (a) lllustration of transductive inference for classification. Empty circles indicate the data with unknown class membership while
the colored circles indicate the labeled data, which belongs to one of two classes. Classification boundaries are different for estimators
with and without unlabeled data. (b) Weak transduction has no direct indication of the class label, but a probability distribution over labels.
Clear circles, again, show the unlabeled data, while large colored ones show the data that is weakly labeled. The area of the circle shaded
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with a particular color is proportional to the probability with which this data point belongs to this class.

transductive inference takes into account the complete hood function of a parametric density model when ofrs
data set. taining an analytical solution for the gradient in thes

Supervised, unsupervised and transductive learn- parameter space is difficult. This is the case when wre
ing methods view the label information in a binary need to learn parameters of a mixture density. In thve
fashion—it is either present or absent. In contrast, un- algorithm of this paper the input space is representsd
der the circumstances of the problem where the knowl- by a mixture densityp(x; 8) = ) ; p(s;)p(x|si; 6;), 380
edge about the label is inexact and subjective, the sit- parameters of whichf,, need to be estimated. The goab:
uation is a bit worse than in the transductive setting, of the algorithm, however, is to not simply maximizes2
but better than unsupervised. With the current setting the likelihood of the data, but also take into accousi:
of the model parameters the posterids|x") is com- the external reward signal if such is present. To do 3e4
puted as the state membership of the query point. If, in this section a new cost function is justified, whickss
consequently, some value of reward results from this allows for inclusion of the reward in the traditionadss

assignment, it indicates the quality of the posterior EM framework. 387
given the current parameter settings. This is the situa-

tion, which the algorithm being described encounters o T

in the task of estimating a state. That is, in line with 4.3. EM as a variational bound optimization %8
the above taxonomy, the data is labeled witprab- 389
ability distribution, as illustrated in Fig. 3b. It is con- 21\ 46
venient to call data labeled in this fashiomakly la- £O) = /p(x, s, 9)& s > l_[ <M)

beled, and the problem—aveak transduction. These q(s) s q(s) 390
terms properly place the problem among traditional = g(x,0). (6) 391

machine learning tasks and emphasizes its relation to

already existing techniques for learning with labeled, Here,g(x, 6) is a lower bound of the likelihoodf (8), 392

unlabeled and partially labeled data [5]. andg (s) is some positive function of, integrating to 393
1. Typically, for the purposes of optimization ¢{0), 394
the logarithm ofg(x, 0) is optimized 398

4.2. Reward-driven variational bound

G(x,0) = /q(s) logp(x, s, 0) —q(s)logg(s)ds. 307
(7) 398

Typically, the EM algorithm for density estimation
is used for unsupervised maximization of the likeli-
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G(x,0)
0* 0

>
»

Fig. 4. The step in the direction of the gradient of the lower bound
of Eqg. (8) is the step in the direction of the gradient of likelihood.

It follows from Eq. (6) that for any density(s),
G(x,0) is a lower bound on log (6). Now the den-
sity g (s) needs to be found, which touches |5¢)
at6. The cost function in Eg. (7) can be re-written as
follows [4]:

G(x,0) = =D(q(s)l p(slx, 0)) +log f(6), (8)

where D(p|lq) is a Kullback—Leibler divergence be-
tween distributionsp and ¢. From here it is eas-
ily shown thatG(x,0) = log f(@) when g(s) =
p(s|x, 0), i.e., the bound will be touching the likeli-
hood function at the currem, as shown in Fig. 4.

4.4. Augmented reward bound

In order to let EM include the expected reward into

later in the text. Starting with Eq. (8), an additionabs
term penalizes the estimator for being different froma
this distribution in the posterior: 438

F(x,0) = =D(q(s)llp(slx, 0))

p*(slx;r)
E log————=
- "‘“[ 9 oGIx. )

When ¢(s) is set to the posterior distributiongss
p(s|x, 0), the expectation term turns into negativeo

437

} +log f(®). (9)

438

divergence between the posterior apd(s|x; r): 443
*(slx;r)
Eq(s) |:|ogLi|
p(s1x,0) lg)=pesix.0) 443
= —D(p(slx, O) [ p*(s|x; 7). (10) 444

In fact this term induces a different but very intuitivess
bound for the likelihood maximization (see Appendixe
A and Theorem 1 for proof) 447

F(x,0) = =D(q(®)llp*(slx; 1)) +log f(6).  (11) 448

This function has the same form as Eq. (8), whiaho
implies that for practical purposes one may simplyo
substitute the EM-induced posterior with the fictitious1
probability distributionp*(s|x; r). It provides the tra- 452
ditional bound for the likelihood function in the abas3
sence of the reward. With the reward present, the @k
gorithm performs only partial E-step. However, the 455

the optimization, the EM bound shown above needs to step in the direction of the gradient of this bound leagts

be augmented with a reward-dependent term. Itis easy yphill in the future expected reward.

to do using the probability matching technique [7].

457
Now p*(s|x; r) needs to be constructed in a conss

To leamn preferred cluster configurations, one yenjent form. The main constraint that should be inso
can consider observation-state pairs and construct appsed is that the additional term in Eq. (9) vanishes

reward-dependent probability distributigp (s|x; r).

when after producing a labelfor an observation:, 461

The task of the learning algorithm is to select from a tne reward- received from the environment is 0. Thats2

set of conditional distributiong(S|X, 6), aided by

rewards that are provided by the environment for some (sl r)
of the data points. These rewards can be thought of Eys) [|ogpr=0—’] -0

as inverse energies—paifs, x) receiving higher re-

is, 463

p(s|x, 0) 12) ses

wards correspond to Iovv_etr_ener.gy states. Energies.car\,\,hich implies thatp*_q(s|x; r) = p(s|x, 8). The dis- 465
be converted to probabilities via the Boltzmann dis- tribution pi_o(slx; r) can be set to be proportional tass

tribution, which represents the ideal observation-state the Boltzmann distribution:

mapping—s, x) pairs receiving higher rewards being
more likely than pairs receiving low reward. If the
parameters op(s|x, 6) are adjusted so that it is close
to p*(s|x; r), then the output of the algorithm will
typically result in higher rewards.

Following this line of reasoning*(s|x; r) is made
proportional to the Boltzmann distribution as shown

467

p(slx, 6) expprp(six, 0)) (13)
468

Zp(x, 0)

pr(slx;r) =

This form of p*(s|x; r) is used throughout the rest ofeo
this paper. 470

The resulting bound is illustrated in Fig. 5. Ther1
augmented bound behaves just like the traditional Ev
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A

AN

| F(x0)ly—9
0* 0
(@)

Fig. 5. (a) The augmented bound behaves just like the traditional EM bound when no reward is present. (b) With the reward present the

A

F(x.0)lr20

()

bound is no longer in contact with the likelihood at the current parameter setting, leading uphill in the expected reward.

bound when no reward is present. With the reward
present, the bound is no longer in contact with the like-
lihood at the current parameter setting, leading uphill
in the expected reward. The point of contact with the

REM algorithm

(1) Initialize: set parameters to starting values;
for each new data point:

bound is the value of parameter at which the posterior (2) E-step:

p(s|x™) equalsp™*(s|x; r).

5. Reward-driven EM

Now the two parts of the estimation procedure can
be joined to get the complete solution to perceptual
learning under reward. The algorithm is shown below
and is illustrated in Fig. 6.

The algorithm folds the action selection policy esti-
mation into theexpectation step of the EM algorithm
while using the immediate reward signal to control the
entropy of the posterior for thmaximization step. The
algorithm is iterative and incremental, performing one
iteration per data point, keeping only the sufficient
statistics about the density function of the input space.
The goal of the algorithm is to estimate the structure
shown in Fig. 2. It proceeds as follows:

Fig. 6. The reward-driven perceptual learning algorithm breaks
out of the expectation step of EM to compute the improved

(a) calculatep(s|x™) using the Bayes rule and the
current parameters of the
observation modelp(x);

(b) Forward pass:
(i) computep(alx”) (Eq. (3));
(ii) select an arm by sampling(a|x");

(c) Backward pass:
(i) collect reward and distribute it among the

states in fractions op(s|x");
(ii) calculate p*(s|x", r") (Eq. (13));
(3) M-step: maximize the resulting bound, Eq. (A.1),95

In the forward pass of the algorithm the processings
breaks out of the EMs expectation step to select an
action and update the bandit model as shown in Figs&
The yielded payoff serves as a control parameter fior
the EM. 498

6. Experiments 499

The experimental analysis of the algorithm preso
sented in this paper is performed on a series of tasks
of increased difficulty. The first experiment does ned2
include policy learning and is designed to simply tests
estimation of the perceptual model alone for a fixechk
optimal policy. Next, two experiments are performeels
which involve the policy estimation. In the first expesos
iment the reward is delivered by a bandit with onlyp7

posterior. Then the parameter estimation is performed with respect ON€ arm per state producing a unit of reward. In thes

to p(s|x", r).

second experiment the binary restriction on the bansd
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is removed allowing each arm to produce some value
of reward, positive or negative. Finally, an experiment
is performed with a variation on the reward structure
such that the reward reinforces arbitrary objective, not
related to the likelihood of the data.

6.1. EM for state estimation

The first experiment confirms the conclusions of the
previous section, showing that it is in fact possible to
use the EM framework for partially supervised tasks.
It has to be shown that, given the context of the clas-
sification task, the algorithm will result in choosing
the clustering configuration that provides a higher ex-
pected reward.

In the experiments of this section, the performance
of the algorithm is compared with the traditional EM.
However, it should be understood that this comparison
is for reference only, as the EM is not designed to
perform the task that REM is targeting and can only
provide the “worst case” performance.

As a source of the data a Gaussian mixtyt@,) =
> q(s)g(x|s) is used. The algorithm estimates the
densityp(x) = >_ p(s)p(x|s) by adjusting its param-
eters in an on-line fashion, upon seeing every data
point, x". The reward is delivered after an attempt to
classifyx” to be generated by a particular component
of p(x|s;). The experiment proceeds as follows:

(1) Initialize the generator mixture, ¢(x): for each
state,s;, randomly select a Gaussian observation
model—u; ~ N(0, 2I) ando; = I;

(2) Iterate:

(a) randomly choose a generator state,
(b) generate an observatiart, distributed
with u; andoy;
(c) using current parameters of the model,
p(x), select a label”;
(d) if I" = sy, deliver a reward of 1, otherwisel;
(e) update parameters of the model
(i) computep*(s|x"; 7) via Eq. (13);
(i) perform the E-step of the EM algorithm
using p*(s|x"; 7) in place of p(s|x").

The results of the incremental reinforced binary
classification experiments are shown in Fig. 7. The top
plot shows the attained likelihood of the data after a
number of randomly generated samples. The horizon-

tal axis shows the number of iterations (data poirsa
seen so far) with the likelihood plotted along the vertis2
cal axis. Itis curious to see that the unguided EM (wishs
B = 0) attains the lowest likelihood. This is partiallygss
due to the fact that the EM is more likely to get stucks
in the local maxima, while the reward signal deliverss
some extra energy for the algorithm to get out of its47

The intuition behind choosing the paramefeiis sas
that as it increases, the entropy of the probability digs
tribution from which a label is selected drops. Chasso
acteristic behavior of the algorithm can be observed
at extreme values f with 8 = —oo, the distribution ss2
over labels is uniform and the label selection is pess
formed purely by chance, with no regard to neither th
reward nor mixture parameters. At= 0 the distribu- ss5
tion over labels exactly equals to the mixture posteriess
that is the algorithm disregards the reward completely;
performing the unsupervised parameter estimationses
mixture parameters dictate. Settigto +oo results ss9
in a “winner-take-all” label assignment. 560

The second plot in Fig. 7 complements the likelss1
hood plot by showing the classification accuracy edf2
the algorithm at different values of the paramegett ses
is expected that the accuracy of the EM used for class
sification should not be better than chance, since egen
when EM converges to the correct set of classes it dees
not care which source cluster corresponds to whigh
estimated component. Positive values of the pararse-
ter g drive the extended EM towards correct labelinggo
while negativeg drives the algorithm away from it,s70
as can be seen in the accuracy plot. It is interestirg
that none of the settings of the paramegeresult in s72
the optimal accuracy of 1. There are two reasons fog
this. First, any fixed value ¢f less tharco will cause 574
a sub-optimal label to be selected, albeit with smatb
probability. The second reason is related to the faet
that even optimal Bayes classifier will not achieve ther
perfect classification rate as randomly placed sousce
Gaussian components may significantly overlap. 579

The influence ofg is further illustrated in Fig. 8. 580
The figure shows the resulting clustering attained wit
different values ofg. It can be seen that the clusterss2
for positive and negative values @f have opposite ss3
labeling while zero-value@ is labeled by chance. Inss4
this run the source distribution has the componentst
(green) at the position (5, 5) and component 2 (red)sed
(0, 0), which is correctly identified by the algorithnssz
with large positive value of. 588



589

590

592
593
594

595
596
597

ARTICLE IN PRESS

10

0.035

Y.A. lvanov, B.M. Blumberg/ Robotics and Autonomous Systems 972 (2002) 1-15

0.03

o
o
)
o

0.02

likelihood

0.015

0.01

0.005

0.6

accuracy

0.4

0.2 i i
0 50 100

150 200 250 300

Fig. 7. Performance of the REM averaged over 1000 runs for different values of the pargneterompared with EM. Curiously, even
negative values op result in higher likelihood than that attained by EM.

6.2. Multi-state bandit with hidden state

In contrast to the previous experiment a policy esti-
mation is now introduced. The estimation of the per-
ceptual state has to be performed on the basis-of
direct reward attribution, i.e., the state now becomes
hidden.

6.2.1. Maximization of the likelihood—binary bandit
This section shows the results on problems in which
the reward function is well aligned with the likeli-

hood, i.e., the problems where maximization of thes
reward results in maximization of the likelihood. Res99
sults for this task are shown in Fig. 9. Unlike imoo
the experiments of the previous section, the cluster
identity is not important, as long as they correctbp2
partition the input space. The multi-state bandit e®s3
sentially implements the mapping from clusters to4
labels. 605

Itis particularly interesting to see if the reward-basgg
estimator of the input density results in a better fj;
of the resulting observation density to the one thag

B=-2 B=-1 B=0 8=10
10 10 - 10 10 10
1. ﬂz 1 /2 1% 2 01
0 o 0 o 0 0 0 o
10 10 10 10 10
10 0 10 10 0 10 10 0 10 10 0 10 10 0 10

Fig. 8. Results of a run of the algorithm for different valuespo$tarting from the same initial conditions. For coefficients with opposite

signs the labeling is reversed, while the EM produces the labeling by chance. In this run the source distribution has the component 1 at

the position (5, 5) and component 2 at (0, 0).
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reward

(2)

divergence

0
(®) 0 100 200 300 400 500 600 700 800 900 1000

Fig. 9. (a) Performance on the 2-state 10-armed binary bandit. (b) Divergence between estimated and true source distributions.

gets reinforced than the regular EM. In the case (1) Initialize: for each state, randomly select a
of a Gaussian mixture density with a known num- Gaussian observation modgl; ~ N (0, 27)

ber of components (known number of states), the o =1
fit can be measured with the symmetric KL diver- 9y |terae:

gence (a) randomly choose a generator state,
(b) generate an observatiorf,
S(pllg) = Fl(p — 1) T, + 2 (1) — 12g) from NV Gk, on);

(c) using current parameters select an actibn
(d) if a is the same as the optimal arm deliver

) ) a reward of 1, otherwise-1;
For a lack of a better analytical method, this quan- (e) update parameters of the model;

tity is computed for every combination of source
and estimator components and the minimum value is  One variation on the algorithm described in thigs
selected. paper is the REM with the paramet@r changing e25

The experiment with a 2-state 10-arm bandit is per- over time. For example, slowly increasiry start- 626
formed as follows: ing with the value of 0 will cause the algorithm te27

+Hr(Z, '8, + 2,12, - 2D). (14)

623
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not pay any attention to the reward initially, while tions for subsequent search in each bandit wfiersss

slowly shifting towards the “winner-take-all” mode increases. 647
after some period of time. Let us call it annealed
REM. 6.2.2. Maximization of the likelihood—full bandit 648

Fig. 9a shows the average amount of reward col- The algorithm works with the full bandit, whereao
lected by bandits trained with the EM, REM and each action taken by the algorithm results in sorse
annealed REM algorithms compared to the case value of the reward—positive or negative, with nes1
where the input space is estimated via a supervisedmodifications. The results are shown in Fig. 10a. Asdse
estimator. As the goal is an accurate reproduction of the case with the binary bandit, the initial convergenes
the source mixture, these plots need to be consideredof both REM and annealed REM is faster than the st
along with the divergence plots Eq. (14), given in pervised case. The advantage, compared to EM, hevs-
Fig. 9b. The annealed REM algorithm, which slowly ever, seems less spectacular than in the binary case.
increases the value of the paramefger performs The divergence plots (Fig. 10b), as before, show betier
very well, converging even faster than the supervised fit of REM and annealed REM to the source distribess
case. It is somewhat puzzling, but easily explained tion. 659
by the fact that the annealing amounts to simulta-  This experiment shows the worst case scenario ées
neous exploration of all states of the bandit in the the algorithm. The reward structure here has many é6t
initial stages. This gives a good set of initial condi- cal maxima and is “distracting” for the on-line searchke2

2
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Fig. 10. (a) Performance on the full 2-state 10-armed bandit. (b) Divergence between estimated and true source distributions.
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aligned with the likelihood. The problem in this sea72
tion is as follows—the input data is generated frosns
four 2-dimensional Gaussians. However the rewarcsis
delivered in such a way that actian is rewarded 675
whenx] < 1.5, a2 when 15 < x1 < 4 andaz when 676
x1 > 4, as shown in Fig. 11. 677

The performance of the model on this task is showrs
in Fig. 12. After 2000 iterations the EM estimatos7e
yields an average reward of38, annealed REM—sg0
0.82 and supervised estimator-96 with the maxi- es1
mum possible reward of 1. 682

Fig. 13 shows results of a single run of the adss
gorithm. The left column of the figure shows thess
resulting positions and outlines of the mixture conass
ponents. The middle column shows the classificas
tion decision regions corresponding to the clustes?
ing shown on the left. The right column shows thes
“cluster assignment”—matrices that map states &0
actions, p(als). A value in kth position of/th row 690
of the matrix indicates the probability of selectingp1
an actionk once the pointx” is classified as be-eo2
longing to the clustef. Figure (a)—(c) demonstratesos

The search becomes more difficult and the limitations the performance of the annealed REM algorithisa
of the search algorithm become the deciding factor (d)—-(f)—that of the supervised model, and the bats
in the achieved performance. However, despite the in- tom row (g)—(i)—the performance of the unguidesbs
consistencies in the reward, the perceptual system cap-EM. The supervised case gives the best possikle

tures the input distribution better when aided by the Partitioning of the input while using three Gausses
reward than when no feedback is given. sians (component 4 is never used and therefore bas

a mixing coefficient 0). The REM uses all fouroo
components and aligns them with the reward partbs
tioning. Note that both clusters 2 and 4 select actien
aj. 703

0 1 2 3 4 5 6
Action 1 Action 2 Action 3

Fig. 11. Source and the reward structure for the reward bound
maximization task. The data forms four strong clusters, while the
reward is delivered for selecting action 1 if the data comes from
the area marked “action 1", etc.

6.2.3. Maximization of the reward
It is interesting to see how this model performs
on a problem in which the reward function is not

reward

03 ; ; ; ; ; ; ; ; ; ;

0 200 400 600 800 1000 1200 1400 1600 1800 2000

Fig. 12. Performance of EM, REM and a fully supervised estimator on the problem where reward structure does not coincide with the

likelihood (averaged over 2000 runs).
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(a) 6 (b) © (©)
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Fig. 13. Final cluster positions (left column), decision regions (middle column) and cluster assignment matrices (right column) for REM
(top row), supervised (middle row) and EM (bottom row) estimators after a single run.

7. Conclusions rithm shown in this paper the grounding is achievedir
a procedure allowing us to develop the configuratiom
This paper presented an extension to the EM al- with a high utility to the agent. 725

gorithm that allows for solving a range of learning One of the problems of the algorithm is the apprazs
tasks—from fully unsupervised, to fully supervised, priate choice of the parametgr In some cases it is727
including the partially and weakly labeled data. The convenient to have an asymmetric schedule for pozs
justification for entropic variations of the posterior tive and negative rewards, which adds another params-
to achieve arbitrary component assignment goals is eter to the set. 730
provided in the text. The algorithm allows for smooth  In other cases special care must be taken aboutthe
blending between likelihood- and reward-based factthatbothreward signal for the clustering algorithrmz
costs. and the state assignment for the action selection are
The paper shows that inclusion of the reward signal non-stationary. 734
into the process of state estimation is important if we
want to design agents without explicit programming
of their perceptual states. The feedback is not only Appendix A 735
important for computing the policy of action selec-
tion, but also as a guiding mechanism for developing  Theorem 1 shows that the a reward objective funcs
a robust grounded perception. In contrast to unsuper-tion F(x, 6) (Eq. (9)) is a lower bound on a log like=a7
vised techniques, where the final cluster configuration lihood, logf(9) and can be used for EM-type estimarss
is aligned with the likelihood of the data, in the algo- tion. 739
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Theorem 1. F(x,0) isa lower bound on log f(9).

Proof. Starting from (9), one can write

F(x,0) = =D(q(s)ll p(slx, 0))

pr(slx;r)
+Eqs) ['%m] +log f(9)
= /q(s) IOQMds
q(s)
+/q(s) 10gZ- D 4 1 log £0)
p(slx, 0)
_ p(slx, 0) p*(slx;r)
= /‘1(” ['°g ORI ]ds
+log f(0) = /q(s) |Og%ds

+log f(6) = —D(q(s)|lp*(s|x; 1))
+log £ (6).

In the last line of Eg. (A.1) the divergence,
D(q(s)||p*(s|x; r)) > 0 from which it follows that

(A1)

F(x,0) <log f(6), Vq(s).6,St.Y (q(s) =1
(A.2)

with equality holding iffg(s) = p*(s|x; r). This con-
cludes the proof. O
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