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Boosting the margin:
A new explanation for the effectiveness of voting methods
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Abstract.  One of the surprising recurring phenomena
observed in experiments with boosting isthat the test error
of the generated hypothesisusually does not increase asits
size becomes very large, and often is observed to decrease
even after thetraining error reaches zero. In thispaper, we
show that this phenomenon is related to the distribution of
margins of the training examples with respect to the gen-
erated voting classification rule, where the margin of an
example is simply the difference between the number of
correct votes and the maximum number of votes received
by any incorrect label. We show that techniquesused in the
analysis of Vapnik’ssupport vector classifiers and of neural
networkswith small weightscan be applied to voting meth-
ods to relate the margin distribution to the test error. We
also show theoretically and experimentally that boosting is
especidly effective at increasing the margins of thetraining
examples. Finaly, we compare our explanation to those
based on the bias-variance decomposition.

1 INTRODUCTION

In recent years, there has been growing interest in learn-
ing agorithms which achieve high accuracy by voting the
predictions of several classifiers. For example, severa re-
searchershavereported significant improvementsin the per-
formance of decision-treelearning algorithms such as C4.5
or CART using voting methods[4, 5, 7, 8, 10, 15].

We refer to each of the hypotheses that is combined in
the vote as a base hypothesis and to the final voted hypoth-
esis as the combined hypothesis.

Asexamples of the effectiveness of these methods, con-
sider theresults of the followingtwo experiments using the
“letter” dataset.? Inthefirst experiment, weused Breiman's
bagging method [4] on top of C4.5. That is, wereran C4.5
many times on random “bootstrap” subsamples and com-
bined the computed trees using simple voting. On theleft of
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Figure 1, we have shown the training and test error curves
(lower and upper curves, respectively) of the combined hy-
pothesisas afunction of the number of treescombined. The
test error of C4.5 on this dataset (run just once) is 13.8%.
The test error of bagging 1000 trees is 6.6%, a significant
improvement. (Both of these error rates are indicated in the
figure as horizonta grid lines.)

In the second experiment, we used Freund and Scha
pire'sAdaBoost algorithm [12] ontop of C4.5for the same
dataset. This algorithm is similar to bagging, except that
the subsamples are chosen in amanner which concentrates
on the “hardest” examples. The results of this experiment
are also shown in Figure 1. Note that boosting drives the
test error down even further to just 3.1%.

These error curves reveal a remarkable phenomenon,
first observed by Drucker and Cortes[8], and later by Quin-
lan[15] and Breiman[5]. Ordinarily, as hypothesesbecome
more and more complex, we expect their generalization er-
ror eventually to degrade. Yet these curves revea that test
error does not incresse for either method even after 1000
trees have been combined (by which point, the combined
hypothesis involves more than two million decision-tree
nodes). How can it be that such complex hypotheses have
such low error rates? This seems especially surprising for
boosting in which each new decision tree is trained on an
ever more speciaized subsample of the training set.

Another apparent paradox isrevealed inthe error curve
for AdaBoost. After just five trees have been combined,
the training error of the combined hypothesis has already
dropped to zero, but the test error continues to drop? from
8.4% on round 5 down to 3.1% on round 1000. Surely, a
combination of five trees is much simpler than a combina-
tion of 1000 trees, and both perform equaly well on the
training set (perfectly, in fact). So how can it be that the
larger and more complex combined hypothesis performs so
much better on the test set?

2Even when the training error of the combined hypothesis
reaches zero, AdaBoost continuesto obtain new base hypotheses
by training the base learning algorithm on different subsamplesof
thedata. Thus, the combined hypothesiscontinuesto evolve, even
after itstraining error reacheszero. See Section 3 for more detail.



Bagging Boosting

20: 20:

15 15ﬂ

: N
- L

1000 10 100 1000

10 100

1 05 “os 11 05

Bagging Boosting
1.0- -

1.0

0.5- 0.5-

Figure 1: Error curves and margin distribution graphs for bagging and boosting C4.5 on “letter” dataset.

The results of these experiments seem to contradict Oc-
cam’s razor, one of thefundamental principlesin thetheory
of machine learning. This principle states that in order to
achieve good test error, the hypothesis should be as simple
as possible, and that the difference between the training
error and the test error will increase when the number of
parameters that are needed to describe the hypothesis in-
creases.

Indeed, such an analysis of boosting (which could aso
be applied to bagging) was carried out by Freund and
Schapire [12] using the methods of Baum and Haussler [2].
This analysis predicts that the test error eventualy will
increase as the number of base hypotheses combined in-
creases. Such a predictionis clearly incorrect in the case
of the experiments described above, as was pointed out by
Quinlan [15] and Breiman [5]. The apparent contradiction
is especidly stark in the boosting experiment in which the
test error continuesto decrease even after the training error
has reached zero.

Breiman [5] and othershave argued that voting methods
work primarily by reducing the “variance’ of a learning
algorithm. This explanation is useful for bagging in that
bagging tends to be most effective when the variance is
large. However, for boosting, this explanation is, at best,
incomplete. As will be seen in Section 5, large variance
of the base hypothesesis not a requirement for boosting to
be effective. In some cases, boosting even increases the
variance while reducing the overall generalization error.

In this paper, we present an alternative theoretical anal-
ysisof voting methods, applicable, for instance, to bagging,
boosting, “arcing” [5] and ECOC[7]. Our approachisbased
on a similar result presented by Bartlett [1] in a different
context. We prove rigorous upper bounds on the general-
ization error of voting methods in terms of a measure of
performance of the combined hypothesis on the training
set.  Our bounds also depend on the number of training
examples and the “ complexity” of the base hypotheses, but
do not depend explicitly on the number of base hypothe-
ses. Besides explaining the shape of the observed learning
curves, our analysis may be helpful in understanding why
these algorithms fail or succeed, and may aso lead to the
design of even more effective voting methods.

Thekey ideaof thisanalysisisthefollowing. Inorder to
analyze the generalization error, one should consider more
than just the training error, i.e., the number of incorrect
classificationsin the training set. One should aso takeinto

account the confidence of the classifications. Here, we use
a measure of the classification confidence for which it is
possible to prove that an improvement in this measure of
confidence on the training set guarantees an improvement
in the upper bound on the generalization error.

Consider a combined hypothesis whose prediction is
the result of a vote (or a weighted vote) over a set of base
hypotheses. Suppose that the weights assigned to the dif-
ferent base hypotheses are normalized so that they sum to
one. Fixing our attention on a particular example, we re-
fer to the sum of the weights of the base hypotheses that
predict a particular label as the weight of that label. We
define the classification margin for the example as the dif-
ference between the weight assigned to the correct label
and the maxima weight assigned to any single incorrect
label. It is easy to see that the margin is a number in the
range [—1, 1] and that an example is classified correctly if
and only if its margin is positive. A large positive margin
can be interpreted as a“confident” correct classification.

Now consider the distribution of the margin over the
whole set of training examples. To visualize this distribu-
tion, we plot the fraction of examples whose margin is at
most z as a function of z € [—1,1]. We refer to these
graphs as margin distribution graphs. On the right side of
Figure 1, we show the margin distribution graphs that cor-
respond to the experiments described above. The graphs
show the margin distributionsfor bagging and boosting af -
ter 5, 100 and 1000 iterations, indicated by short-dashed,
long-dashed (mostly hidden) and solid curves, respectively.

Our main observationisthat both boosting and bagging
tend to increase the margins associated with examples and
converge to a margin distributionin which most examples
have large margins. Boosting is especiadly aggressive in
its effect on examples whose initial margin is small. Even
though the training error remains unchanged (at zero) after
round 5, the margin distribution graph changes quite sig-
nificantly so that after 100 iterations all examples have a
margin larger than 0.5. In comparison, on round 5, about
7.7% of the examples have margin below 0.5. Aswe see
from this and other experiments detailed later in the paper,
this type of reduction in the fraction of training examples
with small margin is a good predictor of improvementsin
thetest error.

The idea that maximizing the margin can improve the
generalization error of aclassifier was previously suggested
and studied by Vapnik [19] and led to hiswork with Cortes



on support-vector classifiers [6], and with Boser and Gu-
yon [3] on optimal margin classifiers. In Section 6, we dis-
cuss the rel ation between our work and Vapnik’sin greater
detail.

Shawe-Taylor et al. [16] gave bounds on the genera -
ization error of these classifiers in terms of the margins,
and Bartlett [1] used related techniques to give a similar
bound for neura networks with small weights. Since vot-
ing classifiers are a specia case of these neura networks,
an immediate conseguence of Bartlett’sresult isabound on
the generdization error of avoting classifier interms of the
fraction of training examples with small margin.

In Section 2, we use a similar but simpler approach to
give a dightly better bound. Here we give the main intu-
ition behind the proof. Thisideabringsusback to Occam'’s
razor, though in a rather indirect way. Recal that an ex-
ample is classified correctly if its margin is positive. If an
example is classified by a large margin (either positive or
negative), then small changesto the weightsin the majority
vote are unlikely to change the label. If most of the exam-
ples have alarge margin then the classification error of the
origina majority vote and the perturbed magjority vote will
besimilar. Supposenow that we had asmall set of weighted
majority rulesthat was fixed ahead of time, called the “ap-
proximating set.” Oneway of perturbing the weights of the
hypothesis mgjority vote isto find a nearby rule within the
approximating set. As the approximating set is small, we
can guaranteethat the error of the approximating ruleonthe
training set is similar to its generalization error, and as its
error issimilar to that of theorigina rule, thegeneralization
error of the original rule should also be small. Thus, we
are back to an Occam’s razor argument in which instead of
arguing that the classification ruleitself issimple, we argue
that theruleiscloseto asimplerule.

Boostingisparticularly good at finding hypotheseswith
large margins in that it concentrates on those examples
whose margins are small (or negative) and forces the base
learning algorithmto generate good classificationsfor those
examples. This process continues even after the training
error has reached zero, which explains the continuing drop
in test error.

In Section 3, we show that the powerful effect of boost-
ing onthemarginisnot merely an empirical observation but
isin fact theresult of a provable property of the algorithm.
Specifically, we are ableto prove upper boundson the num-
ber of training examples below a particular margininterms
of thetraining errorsof theindividual base hypotheses. Un-
der certain reasonable conditions, these bounds imply that
the number of training examples with small margin drops
exponentialy fast with the number of base hypotheses.

In Section 4, we give more examples of margin distri-
bution graphs for other datasets, base learning agorithms
and combination methods.

In Section 5, we discusstherd ation of our work to bias-
variance decompositions, and in Section 6, we compare our
work to Vapnik’s optimal margin classifiers.

2 GENERALIZATION ERROR ASA
FUNCTION OF MARGIN
DISTRIBUTIONS

In this section, we prove that achieving a large margin on
thetraining set resultsin an improved bound on the gener-
alization error. Thisbound does not depend on the number
of hypothesesthat are combined in the vote. The approach
we take is similar to that of Shawe-Taylor et a. [16] and
Bartlett [1], but the proof here is simpler and more direct.
A dightly weaker version of Theorem 1 isaspecia case of
Bartlett’smain result.

We give a proof for the specia case in which there
are just two possible labels {—1,+1}. The proof can be
generalized to larger finite sets of labels.

Let # denote the space from which the base hypothe-
ses are chosen, for example, for C4.5 or CART, it is the
space of decision trees. A base hypothesis h € H is
a mapping from an instance space X to {—1,+1}. We
assume that examples are generated independently at ran-
dom according to some fixed but unknown distribution D
over X x {—1,+1}. Thetraining set isalist of m pairs
S = {(z1,11), (z2,¥2), - - -, (zm, ym)) chosen according to
D. Weuse P, ,)~p [A] to denote the probability of the
event A when the example (z,y) is chosen according to
D, and P, )~ s [A] to denote probability with respect to
choosing an example uniformly at random from the train-
ing set. When clear from context, we abbreviate these by
Pp[A]l and Ps [A]. Weuse Ep [A] and Eg [A] to denote
expected value in a similar manner.

We define the convex hull C of # as the set of map-
pings that can be generated by taking a weighted average
of hypotheses from #:

Ci{f:xHZahh(m)

heH

CLhZO; Zahzl}
h

where it is understood that only finitely many a;’s may be
nonzero.® The majority vote rule that is associated with f
gives the wrong prediction on the example (z,y) only if
yf(z) < 0. Also, the margin of an example (z,y) in this
caseissimply yf(z).

The following theorem, the main result of this section,
states that with high probability, the generaization error of
any magjority vote hypothesiscan be boundedin termsof the
number of training examples with margin bel ow athreshold
6, plus an additional term which depends on the number of
training examples, some “complexity” measure of #, and
thethreshold ¢ (preventing us from choosing  too closeto
zero).

Because of space constraints, weprovethetheoremonly
in the case that the base hypothesis space H is finite, such
as the set of al decision trees of a given size over a set of
discrete-valued features. In this case, our bound depends

3A finite support is not a requirement for our proof but is
sufficient for the application here which is to majority votes over
afinite number of base hypotheses.



only on log |#|, which is roughly the description length of
a hypothesisin #. This means that we can tolerate very
large hypothesis classes.

If # isinfinite—such as the class of decision trees over
continuous features—we state our bound, without proof, in
terms of the VC-dimension of .

Note that the theorem applies to every majority vote
hypothesis, regardless of how it is computed. Thus, the
theorem applies to any voting method, including boosting,

bagging, etc.

Theorem 1 Let S be a sample of m examples chosen in-
dependently at random according to D. Assume that the
base hypothesis space #H is finite, and let § > 0. Then
with probability at least 1 — § over the random choice of
the training set .S, every weighted average function f € C
satisfies the following bound for all § > 0:

Pp [yf(z) <0] <Ps [yf(z) < 6]

1 (logmlog|#]| A\ M2
+0 (\/ﬁ (762 —|—Iog(1/<))) )

More generally, for finite or infinite 4 with VC-dimension
d, the following bound holds as well:

Pp [yf(z) < 0] <Ps [yf(z) <]

1 (dlogi(m/d) 1z
+0 (\/ﬁ <7€2 + log(l/a)) ) .

Proof: We only prove thefirst case in which # isfinite.
For the sake of the proof we define Cx to be the set of
unweighted averages over N dlements from % :

CN_{f T — Zh ) |h; e%}

We allow the same h € # to appear multipletimesin the
sum. Thisset will play the role of the approximating set in
the proof.

Any magjority vote hypothesis f € € can be associated
with adistributionover # as defined by the coefficients a, .
By choosing N elements of # independently at random
according to this distribution we can generate an element
of Cx. Using such a constructionwemap each f € C toa
distribution @ over Cy.

Our god is to upper bound the generalization error of
fecC. Forany g € Cx and 6 > O we can separate this
probability into two terms:

Pp [yf(z) <0 < Pp[yg(z) <0/2]
P [ug(e) > /2| uf(x) <]

As this inequality holds for any g € Cn, we can take the
expected value of the right hand side with respect to the
distribution @ and get:

Pp [yf(z) < 0]

INA

Pp o [yg(x) < 0/2]

+Pp g0 [yg(z) > 6/2 ] yf(x) <O

= Egzuo [Pp [yg(x) <6/2]]

+Ep [Pyug [yg(z) > 6/2] yf(x) <O]]. (1)

We bound both terms in (1) separately, starting with
the second term. Consider afixed example (z,y) and take
the probability inside the expectation with respect to the
random choice of g. Itisclear that f(z) = Eguo [g(2)]
so the probability inside the expectation is equa to the
probability that the average over N random draws from
adistribution over {—1 +1} is different by 6/2 from its
expected value. The Chernoff bound yields

P [yg(x) > 0/2 | yf(x) <O <e™V/% (2

To upper bound the first term in (1) we use the union
bound. That is, the probability over the choice of S that
thereexistsany g € Cy and 8 > O for which

Pp [yg(z) < 6/2] > Ps [yg(x) <0/2] +en

isatmost (N+1) |CN|e—2mf§V. Theexponential term comes
from the Chernoff bound which holdsfor any single choice
of g and §. Theterm (N + 1)|Cn| is an upper bound on
the number of such choices where we have used the fact
that, because of the form of functionsin C, we need only
consider vaues of 6 of theform 2i/N fori = 0,..., N.
Notethat |Cx| < |H|V.

Thus, if weset ey = \/(1/2m) In((N + 1)[H|N /dn),
and take expectation with respect to Q, we get that, with
probability at least 1 — d

Ppgeo [y9(z) < 0/2] <Psguo [yg(x) <0/2] +en

(3)
for every choice of 4, and every distribution Q.

To finish the argument we relate the fraction of the
training set on which yg(z) < #/2 tothefraction on which
yf(z) < 6, which isthe quantity that we measure. Notice
that

Psgno [y9(x) < 0/2] <Ps[yf(x) < 0]
+Es [Pyuo [yg(2) < 0/2]yf(z) > 0]]. (4
To bound the expression inside the expectation we use the
Chernoff bound as we did for Equation (2) and get
2
Pyoo [yg(x) <0/2|yf(z) > 0] < N"/8. (5)

Let 0y = J/(N(N + 1)) so that the probability of
failure for any N will be at most )"~ ,dnv = 4. Then
combining Equations (1), (2), (3), (4) and (5), we get that,
with probability at least 1 — §, for every § > 0 and every
N>1

Pp [yf(2) < 0] < Ps [yff ) ]

N€2/8 \/
m
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Finally, the statement of thefirst part of thetheoremfollows
by setting N' = [(4/6%) In(m/In|#|)]. |

We can extend the proof given abovetothemoregenera
case inwhich # may beinfiniteusing vV C-dimension rather
than log |#|. Here, we sketch an aternative, more general
approach which can be applied to any class of rea-valued
functions. The use of an approximating class, such as Cy
in the proof of Theorem 1, is central to our approach. We
refer to such an approximating classasasloppy cover. More
formally, for a class F of red-valued functions, atraining
set S of length m, and positive real numbers ¢ and ¢, we
say that afunction class F isan e-sloppy ¢-cover of 7 with
respect to S if, for dl f in F, there exists f in F with
Povs [|f(x) = f(x)| > 6] < c. LeL (¥, 6, ¢, m) denote

the maximum, over all training sets S of size m, of thesize
of the smallest e-doppy #-cover of F with respect to S.
Standard techniques allow us to prove that the probability
(over the random choice of S) that there existsan f in F
for which

Pp [yf(z) <0 >Ps [yf(z) <] +c

isnomorethan 2\ (F, 6/2, ¢/8, 2m) exp(—e?m/32). (The
proof isessentialy identical to that of Theorem 1 in Bart-
lett [1].)

The second part of Theorem 1 can now be proved by
congtructing a sloppy cover using the same probabilistic
argument in the proof above, i.e., by choosing an element of
Cn randomly by sampling functions from 7. In addition,
this result leads to a dight improvement (by log factors)
of the main result of Bartlett [1], which gives bounds on
generaization error for neural networks with real outputs
in terms of the size of the network weights and the margin
distribution.

3 THE EFFECT OF BOOSTING ON
MARGIN DISTRIBUTIONS

We now give theoretical evidence that Freund and Scha-
pire's [12] AdaBoost agorithm is especialy suited to the
task of maximizing the number of training examples with
large margin.

Space limitations permit only a terse review of their
algorithm. We adopt the notation used in the previous
section, and restrict our attention to the binary case.

Boosting works by sequentialy rerunning a base learn-
ing algorithm, each time using a different distribution over
training examples. That is,oneachroundt = 1,...,7, a
distribution D, iscomputed over the training examples, or,
formally, over theset of indices{1, ..., m}. Thegoal of the
base learning a gorithm then isto find a hypothesis h; with
smal error ¢, = Piup, [yi # he(z;)]. The distribution
used by AdaBoost isinitialy uniform (D4(i) = 1/m), and
then is updated multiplicatively on each round: D;41(7) =
Dt(l) e(p(—ylatht(xl))/zt Here, Qy = ; In(( — Gt)/Et)
and Z; is an overal normalization constant chosen so that
Dy41 sumstoone. It can be verified that, in our case, 7; =

2y/e:(1 — ¢;). Thefina combined hypothesisisaweighted
majority voteof thebasehypotheses, namely, sign( ) where

flz) = (zleatht(m)) / (zleat). Note that, on
round ¢, AdaBoost plac&s the most weight on examples
(2, y) for which yzt, 1 aprhys () is smallest. This quan-
tity is exactly the margin of the combined hypothesis com-
puted up to this point.

Freund and Schapire[12] provethat if thetraining error
rates of al the base hypotheses are bounded below 1/2
so that ¢; < 1/2 — 4 for some v > 0, then the training
error of the combined hypothesis decreases exponentially
fast with the number of base hypotheses that are combined.
The training error is equa to the fraction of examples for
which yf(z) < 0. Itisasimple matter to extend their
proof to show that if # is not too large, then the fraction of
training examples for which yf(z) < 6 also decreases to
zero exponentialy fast with the number of base hypotheses
(or boosting iterations).

Theorem 2 Suppose the base learning algorithm, when

called by AdaBoost, generates hypotheses with weighted
trainingerrorsey, . . ., ep. Then for any 4, we have that

Pl y)ms [uf(2) <6] <27 H ) (7)

Proof sketch: Notethat if yf(z) < 6 then

T T
yZatht(x) < 92 oy
t=1 t=1

and so

T T
exp (—yz achy(z) + HZ at) > 1.
t=1 t=1

Therefore,
P(:c,y)NS [yf( ) < 6]

IN

E(z‘ y)~S

( yzatht

i)
- ol g,

(o)
() ()

wherethelast equality followsfrom the definitionof Dr4.
Plugginginthevauesof a; and Z; givesthetheorem. [

To understand the significance of the result, assume
that, for all ¢, ¢; < 1/2 — ~ for some~ > 0. Then we can

simplify the upper bound in Equation (7) to:

<\/(1—27>1—9<1+27)1+9)T .
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Figure 2: Error curves and margin distribution graphs for several learning methods on “letter” (top), “satimage” (middle) and “vehicle”

(bottom) datasets.

If # < #, it can be shown that the expression inside the
parentheses is smaller than 1 so that the probability that
yf(z) < 6 decreases exponentially fast with 7.4

Although this theorem applies only to binary classifi-
cation problems, Freund and Schapire [12] give extensive
trestment to the multi-class case. All of their results can be
extended to prove anal ogous theorems about margin distri-
butionsfor thismore general case.

4 MORE MARGIN DISTRIBUTION
GRAPHS

Figure 2 shows a series of error curves and margin distribu-
tion graphs for a variety of datasets and |earning methods.
Verticaly, thefigureis split into three sections correspond-
ingtothethree” Statl og” datasetstested — “letter,” “satim-

*We can show that if v isknownin advancethen an exponential
decreasein the probability can be achieved (by aslightly different
boosting algorithm) for any § < 2v. However, we don’'t know
how to achieve this improvement when no nontrivial lower bound
on1/2 — e, isknownapriori.

age’ and “vehicle” The first two came with their own test
sets. For the vehicle dataset, we randomly selected half of
the data to be held out as a test set. Note that these curves
represent only a single run of each algorithm.

In additionto bagging and boosting, we al so used avari-
ant of Dietterich and Bakiri’s method of error-correcting
output codes [ 7], which can be viewed as a voting method.
However, rather than carefully constructing error-correcting
codes, we simply used random output codes which are
highly likely to have similar properties.

For the base |earning algorithm, we used C4.5, and we
also used a simple agorithm for finding the best single-
node, binary-split decision tree (adecision “stump”). Since
this latter agorithm is very weak, we used the “pseu-
doloss’ versions of boosting and bagging. (See Freund
and Schapire[12, 10] for details.)

As explained in the introduction, each of the learning
curvefiguresshowsthetrainingerror (bottom) and test error
(top) curves. We have alsoindicated as horizonta grid lines
the error rate of the base hypothesiswhen run just once, as
well astheerror rate of the combined hypothesisafter 1000



iterations. Note the log scale used in these figures.

Margin distribution graphs are shown for 5, 100 and
1000 iterations indicated by short-dashed, long-dashed
(sometimes barely visible) and solid curves, respectively.

It isinteresting that, across datasets, al of thelearning
algorithms tend to produce margin distribution graphs of
roughly the same character. As already noted, when used
with C4.5, boosting is especially aggressive at increasing
the margins of the examples, so much so that it is“willing”
to suffer significant reductions in the margins of those ex-
amples that aready have large margins. This can be seen
in the figure where we observe that the maximal margin in
the final hypothesisis bounded well awvay from 1. Contrast
this with the final graph for bagging in which as many as
half of the examples have amargin of 1.

Thegraphsfor ECOC with C4.5 resembl ein shapethose
for boosting more so than bagging, but tend to have overall
[ower margins.

Note that, on every dataset, both boosting and bagging
eventually achieve perfect or nearly perfect accuracy on
the training sets (at least 99%), but the generalization error
for boosting is better. The explanation for thisis evident
from the margin distribution graphs where we see that, for
boosting, far fewer training examples have margin close to
zero.

When used with stumps, boosting is unable to achieve
such large margins since, consistent with Theorem 2, the
base hypotheses have much higher training errors. Presum-
ably, such low margins do not adversely affect the general-
ization error because the complexity of decision stumpsis
so much smaller than that of full decision trees.

5 RELATION TO BIAS-VARIANCE
THEORY

One of the main explanations for the improvements
achieved by voting classifiers is based on separating the
expected error of aclassifier into abiasterm and avariance
term. While the details of these definitions differ from
author to author [5, 13, 14, 18], they are al attempts to
capture the following quantities: The bias term measures
the persistent error of thelearning algorithm, in other words,
theerror that would remain evenif wehad aninfinitenumber
of independently trained hypotheses. The variance term
mesasures the error that is due to fluctuations that are a
part of generating a single hypothesis. The idea is that
by averaging over many hypotheses one can reduce the
variance term and in that way reduce the expected error.

In this section, we discuss a few of the strengths and
weakness of bias-variance theory as an explanation for the
performance of voting methods, especially boosting.

The bias-variance decomposition for classification.
The origins of bias-variance analysis are in quadratic re-
gression. Averaging several independently trained regres-
sion functions will never increase the expected error. This
encouraging fact isnicely reflected inthe bias-variance sep-
aration of the expected quadratic error. Both bias and vari-

ance are aways nonnegative and averaging decreases the
variance term without changing the bias term.

One would naturally hope that this beautiful anaysis
would carry over from quadratic regression to classifica-
tion. Unfortunately, as has been observed before us, tak-
ing the majority vote over severa classification rules can
sometimes result in an increase in the expected classifica
tion error. This simple observation suggests that it may be
inherently more difficult or even impossible to find a bias-
variance decomposition for classification asnatural and sat-
isfying as in the quadratic regression case.

Thisdifficulty is reflected in the myriad definitionsthat
have been proposed for bias and variance [5, 13, 14, 18].
Rather than discussing each one separately, for theremain-
der of this section, except where noted, we follow the def-
initionsgiven by Kong and Dietterich [14], and referred to
as “Definition 0” by Breiman [5].

Bagging and variancereduction. Thenotionof vari-
ancecertainly seemsto behelpful inunderstanding bagging;
empirically, bagging appears to be most effective for learn-
ing agorithmswith large variance. In fact, under idealized
conditions, variance is by definition the amount of decrease
in error effected by bagging a large number of base hy-
potheses. Thisideal situationisone in which the bootstrap
samples used in bagging faithfully approximate truly inde-
pendent samples. However, thisassumption can fail to hold
in practice, inwhich case, bagging may not perform aswell
as expected, even when variance dominates the error of the
base learning a gorithm.

This can happen even when the data distributionis very
simple. For example, consider data generated according
to the following distribution. The label y € {—1,+1} is
chosen uniformly at random. Theinstancez € {—1,+1}
isthen chosen by picking each of the 7 bitsto be equd to
y with probability 0.9 and —y with probability 0.1. Thus,
each coordinate of z isan independent noisy version of .
For our base learner, we use a learning agorithm which
generates a hypothesisthat is equal to the single coordinate
of  which is the best predictor of y with respect to the
training set. It is clear that each coordinate of x has the
same probability of being chosen as the hypothesis on a
random training set, so the aggregate predictor over many
independently trained samples is the unweighted majority
vote over the coordinates of x, which is also the Bayes op-
timal predictor in thiscase. Thus, the bias of our learning
algorithm is exactly zero. The prediction error of the ma-
jority ruleisroughly 0.3%, and so avariance of about 9.7%
strongly dominates the expected error rate of 10%. In such
a favorable case, one would hope that bagging could get
closeto the error of the Bayes optimal predictor.

However, using atraining set of 500 exampl es, the gen-
eralization error achieved by bagging is 5.6% after 200
iterations. (All results are averaged over many runs.) The
reason for this poor performance is that, in each random
sample, some of the coordinates of = are dightly more
correlated with y and bagging tends to pick these coordi-
nates much more often than the others. Thus, in this case,



Kong & Dietterich [14] definitions Breiman [5] definitions

stumps C4.5 stumps C4.5

error pseudo-loss error error pseudo-loss error
name — | boost | bag | boost | bag — | boost | bag — | boost | bag | boost | bag — | boost | bag
waveform bias 26.0 3.8 22.8 0.8 11.9 15 0.5 14 19.2 2.6 15.7 0.5 7.9 0.9 0.3 1.4
var 5.6 2.8 4.1 3.8 8.6 14.9 3.7 5.2 12.5 4.0 11.2 4.1 12.5 15.5 3.9 5.2
error 44.7 19.6 39.9 17.7 335 | 294 17.2 19.7 44.7 19.6 39.9 17.7 335 29.4 17.2 19.7
twonorm bias 25 0.6 2.0 0.5 0.2 0.5 13 0.3 11 0.3 0.1 0.3
var 285 2.3 17.3 18.7 18 5.4 29.6 2.6 18.2 19.0 19 5.6
error 33.3 5.3 21.7 216 4.4 8.3 33.3 5.3 21.7 21.6 4.4 8.3
threenorm bias 245 6.3 216 4.7 2.9 5.0 14.2 4.1 13.8 2.6 1.9 3.1
var 6.9 5.1 4.8 16.7 5.2 6.8 17.2 7.3 12.6 18.8 6.3 8.6
error 419 22.0 36.9 31.9 186 223 41.9 220 36.9 31.9 18.6 22.3
ringnorm bias 46.9 4.1 46.9 2.0 0.7 1.7 32.3 2.7 37.6 11 0.4 11
var -7.9 6.6 -71 15.5 2.3 6.3 6.7 8.0 2.2 16.4 2.6 6.9
error 40.6 12.2 41.4 19.0 4.5 9.5 40.6 122 414 19.0 4.5 9.5
Kong & bias 49.2  49.1 49.2 7.7 35.1 7.7 55 8.9 49.0 49.0 490 5.3 29.7 51 3.5 6.2
Dietterich var 0.2 0.2 0.2 5.1 35 7.2 6.6 4.3 0.4 0.3 0.5 7.5 8.9 9.8 8.5 6.9
error 495 493 49.5 128 38.6 14.9 12.1 13.1 495 493 495 128 38.6 14.9 12.1 13.1

Table 1: Bias-variance experiments using boosting and bagging on synthetic data. Columns labeled with a dash indicate that the base

learning algorithm was run just once.

the behavior of bagging is very different from its expected
behavior on truly independent training sets.

Boosting, on the same data, achieved a test error of
0.6%.

Boosting and variance reduction. Breiman [5] ar-
gued that boosting is primarily a variance-reducing pro-
cedure. Some of the evidence for this comes from the
observed effectiveness of boosting when used with C4.5
or CART, agorithmsknown empirically to have high vari-
ance. As the error of these algorithms is mostly due to
variance, itisnot surprisingthat thereductionintheerror is
primarily due to areduction in the variance. However, our
experiments show that boosting can a so be highly effective
when used with learning algorithmswhose error tendsto be
dominated by bias rather than variance.®

We ran boosting and bagging on four artificial datasets
described by Breiman [5], as well as the artificial problem
studied by Kong and Dietterich [14]. Following previous
authors, we used training sets of size 200 for thel atter prob-
lem and 300for the others. For the base learning a gorithm,
we tested C4.5. We also used a very simple base learn-
ing agorithm that essentially finds the single-node binary-
split decision tree (a decision “stump”) that minimizes ei-
ther the training error or the “pseudoloss’ (see Freund and
Schapire [10] for details). We then estimated bias, vari-
ance and average error of these agorithms by rerunning
them many times. For these experiments, we used both the
bias-variance definitionsgiven by Kong and Dietterich [14]
and those proposed more recently by Breiman [5]. For
multi-class problems, following Freund and Schapire [10],
we tested both error-based and pseudol oss-based versions
of bagging and boosting. For two-class problems, only the
error-based versions were used.

The results are summarized in Table 1. Clearly, boost-
ing is doing more than reducing variance. For instance,
on “ringnorm,” boosting decreases the overall error of the

5In fact, the original goal of boosting was to reduce the error
of so-called “weak” learning algorithms which tend to have very
large bias.

stump agorithm from 40.6% to 12.2%, but actualy in-
creases the variance from —7.9% to 6.6% using Kong
and Dietterich’s definitions, or from 6.7% to 8.0% using
Breiman’s definitions.

Breiman & so tested boosting with a low-variance base
learning agorithm—namely, linear discriminant analysis
(LDA)—and attributed the ineffectiveness of boosting in
this case to the “ stability” (low variance) of LDA. The ex-
periments with the fairly stable stump algorithm suggest
that stability initself may not be sufficient to predict boost-
ing's failure. Our theory is more specific and rigorousin
pinpointing the reasons that boosting can fail. Taken to-
gether, Theorem 1 and Theorem 2 state that boosting can
perform poorly only if: (1) there is insufficient training
datarelative to the “complexity” of the base hypotheses, or
(2) the training errors of the base hypotheses (the ¢;’s in
Theorem 2) become too large too quickly.

6 RELATION TO VAPNIK’'SMAXIMAL
MARGIN CLASSIFIERS

The use of the margins of real-valued hypothesesto predict
generalization error was previoudy studied by Vapnik [19]
inhiswork with Boser and Guyon [3] and Cortes[6] on op-
timal margin classifiers. This method, like boosting, ams
tofind alinear combination of base hypotheseswhich max-
imizesmarginson training data. However, thetwo methods
differ in the assumptions used on the norms of the base hy-
potheses and the weights. In the optimal margin method,
the sum of the squared outputs of the base hypotheses and
the sum of the squared weights (that is, the squared [,
norms) are both assumed to be bounded. In boosting, the
maximum absol ute val ue of the base hypotheses (/. horm)
and the sum of the absolute val ues of the weights (/1 norm)
are assumed to be bounded. These assumptions mean that
boostingis particularly suited for the case when al the base
hypotheses have a similar output range, such as {—1, +1}.
On the other hand, the optimal margin method is suitable
for the case where the magnitudes of the base hypotheses




decay astheir number increases, such asin the dua spaces
used by Vapnik. Related to this, the optimal margin method
uses quadratic programming for its optimization, whereas
the boosting a gorithm can be seen as a method for approx-
imate linear programming [11].

Vapnik [19] showed that, with an [, constraint on a
set of points, the set of normalized (in [3) linear combi-
nations of these points that have margin at least v on all
points has VC-dimension that decreases as 1/42. Thisre-
sult implies bounds on the generalization error in terms of
the expected margin on test points (but typically thisis not
known). Shawe-Taylor et a. [16] used techniques from
the theory of learning real-valued functionsto give bounds
on generalization error in terms of margins on the training
examples, for linear combinations with an [, bound on co-
efficients. Shawe-Taylor et d. [17] also gave related results
for arbitrary rea classes, and Bartlett [1] gave bounds of
thistype for neural networkswith bounded weights (inlq).
(Likeboosting, neural network learning algorithms attempt
to find functionswith large margins.)

Vapnik [19] gave an alternative anaysis of optimal mar-
gin classifiers, based on the number of support vectors, i.e.,
the number of examples that define the final hypothesis.
This analysis is preferable to the analysis that depends on
the size of the margin when only afew of thetraining exam-
ples are support vectors. Previous work [9] has suggested
that boosting also can be used as a method for selecting a
small number of “informative” examples from the training
set. Investigating the relevance of thistype of bound when
applying boosting to real-world problems is an interesting
open research direction.

7 OPEN PROBLEMS

The methodsin thispaper alow usto upper bound the gen-
eraization error of a classifier based on simple statistics
which can be measured using the training data. We believe
that theseboundsgivecorrect qualitativepredictionsregard-
ing the behavior of the generaization error. Unfortunately,
however, in their current form, our upper bounds are too
pessimistic to be used as actual numerical estimates of the
error, something which would be quite useful in practice.
An important open problem is to derive more careful and
precise boundswhich can be used for thispurpose. Besides
paying closer attention to constant factors, such an anaysis
might also involve the measurement of more sophisticated
gtatistics.
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