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Solving weak transduction with expectation maximization3
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6

Abstract7

In this paper we describe an algorithm designed for learning perceptual organization of an autonomous agent. The learning
algorithm performs incremental clustering of a perceptual input under reward. The distribution of the input samples is modeled
by a Gaussian mixture density, which serves as a state space for the policy learning algorithm. The agent learns to select
actions in response to the presented stimuli simultaneously with estimating the parameters of the input mixture density. The
feedback from the environment is given to the agent in the form of a scalar value, or areward, which represents the utility
of a particular clustering configuration for the action selection. The setting of the learning task makes it impossible to use
supervised or partially supervised techniques to estimate the parameters of the input density. The paper introduces the notion
of weak transduction and shows a solution to it using an expectation maximization-based framework. © 2002 Published by
Elsevier Science B.V.
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1. Introduction18

Designing the perceptual system for autonomous19

agents is often a difficult task. The autonomy of the20

agent implies that the behavior of the agent is contin-21

uously modified as the agent collects new experiences22

and observes outcomes of the actions that it decides23

to take. A typical setting of the reinforcement learn-24

ing task formulates a reward function, or a function25

according to which the world outside the agent’s body26

rewards or punishes the agent for taking actions.27

Since the reward function is rarely known, the agent28

has to experiment with the world to approximate this29

function from a just few samples and find apolicy,30

which lets the agent select its actions such that the31

average reward intake is maximized.32

To give a concrete example, imagine the situation33

where an agent is trained by a human trainer to respond34

∗ Corresponding author.
E-mail address: yivanov@media.mit.edu (Y.A. Ivanov).

to a set of voice commands. After hearing an utterance35

the agent performs an action. The trainer would like36

to have the agent respond correctly by providing (pos-37

sibly noisy) rewards and punishments after observing38

the actions that it performs in response. In this sce-39

nario the agent needs to learn two things: (a) parame-40

terized equivalence classes in the space of utterances;41

and (b) what action to select upon observing a sample42

from one of these classes. The first problem is that of43

clustering under reward, while the second is the typ- 44

ical policy learning task of reinforcement learning. 45

There exist a number of algorithms permitting learn-46

ing of policies of action selection given that the per-47

ceptual system provides a good set of features. But48

how can such features be efficiently estimated while49

the policy learning is taking place? This paper focuses50

on the solution to the problem by embedding a simple51

associative search algorithm into an expectation max-52

imization (EM) paradigm. 53

The task ofon-line estimation of the perceptual or- 54

ganization and the policy of action selection is cast55

1 0921-8890/02/$ – see front matter © 2002 Published by Elsevier Science B.V.
2 PII: S0921-8890(02)00199-9
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here as a problem of amulti-armed bandit with hidden56

state and is solved iteratively within the EM frame-57

work. The hidden state is represented by a parame-58

terized probability distribution over states tied to the59

reward. The parameterization is formally justified, al-60

lowing for smooth blending between likelihood- and61

reward-based costs.62

In addition, in this paper we introduces the notion63

of weak transduction in order to properly place the64

solution among the existing techniques used for unsu-65

pervised and transductive problems.66

The paper proceeds as follows: after introducing67

the multi-state bandit problem, Section 3 describes a68

modification of the reinforcement pursuit algorithm69

that allows us to include the estimation of the hidden70

state. Section 4 justifies modifications to the EM al-71

gorithm, which permits the inclusion of the reward in-72

formation into the parameter estimation and to solve73

the problem of learning perceptual organization along74

with policy learning. The two parts of the estimation75

procedure are brought together in Section 5, which76

presents the complete reinforcement-driven EM algo-77

rithm. Experiments with this algorithm showing the78

results for different objectives are presented in Section79

6. The paper concludes with Section 7, which points80

out contributions and some of the problems with the81

algorithm.82

1.1. Related work83

The work of this paper is based on the EM algo-84

rithm [1,6,12] extended to situate it within the context85

of reinforcement learning and to take advantage of86

the additional information that is available as a result87

of interaction with the environment. Neal and Hinton88

[4] show a view of the EM algorithm that makes the89

extensions made in this paper possible. This view is90

concisely presented by Minka in [3].91

At a certain parameter setting and binary reward,92

the algorithm shown here can be viewed as an on-line93

version of theλEM, presented by Nigam et al. [5], for94

learning with partially labeled data (albeit for a Gaus-95

sian mixture) and transductive inference [10]. How-96

ever, the problem solved by the algorithm described97

here is in general more difficult than the problem98

of transductive clustering, which Nigam’s algorithm99

solves as it does not have access to exact labels for100

the input data.101

To learn the policy of the action selection the learn-102

ing algorithm developed here uses anN -armed bandit 103

model (see, e.g., [8]). The multi-state policy is esti-104

mated with the aid of the reinforcement pursuit algo-105

rithm of Thathachar and Sastry [9], which is applied106

to a set of states simultaneously. 107

A problem similar to the one presented here was108

explored by Likas [2], who used a variant of the RE-109

INFORCE algorithm [11] to learn vector quantization110

on the batch data, aided by a reward signal. 111

The technique of probability matching for reinforce-112

ment learning used here is similar to that shown by113

Sabes and Jordan [7]. Using this technique, the algo-114

rithm presented here constructs a reward-dependent115

probability distribution to guide the algorithm towards116

the configuration resulting in higher value of the ex-117

pected reward. 118

2. Agent training 119

Let us for a moment return to the example of the120

agent training and introduce some notation. The train-121

ing consists of a series of steps, where superscript in-122

dicates the number of the step. At each step the trainer123

randomly selects a state,s, out of a finite set o states124

(see Fig. 2a). From that state the trainer produces an125

observation for the agent,xn, according to the proba-126

bility distribution p∗(x|s). The chosen state switches127

the trainer to one of its “reward modes”, where any128

action,an, that the agent might perform in response129

to xn will be rewarded, punished or ignored, by dis-130

pensing to it a reward,r, from a probability distribu- 131

tion conditioned on both trainer’s state and the agent’s132

action,p∗(r|s, a). 133

To clarify this, let us use an example. “A state”134

of the trainer corresponds to the trainer’s desire to135

evoke a particular response from the agent. For ex-136

ample, the trainer might choose to have the agent137

go away. The external manifestation of that state138

(s = want-it-to-go-away) might be a verbal command139

“Go away!”(xn =“ Go away!”). At this point the 140

agent might erroneously choose to come up closer141

(an = approach-trainer). The trainer lets the agent142

to get away with it this time by not punishing it143

(drawing a value of 0 from the probability distribu-144

tion p∗(r|s = want-it-to-go-away,a = approached- 145

trainer). 146
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Environment model
(1) Nature can be in one of a discrete set of statesS = {si}Ki=1;
(2) Nature selects a state,si , from a probability distributionp∗(s);
(3) From a conditional distributionp∗(x|s = si) nature generates an observationxn;
(4) Upon observing the agent taking an actionan, nature produces

a reward from the distributionp∗(r|s = si, a = an).147

The goal of the agent is to learn how to respond to148

the commands given to it by the trainer to maximize149

the intake of the reward. To solve this problem we pro-150

pose an agent architecture that consists of two parts—a151

perceptual model and apolicy. The perceptual model152

is a set of clusters in the input space, while the policy153

is a probability distribution, which for a given state154

gives a probability with which every agent’s action155

would produce a reward.156

The agent’s task is then to estimate parameters of157

the model shown in Fig. 2b. In that figurep(x|s) is158

the probability model of a categorys, which is sub-159

ject to parameter estimation;p(s|xn) is abelief state,160

calculated for the incoming observation from current161

model parameters;p(a|s) is apolicy, that is related to162

the past correlations between state, action and reward;163

andp(a|xn) is the probability distribution from which164

the action is selected upon observingxn.165

It is important to note that the perceptual organi-166

zation of the agent cannot be formed by providing it167

with supervised examples of correct perceptual class168

assignment. The trainer can only judge the quality169

of the agent’s perceptual organization based in the170

actions the agent selects in response to the external171

stimuli.172

3. Estimation of the associative policy173

The policy in the problem addressed here has a spe-174

cial and simple character—since all observations are175

assumed to be equally likely and independent—the176

trainer can produce any observation (e.g., utterance or177

gesture) at will—there is no need to keep the history as178

a part of the action context. In other words, the agent’s179

behavior does not change the state of the world, which180

only changes at random. The task of the policy esti-181

mation in such a simplified setting is termedassocia-182

tive search and requires no history of prior observa-183

tions to be stored. However, it is complicated by the184

necessity of perceptual learning, or state estimation,185

which places it in the category ofassociative search 186

with hidden state. 187

If the state space is modeled with a mixture distri-188

bution, then the problem can be described as follows:189

given an observation, estimate the state of the world190

from a finite set of states,S = {si}. Given the belief 191

about the state membership, select an action (label),192

which will result in the maximum amount of expected193

payoff received once the action is performed. With194

that payoff, update the parameters of the policy of the195

action selection and of the input distribution. This sec-196

tion will deal with solving the problem of policy esti-197

mation for such a setup. 198

3.1. Multi-state bandit problem 199

Due to the assumption that the observations are200

independent of each other, this problem can be for-201

mulated as a multi-stateN -armed bandit [8]. The 202

N -armed bandit is a gambling device with a set ofN 203

arms (see Fig. 1). Each arm has a probability distribu-204
tion associated with it, according to which the sample205
reward is drawn every time the arm is pulled. Most206
frequently the reward generating process is assumed207
to be stationary or, at most, slowly varying. 208

Now imagine that the bandit can be in any one of209
M states, each of which have different distributions210

of the reward. Before each trial the bandit switches211

to a new state and produces an observation,xn, from 212

Fig. 1. The 10-armed bandit model. Each of the 10 arms produces
a reward by drawing a sample from a corresponding distribution.
Each box signifies the reward distribution with some mean (hori-
zontal bar) and variance (height of the box).
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Fig. 2. (a) A generative model of the environment, shown as a 2-state 4-armed bandit. The bandit randomly switches between two states,
according to a sample drawn fromp∗(s). After selecting the state,s, an observation,xn is produced from a distributionp∗(x|s). (b)
The estimator consists of two parts—a perceptual model and a policy. Upon receiving the observation,xn, the distributionp(a|xn) is
constructed and an action is selected by drawing a sample from it. Upon delivery of the reward parameters of both the policy and the
perceptual model are updated.

the distribution associated with this state (see Fig. 2a).213

The player’s goal is to identify this state and perform214

action selection and model update for that state. When215

the state is perfectly known the problem reduces to216

M independentN -armed bandits. It is more difficult217

when the state is hidden and must be estimated.218

3.2. Solutions with known state219

When the state is exactly known, then the solu-220

tion for the multi-state bandit is achieved by indepen-221

dently solving a set of single-state bandits. A vari-222

ety of action-value methods, such assample average,223

reinforcement comparison andreinforcement pursuit,224

have been proposed to solve the single-state bandit225

problem.1 The general idea is to stochastically search226

the action space while updating the estimate of the re-227

ward function. A probability distribution over the ac-228

tion space (action preference) is built based on this es-229

timate and action selection is done via sampling from230

this distribution.231

The simplest pursuit method, adapted for the232

multi-state agent, maintains an estimate of the pay-233

off structure of the bandit via action-value func-234

tion, Qt(a, s). This function is updated at each step235

1 A classical method for solving bandit problems, which includes
balancing of exploration with exploitation involves computation
of the so called Gittins indices. This method provides an optimal
solution to a large class of problems, but assumes the knowledge
of prior distribution of possible problems.

based on the reward received from the bandit after236

pulling the arma by, e.g., an exponentially weighted237

sample-average method 238

Qt(a, s) = Qt−1(a, s)+ α(r −Qt−1(a, s)). (1) 239

Based on the value ofQt(a, s), the pursuit method240

updates its action preference model,p̂t (a|s), such that 241

the action with the highest value ofQt(a, s) increases 242

the probability of being selected by a small fraction,243

γ . Actions that are currently found to be suboptimal244

decrease their probability correspondingly. Leta∗
t+1 = 245

arg maxa(Qt (a, s)), then 246247

p̂t+1(a
∗|s) = p̂t (a

∗|s)+ γ (1 − p̂t (a
∗|s)), 248

p̂t+1(a|s) = p̂t (a|s)+ γ (0 − p̂t (a|s)), ∀a 
= a∗. 249

(2) 250

The convergence of the pursuit method is dependent251

upon values ofα andγ , which in all experiments of 252

this paper are set to beα = 0.1 andγ = 0.01. In addi- 253

tion, it is readily combined withε-greedy techniques254

to allow for non-stationary environments. 255

3.3. Solutions with hidden state 256

In the presence of the hidden state the problem of257

estimating the optimal action becomes more difficult.258

The uncertainty about the state can be dealt with by259

distributing the reward proportionally to the current260
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belief about the state membership of the observation261

xn.262

Most of the bandit search algorithms allow for for-263

mulating a policy, or a probability distribution over264

actions, given a state,p(a|s). This is an arbitrary dis-265

tribution which only expresses the current estimate of266

“action preferences”. The action is selected by sam-267

pling the conditional probability distributionp(a|xn),268

which can be calculated from the belief state and the269

policy, by marginalizing the joint,p(a, s|xn)270271

p(a|xn) =
∑
s

p(a, s|xn) =
∑
s

p(a|s, xn)p(s|xn)
272

=
∑
s

p(a|s)p(s|xn). (3)
273

The action selection now takes into account the uncer-274

tainty about the state, encoded in the state posterior.275

For the purpose of bandit updates, the reward is dis-276

tributed amongM bandits in proportion to their con-277

tribution top(a|xn)278279

Qt(a, s) = Qt−1(a, s)+ α(rp(s|xn)−Qt−1(a, s)).280

(4)281

The action preference update equations, Eq. (2) are282

left unchanged.283

4. Clustering under reward284

Given the agent’s architecture in Fig. 2b it is clear285

that the agent is not provided with direct supervision286

for the task of state estimation. This is because the287

feedback from the trainer rewards its action selection288

and not the sample classification in its perceptual sys-289

tem. On the other hand, for the purposes of percep-290

tual clustering this situation is better than having no291

feedback at all, since it does provide some degree of292

guidance, however small.293

State estimation under reward can be performed294

with the aid of the EM algorithm, which is often used295

for unsupervised clustering. This section introduces296

a technique for including the reward function into297

the EM re-estimation procedure. The new objective298

function is simply implemented in the EM framework299

while allowing the algorithm to “fall back” to the un-300

supervised mode if no reward is provided.301

4.1. Weak transduction 302

The EM algorithm is a powerful tool for solving un-303

supervised and transductive problems. It is often used304

as a clustering algorithm with the objective of maxi-305

mizing the likelihood of the data. This is a good heuris-306

tic to use for learning perceptual organization when307

no other evidence is available. However, by using an308

unsupervised technique for learning the perceptual or-309

ganization, one disregards its utility for the agent. 310

The utility of a perceptual configuration is measured311

by the reward that the agent collects while using it.312

Therefore, an algorithm is sought, which while capa-313

ble of learning from patterns in the input data alone,314

can be “directed” with the reward to choose a dif-315

ferent configuration providing higher payoff. That is,316

the solution should be an EM-type algorithm, which317

would allow the inclusion of reward into its objective318

for state estimation, while learning the policy of ac-319

tion selection. 320

The EM algorithm is frequently used forunsuper- 321

vised clustering of data by spatial proximity in the322

space of features. For a given number of clusters the323

algorithm proceeds iteratively first to calculate from324

the current cluster statistics the probability of data to325

be generated by each cluster, a state posterior,p(s|x); 326

and then to average the data, weighted by this poste-327

rior to update cluster statistics. 328

When the data comes with the known state attri-329

bution, sn = z, then the posterior of each data point330

turns into a deterministic function, having 1 at the slot331

of the corresponding state and 0 elsewhere: 332

p(sn = z|xn) = 1, p(sn 
= z|xn) = 0. (5) 333

Averaging with respect to this posterior, let us call it334

p01(s|x), results in the parameter estimation to de-335

compose into several independentsupervised estima- 336

tion problems. 337

When only part of the data has an exact label,sn = 338

z, then the solution to the clustering problem results339

in a mixture of the supervised solution for the labeled340

data and the unsupervised solution for the unlabeled341

set. This is an example oftransduction, where the 342

knowledge from the labeled data is transduced onto the343

unlabeled. The setting of a transductive classification344

is illustrated in Fig. 3a. In the figure the supervised345

solution disregards the additional indirect information346

provided by the density of the unlabeled data, while347
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Fig. 3. (a) Illustration of transductive inference for classification. Empty circles indicate the data with unknown class membership while
the colored circles indicate the labeled data, which belongs to one of two classes. Classification boundaries are different for estimators
with and without unlabeled data. (b) Weak transduction has no direct indication of the class label, but a probability distribution over labels.
Clear circles, again, show the unlabeled data, while large colored ones show the data that is weakly labeled. The area of the circle shaded
with a particular color is proportional to the probability with which this data point belongs to this class.

transductive inference takes into account the complete348

data set.349

Supervised, unsupervised and transductive learn-350

ing methods view the label information in a binary351

fashion—it is either present or absent. In contrast, un-352

der the circumstances of the problem where the knowl-353

edge about the label is inexact and subjective, the sit-354

uation is a bit worse than in the transductive setting,355

but better than unsupervised. With the current setting356

of the model parameters the posteriorp(s|xn) is com-357

puted as the state membership of the query point. If,358

consequently, some value of reward results from this359

assignment, it indicates the quality of the posterior360

given the current parameter settings. This is the situa-361

tion, which the algorithm being described encounters362

in the task of estimating a state. That is, in line with363

the above taxonomy, the data is labeled with aprob-364

ability distribution, as illustrated in Fig. 3b. It is con-365

venient to call data labeled in this fashionweakly la-366

beled, and the problem—aweak transduction. These367

terms properly place the problem among traditional368

machine learning tasks and emphasizes its relation to369

already existing techniques for learning with labeled,370

unlabeled and partially labeled data [5].371

4.2. Reward-driven variational bound372

Typically, the EM algorithm for density estimation373

is used for unsupervised maximization of the likeli-374

hood function of a parametric density model when ob-375

taining an analytical solution for the gradient in the376

parameter space is difficult. This is the case when we377

need to learn parameters of a mixture density. In the378

algorithm of this paper the input space is represented379

by a mixture density,p(x; θ) = ∑
i p(si)p(x|si; θi), 380

parameters of which,θ , need to be estimated. The goal381

of the algorithm, however, is to not simply maximize382

the likelihood of the data, but also take into account383

the external reward signal if such is present. To do so,384

in this section a new cost function is justified, which385

allows for inclusion of the reward in the traditional386

EM framework. 387

4.3. EM as a variational bound optimization 388

389

f (θ) =
∫
p(x, s, θ)

q(s)

q(s)
ds ≥

∏
s

(
p(x, s, θ)

q(s)

)q(s)
390

= g(x, θ). (6) 391

Here,g(x, θ) is a lower bound of the likelihood,f (θ), 392

andq(s) is some positive function ofs, integrating to 393

1. Typically, for the purposes of optimization off (θ), 394

the logarithm ofg(x, θ) is optimized 395396

G(x, θ) =
∫
q(s) logp(x, s, θ)− q(s) logq(s)ds.

397

(7) 398
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Fig. 4. The step in the direction of the gradient of the lower bound
of Eq. (8) is the step in the direction of the gradient of likelihood.

It follows from Eq. (6) that for any densityq(s),399

G(x, θ) is a lower bound on logf (θ). Now the den-400

sity q(s) needs to be found, which touches logf (θ)401

at θ . The cost function in Eq. (7) can be re-written as402

follows [4]:403

G(x, θ) = −D(q(s)‖p(s|x, θ))+ logf (θ), (8)404

whereD(p‖q) is a Kullback–Leibler divergence be-405

tween distributionsp and q. From here it is eas-406

ily shown thatG(x, θ) = logf (θ) when q(s) =407

p(s|x, θ), i.e., the bound will be touching the likeli-408

hood function at the currentθ , as shown in Fig. 4.409

4.4. Augmented reward bound410

In order to let EM include the expected reward into411

the optimization, the EM bound shown above needs to412

be augmented with a reward-dependent term. It is easy413

to do using the probability matching technique [7].414

To learn preferred cluster configurations, one415

can consider observation-state pairs and construct a416

reward-dependent probability distribution,p∗(s|x; r).417

The task of the learning algorithm is to select from a418

set of conditional distributionsp(S|X , θ), aided by419

rewards that are provided by the environment for some420

of the data points. These rewards can be thought of421

as inverse energies—pairs(s, x) receiving higher re-422

wards correspond to lower energy states. Energies can423

be converted to probabilities via the Boltzmann dis-424

tribution, which represents the ideal observation-state425

mapping—(s, x) pairs receiving higher rewards being426

more likely than pairs receiving low reward. If the427

parameters ofp(s|x, θ) are adjusted so that it is close428

to p∗(s|x; r), then the output of the algorithm will429

typically result in higher rewards.430

Following this line of reasoningp∗(s|x; r) is made431

proportional to the Boltzmann distribution as shown432

later in the text. Starting with Eq. (8), an additional433

term penalizes the estimator for being different from434

this distribution in the posterior: 435436

F(x, θ) = −D(q(s)‖p(s|x, θ)) 437

+Eq(s)
[
log

p∗(s|x; r)
p(s|x, θ)

]
+ logf (θ). (9)

438

When q(s) is set to the posterior distribution,439

p(s|x, θ), the expectation term turns into negative440

divergence between the posterior and,p∗(s|x; r): 441442

Eq(s)

[
log

p∗(s|x; r)
p(s|x, θ)

]∣∣∣∣
q(s)=p(s|x,θ) 443

= −D(p(s|x, θ)‖p∗(s|x; r)). (10) 444

In fact this term induces a different but very intuitive445

bound for the likelihood maximization (see Appendix446

A and Theorem 1 for proof) 447

F(x, θ) = −D(q(s)‖p∗(s|x; r))+ logf (θ). (11) 448

This function has the same form as Eq. (8), which449

implies that for practical purposes one may simply450

substitute the EM-induced posterior with the fictitious451

probability distribution,p∗(s|x; r). It provides the tra- 452

ditional bound for the likelihood function in the ab-453

sence of the reward. With the reward present, the al-454

gorithm performs only apartial E-step. However, the 455

step in the direction of the gradient of this bound leads456

uphill in the future expected reward. 457

Now p∗(s|x; r) needs to be constructed in a con-458

venient form. The main constraint that should be im-459

posed is that the additional term in Eq. (9) vanishes460

when after producing a labels for an observationx, 461

the rewardr received from the environment is 0. That462

is, 463

Eq(s)

[
log

p∗
r=0(s|x; r)
p(s|x, θ)

]
= 0 (12)

464

which implies thatp∗
r=0(s|x; r) = p(s|x, θ). The dis- 465

tributionp∗
r=0(s|x; r) can be set to be proportional to466

the Boltzmann distribution: 467

p∗(s|x; r) = p(s|x, θ)exp(βrp(s|x, θ))
Zβ(x, θ)

. (13)
468

This form ofp∗(s|x; r) is used throughout the rest of469

this paper. 470

The resulting bound is illustrated in Fig. 5. The471

augmented bound behaves just like the traditional EM472
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Fig. 5. (a) The augmented bound behaves just like the traditional EM bound when no reward is present. (b) With the reward present the
bound is no longer in contact with the likelihood at the current parameter setting, leading uphill in the expected reward.

bound when no reward is present. With the reward473

present, the bound is no longer in contact with the like-474

lihood at the current parameter setting, leading uphill475

in the expected reward. The point of contact with the476

bound is the value of parameter at which the posterior477

p(s|xn) equalsp∗(s|x; r).478

5. Reward-driven EM479

Now the two parts of the estimation procedure can480

be joined to get the complete solution to perceptual481

learning under reward. The algorithm is shown below482

and is illustrated in Fig. 6.483
The algorithm folds the action selection policy esti-484

mation into theexpectation step of the EM algorithm485
while using the immediate reward signal to control the486
entropy of the posterior for themaximization step. The487
algorithm is iterative and incremental, performing one488
iteration per data point, keeping only the sufficient489
statistics about the density function of the input space.490
The goal of the algorithm is to estimate the structure491
shown in Fig. 2. It proceeds as follows:492

Fig. 6. The reward-driven perceptual learning algorithm breaks
out of the expectation step of EM to compute the improved
posterior. Then the parameter estimation is performed with respect
to p(s|xn, r).

REM algorithm

(1) Initialize: set parameters to starting values;
for each new data point:

(2) E-step:
(a) calculatep(s|xn) using the Bayes rule and the

current parameters of the
observation model,p(x);

(b) Forward pass:
(i) computep(a|xn) (Eq. (3));
(ii) select an arm by samplingp(a|xn);

(c) Backward pass:
(i) collect reward and distribute it among the

states in fractions ofp(s|xn);
(ii) calculatep∗(s|xn, rn) (Eq. (13));

(3) M-step: maximize the resulting bound, Eq. (A.1)493

In the forward pass of the algorithm the processing494

breaks out of the EMs expectation step to select an495

action and update the bandit model as shown in Fig. 6.496

The yielded payoff serves as a control parameter for497

the EM. 498

6. Experiments 499

The experimental analysis of the algorithm pre-500

sented in this paper is performed on a series of tasks501

of increased difficulty. The first experiment does not502

include policy learning and is designed to simply test503

estimation of the perceptual model alone for a fixed504

optimal policy. Next, two experiments are performed,505

which involve the policy estimation. In the first exper-506

iment the reward is delivered by a bandit with only507

one arm per state producing a unit of reward. In the508

second experiment the binary restriction on the bandit509
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is removed allowing each arm to produce some value510

of reward, positive or negative. Finally, an experiment511

is performed with a variation on the reward structure512

such that the reward reinforces arbitrary objective, not513

related to the likelihood of the data.514

6.1. EM for state estimation515

The first experiment confirms the conclusions of the516

previous section, showing that it is in fact possible to517

use the EM framework for partially supervised tasks.518

It has to be shown that, given the context of the clas-519

sification task, the algorithm will result in choosing520

the clustering configuration that provides a higher ex-521

pected reward.522

In the experiments of this section, the performance523

of the algorithm is compared with the traditional EM.524

However, it should be understood that this comparison525

is for reference only, as the EM is not designed to526

perform the task that REM is targeting and can only527

provide the “worst case” performance.528

As a source of the data a Gaussian mixture,q(x) =529 ∑
q(s)q(x|s) is used. The algorithm estimates the530

densityp(x) = ∑
p(s)p(x|s) by adjusting its param-531

eters in an on-line fashion, upon seeing every data532

point, xn. The reward is delivered after an attempt to533

classifyxn to be generated by a particular component534

of p(x|si). The experiment proceeds as follows:535

(1) Initialize the generator mixture, q(x): for each
state,si , randomly select a Gaussian observation
model—µi ∼ N(0,2I ) andσi = I ;

(2) Iterate:
(a) randomly choose a generator state,sk;
(b) generate an observation,xn, distributed

with µk andσk;
(c) using current parameters of the model,
p(x), select a labelln;

(d) if ln = sk, deliver a reward of 1, otherwise−1;
(e) update parameters of the model

(i) computep∗(s|xn; r̂) via Eq. (13);
(ii) perform the E-step of the EM algorithm

usingp∗(s|xn; r̂) in place ofp(s|xn).536

The results of the incremental reinforced binary537

classification experiments are shown in Fig. 7. The top538

plot shows the attained likelihood of the data after a539

number of randomly generated samples. The horizon-540

tal axis shows the number of iterations (data points541

seen so far) with the likelihood plotted along the verti-542

cal axis. It is curious to see that the unguided EM (with543

β = 0) attains the lowest likelihood. This is partially544

due to the fact that the EM is more likely to get stuck545

in the local maxima, while the reward signal delivers546

some extra energy for the algorithm to get out of it.547

The intuition behind choosing the parameterβ is 548

that as it increases, the entropy of the probability dis-549

tribution from which a label is selected drops. Char-550

acteristic behavior of the algorithm can be observed551

at extreme values ofβ with β = −∞, the distribution 552

over labels is uniform and the label selection is per-553

formed purely by chance, with no regard to neither the554

reward nor mixture parameters. Atβ = 0 the distribu- 555

tion over labels exactly equals to the mixture posterior,556

that is the algorithm disregards the reward completely,557

performing the unsupervised parameter estimation as558

mixture parameters dictate. Settingβ to +∞ results 559

in a “winner-take-all” label assignment. 560

The second plot in Fig. 7 complements the likeli-561

hood plot by showing the classification accuracy of562

the algorithm at different values of the parameterβ. It 563

is expected that the accuracy of the EM used for clas-564

sification should not be better than chance, since even565

when EM converges to the correct set of classes it does566

not care which source cluster corresponds to which567

estimated component. Positive values of the parame-568

terβ drive the extended EM towards correct labeling,569

while negativeβ drives the algorithm away from it,570

as can be seen in the accuracy plot. It is interesting571

that none of the settings of the parameterβ result in 572

the optimal accuracy of 1. There are two reasons for573

this. First, any fixed value ofβ less than∞ will cause 574

a sub-optimal label to be selected, albeit with small575

probability. The second reason is related to the fact576

that even optimal Bayes classifier will not achieve the577

perfect classification rate as randomly placed source578

Gaussian components may significantly overlap. 579

The influence ofβ is further illustrated in Fig. 8. 580

The figure shows the resulting clustering attained with581

different values ofβ. It can be seen that the clusters582

for positive and negative values ofβ have opposite 583

labeling while zero-valuedβ is labeled by chance. In584

this run the source distribution has the component 1585

(green) at the position (5, 5) and component 2 (red) at586

(0, 0), which is correctly identified by the algorithm587

with large positive value ofβ. 588
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Fig. 7. Performance of the REM averaged over 1000 runs for different values of the parameterβ as compared with EM. Curiously, even
negative values ofβ result in higher likelihood than that attained by EM.

6.2. Multi-state bandit with hidden state589

In contrast to the previous experiment a policy esti-590
mation is now introduced. The estimation of the per-591
ceptual state has to be performed on the basis ofin-592
direct reward attribution, i.e., the state now becomes593

hidden.594

6.2.1. Maximization of the likelihood—binary bandit595

This section shows the results on problems in which596
the reward function is well aligned with the likeli-597

Fig. 8. Results of a run of the algorithm for different values ofβ starting from the same initial conditions. For coefficients with opposite
signs the labeling is reversed, while the EM produces the labeling by chance. In this run the source distribution has the component 1 at
the position (5, 5) and component 2 at (0, 0).

hood, i.e., the problems where maximization of the598

reward results in maximization of the likelihood. Re-599

sults for this task are shown in Fig. 9. Unlike in600

the experiments of the previous section, the cluster601

identity is not important, as long as they correctly602

partition the input space. The multi-state bandit es-603

sentially implements the mapping from clusters to604

labels. 605

It is particularly interesting to see if the reward-based606
estimator of the input density results in a better fit607
of the resulting observation density to the one that608
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Fig. 9. (a) Performance on the 2-state 10-armed binary bandit. (b) Divergence between estimated and true source distributions.

gets reinforced than the regular EM. In the case609

of a Gaussian mixture density with a known num-610

ber of components (known number of states), the611

fit can be measured with the symmetric KL diver-612

gence613614

S(p‖q) = 1
4[(µp − µq)

T(&&&−1
p +&&&−1

q )(µp − µq)615

+tr(&&&−1
p &&&q +&&&−1

q &&&p − 2I)]. (14)616

For a lack of a better analytical method, this quan-617

tity is computed for every combination of source618

and estimator components and the minimum value is619

selected.620

The experiment with a 2-state 10-arm bandit is per-621

formed as follows:622

(1) Initialize: for each state, randomly select a
Gaussian observation model:µi ∼ N(0,2I ),
σi = I ;

(2) Iterate:
(a) randomly choose a generator state,sk;
(b) generate an observation,xn,

fromN (µk, σk);
(c) using current parameters select an actionan;
(d) if an is the same as the optimal arm deliver

a reward of 1, otherwise−1;
(e) update parameters of the model; 623

One variation on the algorithm described in this624

paper is the REM with the parameterβ changing 625

over time. For example, slowly increasingβ, start- 626

ing with the value of 0 will cause the algorithm to627
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not pay any attention to the reward initially, while628

slowly shifting towards the “winner-take-all” mode629

after some period of time. Let us call it annealed630

REM.631

Fig. 9a shows the average amount of reward col-632
lected by bandits trained with the EM, REM and633
annealed REM algorithms compared to the case634
where the input space is estimated via a supervised635
estimator. As the goal is an accurate reproduction of636
the source mixture, these plots need to be considered637
along with the divergence plots Eq. (14), given in638
Fig. 9b. The annealed REM algorithm, which slowly639
increases the value of the parameterβ, performs640
very well, converging even faster than the supervised641
case. It is somewhat puzzling, but easily explained642
by the fact that the annealing amounts to simulta-643
neous exploration of all states of the bandit in the644
initial stages. This gives a good set of initial condi-645

Fig. 10. (a) Performance on the full 2-state 10-armed bandit. (b) Divergence between estimated and true source distributions.

tions for subsequent search in each bandit whenβ 646

increases. 647

6.2.2. Maximization of the likelihood—full bandit 648

The algorithm works with the full bandit, where649

each action taken by the algorithm results in some650

value of the reward—positive or negative, with no651

modifications. The results are shown in Fig. 10a. As in652

the case with the binary bandit, the initial convergence653

of both REM and annealed REM is faster than the su-654

pervised case. The advantage, compared to EM, how-655

ever, seems less spectacular than in the binary case.656

The divergence plots (Fig. 10b), as before, show better657

fit of REM and annealed REM to the source distribu-658

tion. 659

This experiment shows the worst case scenario for660

the algorithm. The reward structure here has many lo-661

cal maxima and is “distracting” for the on-line search.662
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Fig. 11. Source and the reward structure for the reward bound
maximization task. The data forms four strong clusters, while the
reward is delivered for selecting action 1 if the data comes from
the area marked “action 1”, etc.

The search becomes more difficult and the limitations663

of the search algorithm become the deciding factor664

in the achieved performance. However, despite the in-665

consistencies in the reward, the perceptual system cap-666

tures the input distribution better when aided by the667

reward than when no feedback is given.668

6.2.3. Maximization of the reward669

It is interesting to see how this model performs670
on a problem in which the reward function is not671

Fig. 12. Performance of EM, REM and a fully supervised estimator on the problem where reward structure does not coincide with the
likelihood (averaged over 2000 runs).

aligned with the likelihood. The problem in this sec-672

tion is as follows—the input data is generated from673

four 2-dimensional Gaussians. However the reward is674

delivered in such a way that actiona1 is rewarded 675

whenxn1 < 1.5, a2 when 1.5 ≤ x1 < 4 anda3 when 676

x1 > 4, as shown in Fig. 11. 677

The performance of the model on this task is shown678

in Fig. 12. After 2000 iterations the EM estimator679

yields an average reward of 0.58, annealed REM—680

0.82 and supervised estimator—0.96 with the maxi- 681

mum possible reward of 1. 682

Fig. 13 shows results of a single run of the al-683

gorithm. The left column of the figure shows the684

resulting positions and outlines of the mixture com-685

ponents. The middle column shows the classifica-686

tion decision regions corresponding to the cluster-687

ing shown on the left. The right column shows the688

“cluster assignment”—matrices that map states to689

actions,p(a|s). A value in kth position of lth row 690

of the matrix indicates the probability of selecting691

an actionk once the pointxn is classified as be-692

longing to the clusterl. Figure (a)–(c) demonstrates693

the performance of the annealed REM algorithm,694

(d)–(f)—that of the supervised model, and the bot-695

tom row (g)–(i)—the performance of the unguided696

EM. The supervised case gives the best possible697

partitioning of the input while using three Gaus-698

sians (component 4 is never used and therefore has699

a mixing coefficient 0). The REM uses all four700

components and aligns them with the reward parti-701

tioning. Note that both clusters 2 and 4 select action702

a1. 703
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Fig. 13. Final cluster positions (left column), decision regions (middle column) and cluster assignment matrices (right column) for REM
(top row), supervised (middle row) and EM (bottom row) estimators after a single run.

7. Conclusions704

This paper presented an extension to the EM al-705

gorithm that allows for solving a range of learning706

tasks—from fully unsupervised, to fully supervised,707

including the partially and weakly labeled data. The708

justification for entropic variations of the posterior709

to achieve arbitrary component assignment goals is710

provided in the text. The algorithm allows for smooth711

blending between likelihood- and reward-based712

costs.713

The paper shows that inclusion of the reward signal714

into the process of state estimation is important if we715

want to design agents without explicit programming716

of their perceptual states. The feedback is not only717

important for computing the policy of action selec-718

tion, but also as a guiding mechanism for developing719

a robust grounded perception. In contrast to unsuper-720

vised techniques, where the final cluster configuration721

is aligned with the likelihood of the data, in the algo-722

rithm shown in this paper the grounding is achieved in723

a procedure allowing us to develop the configuration724

with a high utility to the agent. 725

One of the problems of the algorithm is the appro-726

priate choice of the parameterβ. In some cases it is727

convenient to have an asymmetric schedule for posi-728

tive and negative rewards, which adds another param-729

eter to the set. 730

In other cases special care must be taken about the731

fact that both reward signal for the clustering algorithm732

and the state assignment for the action selection are733

non-stationary. 734

Appendix A 735

Theorem 1 shows that the a reward objective func-736

tion F(x, θ) (Eq. (9)) is a lower bound on a log like-737

lihood, logf (θ) and can be used for EM-type estima-738

tion. 739
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Theorem 1. F(x, θ) is a lower bound on logf (θ).740741

Proof. Starting from (9), one can write742743

F(x, θ) = −D(q(s)‖p(s|x, θ))744

+Eq(s)
[
log

p∗(s|x; r)
p(s|x, θ)

]
+ logf (θ)

745

=
∫
q(s) log

p(s|x, θ)
q(s)

ds
746

+
∫
q(s) log

p∗(s|x; r)
p(s|x, θ) ds + logf (θ)

747

=
∫
q(s)

[
log

p(s|x, θ)
q(s)

+ log
p∗(s|x; r)
p(s|x, θ)

]
ds

748

+logf (θ) =
∫
q(s) log

p∗(s|x; r)
q(s)

ds
749

+logf (θ) = −D(q(s)‖p∗(s|x; r))750

+logf (θ). (A.1)751

In the last line of Eq. (A.1) the divergence,752

D(q(s)‖p∗(s|x; r)) ≥ 0 from which it follows that753754

F(x, θ) ≤ logf (θ), ∀q(s), θ, s.t.
∑

(q(s)) = 1755

(A.2)756

with equality holding iffq(s) = p∗(s|x; r). This con-757

cludes the proof. �758

759
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