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Abstract. One of the surprising recurring phenomena
observed in experiments with boosting is that the test error
of the generated hypothesis usually does not increase as its
size becomes very large, and often is observed to decrease
even after the training error reaches zero. In this paper, we
show that this phenomenon is related to the distribution of
margins of the training examples with respect to the gen-
erated voting classification rule, where the margin of an
example is simply the difference between the number of
correct votes and the maximum number of votes received
by any incorrect label. We show that techniques used in the
analysis of Vapnik’s support vector classifiers and of neural
networks with small weights can be applied to voting meth-
ods to relate the margin distribution to the test error. We
also show theoretically and experimentally that boosting is
especially effective at increasing the margins of the training
examples. Finally, we compare our explanation to those
based on the bias-variance decomposition.

1 INTRODUCTION

In recent years, there has been growing interest in learn-
ing algorithms which achieve high accuracy by voting the
predictions of several classifiers. For example, several re-
searchers have reported significant improvements in the per-
formance of decision-tree learning algorithms such as C4.5
or CART using voting methods [4, 5, 7, 8, 10, 15].

We refer to each of the hypotheses that is combined in
the vote as a base hypothesis and to the final voted hypoth-
esis as the combined hypothesis.

As examples of the effectiveness of these methods, con-
sider the results of the following two experiments using the
“letter” dataset.1 In the first experiment, we used Breiman’s
bagging method [4] on top of C4.5. That is, we reran C4.5
many times on random “bootstrap” subsamples and com-
bined the computed trees using simple voting. On the left of

�
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1All the non-synthetic datasets used in this research are part

of the “StatLog” database, which can be retrieved electronically
from the UCI repository
http://www.ics.uci.edu/ � mlearn/MLRepository.html.

Figure 1, we have shown the training and test error curves
(lower and upper curves, respectively) of the combined hy-
pothesis as a function of the number of trees combined. The
test error of C4.5 on this dataset (run just once) is 13.8%.
The test error of bagging 1000 trees is 6.6%, a significant
improvement. (Both of these error rates are indicated in the
figure as horizontal grid lines.)

In the second experiment, we used Freund and Scha-
pire’s AdaBoost algorithm [12] on top of C4.5 for the same
dataset. This algorithm is similar to bagging, except that
the subsamples are chosen in a manner which concentrates
on the “hardest” examples. The results of this experiment
are also shown in Figure 1. Note that boosting drives the
test error down even further to just 3.1%.

These error curves reveal a remarkable phenomenon,
first observed by Drucker and Cortes [8], and later by Quin-
lan [15] and Breiman [5]. Ordinarily, as hypotheses become
more and more complex, we expect their generalization er-
ror eventually to degrade. Yet these curves reveal that test
error does not increase for either method even after 1000
trees have been combined (by which point, the combined
hypothesis involves more than two million decision-tree
nodes). How can it be that such complex hypotheses have
such low error rates? This seems especially surprising for
boosting in which each new decision tree is trained on an
ever more specialized subsample of the training set.

Another apparent paradox is revealed in the error curve
for AdaBoost. After just five trees have been combined,
the training error of the combined hypothesis has already
dropped to zero, but the test error continues to drop2 from
8.4% on round 5 down to 3.1% on round 1000. Surely, a
combination of five trees is much simpler than a combina-
tion of 1000 trees, and both perform equally well on the
training set (perfectly, in fact). So how can it be that the
larger and more complex combined hypothesis performs so
much better on the test set?

2Even when the training error of the combined hypothesis
reaches zero, AdaBoost continues to obtain new base hypotheses
by training the base learning algorithm on different subsamples of
the data. Thus, the combined hypothesis continues to evolve, even
after its training error reaches zero. See Section 3 for more detail.
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Figure 1: Error curves and margin distribution graphs for bagging and boosting C4.5 on “letter” dataset.

The results of these experiments seem to contradict Oc-
cam’s razor, one of the fundamental principles in the theory
of machine learning. This principle states that in order to
achieve good test error, the hypothesis should be as simple
as possible, and that the difference between the training
error and the test error will increase when the number of
parameters that are needed to describe the hypothesis in-
creases.

Indeed, such an analysis of boosting (which could also
be applied to bagging) was carried out by Freund and
Schapire [12] using the methods of Baum and Haussler [2].
This analysis predicts that the test error eventually will
increase as the number of base hypotheses combined in-
creases. Such a prediction is clearly incorrect in the case
of the experiments described above, as was pointed out by
Quinlan [15] and Breiman [5]. The apparent contradiction
is especially stark in the boosting experiment in which the
test error continues to decrease even after the training error
has reached zero.

Breiman [5] and others have argued that voting methods
work primarily by reducing the “variance” of a learning
algorithm. This explanation is useful for bagging in that
bagging tends to be most effective when the variance is
large. However, for boosting, this explanation is, at best,
incomplete. As will be seen in Section 5, large variance
of the base hypotheses is not a requirement for boosting to
be effective. In some cases, boosting even increases the
variance while reducing the overall generalization error.

In this paper, we present an alternative theoretical anal-
ysis of voting methods, applicable, for instance, to bagging,
boosting, “arcing” [5] and ECOC [7]. Our approach is based
on a similar result presented by Bartlett [1] in a different
context. We prove rigorous upper bounds on the general-
ization error of voting methods in terms of a measure of
performance of the combined hypothesis on the training
set. Our bounds also depend on the number of training
examples and the “complexity” of the base hypotheses, but
do not depend explicitly on the number of base hypothe-
ses. Besides explaining the shape of the observed learning
curves, our analysis may be helpful in understanding why
these algorithms fail or succeed, and may also lead to the
design of even more effective voting methods.

The key idea of this analysis is the following. In order to
analyze the generalization error, one should consider more
than just the training error, i.e., the number of incorrect
classifications in the training set. One should also take into

account the confidence of the classifications. Here, we use
a measure of the classification confidence for which it is
possible to prove that an improvement in this measure of
confidence on the training set guarantees an improvement
in the upper bound on the generalization error.

Consider a combined hypothesis whose prediction is
the result of a vote (or a weighted vote) over a set of base
hypotheses. Suppose that the weights assigned to the dif-
ferent base hypotheses are normalized so that they sum to
one. Fixing our attention on a particular example, we re-
fer to the sum of the weights of the base hypotheses that
predict a particular label as the weight of that label. We
define the classification margin for the example as the dif-
ference between the weight assigned to the correct label
and the maximal weight assigned to any single incorrect
label. It is easy to see that the margin is a number in the
range

���
1 � 1� and that an example is classified correctly if

and only if its margin is positive. A large positive margin
can be interpreted as a “confident” correct classification.

Now consider the distribution of the margin over the
whole set of training examples. To visualize this distribu-
tion, we plot the fraction of examples whose margin is at
most � as a function of ��� ���

1 � 1 � . We refer to these
graphs as margin distribution graphs. On the right side of
Figure 1, we show the margin distribution graphs that cor-
respond to the experiments described above. The graphs
show the margin distributions for bagging and boosting af-
ter 5, 100 and 1000 iterations, indicated by short-dashed,
long-dashed (mostly hidden) and solid curves, respectively.

Our main observation is that both boosting and bagging
tend to increase the margins associated with examples and
converge to a margin distribution in which most examples
have large margins. Boosting is especially aggressive in
its effect on examples whose initial margin is small. Even
though the training error remains unchanged (at zero) after
round 5, the margin distribution graph changes quite sig-
nificantly so that after 100 iterations all examples have a
margin larger than 0.5. In comparison, on round 5, about
7.7% of the examples have margin below 0 � 5. As we see
from this and other experiments detailed later in the paper,
this type of reduction in the fraction of training examples
with small margin is a good predictor of improvements in
the test error.

The idea that maximizing the margin can improve the
generalization error of a classifier was previously suggested
and studied by Vapnik [19] and led to his work with Cortes
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on support-vector classifiers [6], and with Boser and Gu-
yon [3] on optimal margin classifiers. In Section 6, we dis-
cuss the relation between our work and Vapnik’s in greater
detail.

Shawe-Taylor et al. [16] gave bounds on the general-
ization error of these classifiers in terms of the margins,
and Bartlett [1] used related techniques to give a similar
bound for neural networks with small weights. Since vot-
ing classifiers are a special case of these neural networks,
an immediate consequence of Bartlett’s result is a bound on
the generalization error of a voting classifier in terms of the
fraction of training examples with small margin.

In Section 2, we use a similar but simpler approach to
give a slightly better bound. Here we give the main intu-
ition behind the proof. This idea brings us back to Occam’s
razor, though in a rather indirect way. Recall that an ex-
ample is classified correctly if its margin is positive. If an
example is classified by a large margin (either positive or
negative), then small changes to the weights in the majority
vote are unlikely to change the label. If most of the exam-
ples have a large margin then the classification error of the
original majority vote and the perturbed majority vote will
be similar. Suppose now that we had a small set of weighted
majority rules that was fixed ahead of time, called the “ap-
proximating set.” One way of perturbing the weights of the
hypothesis majority vote is to find a nearby rule within the
approximating set. As the approximating set is small, we
can guarantee that the error of the approximating rule on the
training set is similar to its generalization error, and as its
error is similar to that of the original rule, the generalization
error of the original rule should also be small. Thus, we
are back to an Occam’s razor argument in which instead of
arguing that the classification rule itself is simple, we argue
that the rule is close to a simple rule.

Boosting is particularly good at finding hypotheses with
large margins in that it concentrates on those examples
whose margins are small (or negative) and forces the base
learning algorithm to generate good classifications for those
examples. This process continues even after the training
error has reached zero, which explains the continuing drop
in test error.

In Section 3, we show that the powerful effect of boost-
ing on the margin is not merely an empirical observation but
is in fact the result of a provable property of the algorithm.
Specifically, we are able to prove upper bounds on the num-
ber of training examples below a particular margin in terms
of the training errors of the individualbase hypotheses. Un-
der certain reasonable conditions, these bounds imply that
the number of training examples with small margin drops
exponentially fast with the number of base hypotheses.

In Section 4, we give more examples of margin distri-
bution graphs for other datasets, base learning algorithms
and combination methods.

In Section 5, we discuss the relation of our work to bias-
variance decompositions, and in Section 6, we compare our
work to Vapnik’s optimal margin classifiers.

2 GENERALIZATION ERROR AS A
FUNCTION OF MARGIN
DISTRIBUTIONS

In this section, we prove that achieving a large margin on
the training set results in an improved bound on the gener-
alization error. This bound does not depend on the number
of hypotheses that are combined in the vote. The approach
we take is similar to that of Shawe-Taylor et al. [16] and
Bartlett [1], but the proof here is simpler and more direct.
A slightly weaker version of Theorem 1 is a special case of
Bartlett’s main result.

We give a proof for the special case in which there
are just two possible labels

� �
1 � � 1 � . The proof can be

generalized to larger finite sets of labels.
Let � denote the space from which the base hypothe-

ses are chosen, for example, for C4.5 or CART, it is the
space of decision trees. A base hypothesis � ��� is
a mapping from an instance space � to

� �
1 � � 1 � . We

assume that examples are generated independently at ran-
dom according to some fixed but unknown distribution �
over ��� � �

1 � � 1 � . The training set is a list of � pairs	�
��� � 1 ��� 1 � � � � 2 ��� 2 � � � � � � � ��� ����� ��� chosen according to� . We use ������� � �"!$# [ % ] to denote the probability of the
event % when the example

� � �&� � is chosen according to� , and � �'�(� � �)!+* [ % ] to denote probability with respect to
choosing an example uniformly at random from the train-
ing set. When clear from context, we abbreviate these by� # [ % ] and � * [ % ]. We use , # [ % ] and , * [% ] to denote
expected value in a similar manner.

We define the convex hull - of � as the set of map-
pings that can be generated by taking a weighted average
of hypotheses from � :

- �
/.10
: �324657989:<; 7 � � � �>===== ;

7�? 0; 5 7/; 7 

1 @

where it is understood that only finitely many ; 7 ’s may be
nonzero.3 The majority vote rule that is associated with

0
gives the wrong prediction on the example

� � ��� � only if� 0A� � �CB 0. Also, the margin of an example
� � �&� � in this

case is simply � 0A� � � .
The following theorem, the main result of this section,

states that with high probability, the generalization error of
any majority vote hypothesis can be bounded in terms of the
number of training examples with margin below a thresholdD
, plus an additional term which depends on the number of

training examples, some “complexity” measure of � , and
the threshold

D
(preventing us from choosing

D
too close to

zero).
Because of space constraints, we prove the theorem only

in the case that the base hypothesis space � is finite, such
as the set of all decision trees of a given size over a set of
discrete-valued features. In this case, our bound depends

3A finite support is not a requirement for our proof but is
sufficient for the application here which is to majority votes over
a finite number of base hypotheses.
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only on log
� � � , which is roughly the description length of

a hypothesis in � . This means that we can tolerate very
large hypothesis classes.

If � is infinite—such as the class of decision trees over
continuous features—we state our bound, without proof, in
terms of the VC-dimension of � .

Note that the theorem applies to every majority vote
hypothesis, regardless of how it is computed. Thus, the
theorem applies to any voting method, including boosting,
bagging, etc.

Theorem 1 Let
	

be a sample of � examples chosen in-
dependently at random according to � . Assume that the
base hypothesis space � is finite, and let ��� 0. Then
with probability at least 1

� � over the random choice of
the training set

	
, every weighted average function

0 � -
satisfies the following bound for all

D � 0:

P #�� � 0A� � �1B 0 � B P *�� � 0A� � �1B D ��	��
 1� �� log � log
� � �D

2

�
log

�
1 ��� ��� 1 � 2 �

�
More generally, for finite or infinite � with VC-dimension�

, the following bound holds as well:

P # �)� 0+� � � B 0 � B P * �)� 0+� � � B D ��	��
 1� �� � log2 � ��� � �D
2

�
log

�
1 ��� ��� 1 � 2 �

�

Proof: We only prove the first case in which � is finite.
For the sake of the proof we define -�� to be the set of

unweighted averages over � elements from � :

-�� �
 . 0
: � 24 1� �5 ���

1

� � � � � � � � � � @ �

We allow the same � ��� to appear multiple times in the
sum. This set will play the role of the approximating set in
the proof.

Any majority vote hypothesis
0 � - can be associated

with a distribution over � as defined by the coefficients ; 7 .
By choosing � elements of � independently at random
according to this distribution we can generate an element
of - � . Using such a construction we map each

0 � - to a
distribution � over - � .

Our goal is to upper bound the generalization error of0 � - . For any � � - � and
D � 0 we can separate this

probability into two terms:� #�� � 0A� � �1B 0 � B � # � �!� � � � B D � 2 �� � # � �!� � � � � D � 2 � � 0A� � �1B 0� �
As this inequality holds for any � � -�� , we can take the
expected value of the right hand side with respect to the
distribution � and get:� # � � 0+� � � B 0 �

B � # � " !$#%� �!� � � �1B D � 2 �� � # � " !$#%� �&� � � � � D � 2 � � 0+� � �1B 0�
 , " !'# � � # � �!� � � � B D � 2 �(�� , #)� � " !$#%� �!� � � � � D � 2 � � 0+� � � B 0 �*� � (1)

We bound both terms in (1) separately, starting with
the second term. Consider a fixed example

� � �&� � and take
the probability inside the expectation with respect to the
random choice of � . It is clear that

0A� � � 
 , " !'# �+� � � � �
so the probability inside the expectation is equal to the
probability that the average over � random draws from
a distribution over

� �
1 � � 1 � is different by

D � 2 from its
expected value. The Chernoff bound yields� " !'#,� �!� � � � � D � 2 � � 0+� � � B 0 � B)-/. �10 2 � 8 � �

2 �
To upper bound the first term in (1) we use the union

bound. That is, the probability over the choice of
	

that
there exists any � � - � and

D � 0 for which� # � �&� � � �1B D � 2 �2� � *3� �&� � � �1B D � 2 � � 4 �
is at most

� � �
1 � � -�� � - . 2 �65 27 . The exponential term comes

from the Chernoff bound which holds for any single choice
of � and

D
. The term

� � �
1 � � - � � is an upper bound on

the number of such choices where we have used the fact
that, because of the form of functions in -�� , we need only
consider values of

D
of the form 2 89�!� for 8 
 0 � � � � �*� .

Note that
� -�� � B � � � � .

Thus, if we set
4 � 
;: �

1 � 2 � � ln
� � � �

1 � � � � � ���<� � ,
and take expectation with respect to � , we get that, with
probability at least 1

� �<�� # � " !'# � �!� � � � B D � 2 � B � *(� " !'# �)�&� � � � B D � 2 � � 4 ��
3 �

for every choice of
D
, and every distribution � .

To finish the argument we relate the fraction of the
training set on which �!� � � � B D � 2 to the fraction on which� 0A� � � B D

, which is the quantity that we measure. Notice
that � *(� " !'#,� �&� � � � B D � 2 � B � *=� � 0A� � �1B D �� , * � � " !'# �)�&� � � � B D � 2 � � 0+� � � � D �>� � (4)

To bound the expression inside the expectation we use the
Chernoff bound as we did for Equation (2) and get� " !'#,� �!� � � � B D � 2 � � 0+� � � � D � B)- . �10 2 � 8 � �

5 �
Let �(� 
 �?� � � � � �

1 � � so that the probability of
failure for any � will be at most @ �2A 1 �(� 
 � . Then
combining Equations (1), (2), (3), (4) and (5), we get that,
with probability at least 1

� � , for every
D � 0 and every� ? 1:� # � � 0+� � � B 0 � B � * � � 0+� � �1B D ��

2 - . �10 2 � 8 �CB 1
2 � ln

� � � �
1 � 2
� � � �� � (6)

4



Finally, the statement of the first part of the theorem follows
by setting � 
 � �

4 � D 2 � ln
� ��� ln

� � � ��� .
We can extend the proof given above to the more general

case in which � may be infinite using VC-dimension rather
than log

� � � . Here, we sketch an alternative, more general
approach which can be applied to any class of real-valued
functions. The use of an approximating class, such as - �
in the proof of Theorem 1, is central to our approach. We
refer to such an approximating class as a sloppy cover. More
formally, for a class � of real-valued functions, a training
set

	
of length � , and positive real numbers

D
and
4
, we

say that a function class ˆ� is an
4
-sloppy

D
-cover of � with

respect to
	

if, for all
0

in � , there exists ˆ0 in ˆ� with� �9!A*�� � ˆ0 � � � � 0A� � � � � D��	� 4
. Let 
 � � � D � 4 �&� � denote

the maximum, over all training sets
	

of size � , of the size
of the smallest

4
-sloppy

D
-cover of � with respect to

	
.

Standard techniques allow us to prove that the probability
(over the random choice of

	
) that there exists an

0
in �

for which� #�� � 0+� � �1B 0 � � � *�� � 0+� � � B D � ��4
is no more than 2
 � � � D � 2 � 4 � 8 � 2 � � exp

� � 4 2 ��� 32 � . (The
proof is essentially identical to that of Theorem 1 in Bart-
lett [1].)

The second part of Theorem 1 can now be proved by
constructing a sloppy cover using the same probabilistic
argument in the proof above, i.e., by choosing an element of- � randomly by sampling functions from � . In addition,
this result leads to a slight improvement (by log factors)
of the main result of Bartlett [1], which gives bounds on
generalization error for neural networks with real outputs
in terms of the size of the network weights and the margin
distribution.

3 THE EFFECT OF BOOSTING ON
MARGIN DISTRIBUTIONS

We now give theoretical evidence that Freund and Scha-
pire’s [12] AdaBoost algorithm is especially suited to the
task of maximizing the number of training examples with
large margin.

Space limitations permit only a terse review of their
algorithm. We adopt the notation used in the previous
section, and restrict our attention to the binary case.

Boosting works by sequentially rerunning a base learn-
ing algorithm, each time using a different distribution over
training examples. That is, on each round � 
 1 � � � � �� , a
distribution ��� is computed over the training examples, or,
formally, over the set of indices

�
1 � � � � ��� � . The goal of the

base learning algorithm then is to find a hypothesis � � with
small error

4 � 
 � � !����$� � ���
 ��� � � � � � . The distribution
used by AdaBoost is initially uniform ( � 1

� 8 � 
 1 �(� ), and
then is updated multiplicatively on each round: ����� 1

� 8 � 
� � � 8 � exp
� � � �� � � � � � � ��� ��� � . Here,

� � 
 1
2 ln

���
1
� 4 � � � 4 � �

and � � is an overall normalization constant chosen so that� ��� 1 sums to one. It can be verified that, in our case, � � 


2
: 4 � � 1 � 4 � � . The final combined hypothesis is a weighted

majority vote of the base hypotheses, namely, sign
� 0 � where0+� � � 
 � @! � � 1

� � � � � � �#" � � @! � � 1

� � " . Note that, on

round � , AdaBoost places the most weight on examples� � ��� � for which � @ � . 1��$ � 1

� � $ � � $ � � � is smallest. This quan-
tity is exactly the margin of the combined hypothesis com-
puted up to this point.

Freund and Schapire [12] prove that if the training error
rates of all the base hypotheses are bounded below 1 � 2
so that

4 � B 1 � 2 �&%
for some

% � 0, then the training
error of the combined hypothesis decreases exponentially
fast with the number of base hypotheses that are combined.
The training error is equal to the fraction of examples for
which � 0+� � � B 0. It is a simple matter to extend their
proof to show that if

D
is not too large, then the fraction of

training examples for which � 0+� � ��B D
also decreases to

zero exponentially fast with the number of base hypotheses
(or boosting iterations).

Theorem 2 Suppose the base learning algorithm, when
called by AdaBoost, generates hypotheses with weighted
training errors

4
1 � � � � � 4  . Then for any

D
, we have that

P �'�(� � �)!+* � � 0+� � � B D � B 2  '� � 1

( 4 1 . 0� �
1
� 4 � � 1 � 0 � �

7 �
Proof sketch: Note that if � 0+� � �1B D

then

�  5 � � 1

� � � � � � � B D  5 � � 1

� �
and so

exp

 � �  5 � � 1

� � �)� � � � � D  5 � � 1

� � � ? 1 �
Therefore,� �'��� ���)!A* � � 0A� � �1B D �

B , �'�(� � �)!A*+* exp

 � �  5 � � 1

� � �)� � � � � D  5 � � 1

� � �-,

 exp

� D @  � � 1

� � "� �5 ���
1

exp

 � � �  5 � � 1

� � � � � � � � �



exp

 D  5 � � 1

� � � 
  '� � 1

�.� � �5 ���
1

�  � 1
� 8 �

where the last equality follows from the definition of �  � 1.
Plugging in the values of

� � and � � gives the theorem.

To understand the significance of the result, assume
that, for all � , 4 � B 1 � 2 �/% for some

% � 0. Then we can
simplify the upper bound in Equation (7) to:

 ( �
1
�

2
% � 1 . 0 � 1 �

2
% � 1 � 0 �  �
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C4.5 stumps
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Figure 2: Error curves and margin distribution graphs for several learning methods on “letter” (top), “satimage” (middle) and “vehicle”
(bottom) datasets.

If
D+� %

, it can be shown that the expression inside the
parentheses is smaller than 1 so that the probability that� 0+� � � B D

decreases exponentially fast with � .4

Although this theorem applies only to binary classifi-
cation problems, Freund and Schapire [12] give extensive
treatment to the multi-class case. All of their results can be
extended to prove analogous theorems about margin distri-
butions for this more general case.

4 MORE MARGIN DISTRIBUTION
GRAPHS

Figure 2 shows a series of error curves and margin distribu-
tion graphs for a variety of datasets and learning methods.
Vertically, the figure is split into three sections correspond-
ing to the three “StatLog” datasets tested — “letter,” “satim-

4We can show that if � is known in advancethen an exponential
decrease in the probability can be achieved (by a slightly different
boosting algorithm) for any ��� 2 � . However, we don’t know
how to achieve this improvement when no nontrivial lower bound
on 1 � 2 ����� is known a priori.

age” and “vehicle.” The first two came with their own test
sets. For the vehicle dataset, we randomly selected half of
the data to be held out as a test set. Note that these curves
represent only a single run of each algorithm.

In addition to bagging and boosting, we also used a vari-
ant of Dietterich and Bakiri’s method of error-correcting
output codes [7], which can be viewed as a voting method.
However, rather than carefully constructing error-correcting
codes, we simply used random output codes which are
highly likely to have similar properties.

For the base learning algorithm, we used C4.5, and we
also used a simple algorithm for finding the best single-
node, binary-split decision tree (a decision “stump”). Since
this latter algorithm is very weak, we used the “pseu-
doloss” versions of boosting and bagging. (See Freund
and Schapire [12, 10] for details.)

As explained in the introduction, each of the learning
curve figures shows the trainingerror (bottom)and test error
(top) curves. We have also indicated as horizontal grid lines
the error rate of the base hypothesis when run just once, as
well as the error rate of the combined hypothesis after 1000
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iterations. Note the log scale used in these figures.
Margin distribution graphs are shown for 5, 100 and

1000 iterations indicated by short-dashed, long-dashed
(sometimes barely visible) and solid curves, respectively.

It is interesting that, across datasets, all of the learning
algorithms tend to produce margin distribution graphs of
roughly the same character. As already noted, when used
with C4.5, boosting is especially aggressive at increasing
the margins of the examples, so much so that it is “willing”
to suffer significant reductions in the margins of those ex-
amples that already have large margins. This can be seen
in the figure where we observe that the maximal margin in
the final hypothesis is bounded well away from 1. Contrast
this with the final graph for bagging in which as many as
half of the examples have a margin of 1.

The graphs for ECOC with C4.5 resemble in shape those
for boosting more so than bagging, but tend to have overall
lower margins.

Note that, on every dataset, both boosting and bagging
eventually achieve perfect or nearly perfect accuracy on
the training sets (at least 99%), but the generalization error
for boosting is better. The explanation for this is evident
from the margin distribution graphs where we see that, for
boosting, far fewer training examples have margin close to
zero.

When used with stumps, boosting is unable to achieve
such large margins since, consistent with Theorem 2, the
base hypotheses have much higher training errors. Presum-
ably, such low margins do not adversely affect the general-
ization error because the complexity of decision stumps is
so much smaller than that of full decision trees.

5 RELATION TO BIAS-VARIANCE
THEORY

One of the main explanations for the improvements
achieved by voting classifiers is based on separating the
expected error of a classifier into a bias term and a variance
term. While the details of these definitions differ from
author to author [5, 13, 14, 18], they are all attempts to
capture the following quantities: The bias term measures
the persistent error of the learning algorithm, in other words,
the error that would remain even if we had an infinite number
of independently trained hypotheses. The variance term
measures the error that is due to fluctuations that are a
part of generating a single hypothesis. The idea is that
by averaging over many hypotheses one can reduce the
variance term and in that way reduce the expected error.

In this section, we discuss a few of the strengths and
weakness of bias-variance theory as an explanation for the
performance of voting methods, especially boosting.

The bias-variance decomposition for classification.
The origins of bias-variance analysis are in quadratic re-
gression. Averaging several independently trained regres-
sion functions will never increase the expected error. This
encouraging fact is nicely reflected in the bias-variance sep-
aration of the expected quadratic error. Both bias and vari-

ance are always nonnegative and averaging decreases the
variance term without changing the bias term.

One would naturally hope that this beautiful analysis
would carry over from quadratic regression to classifica-
tion. Unfortunately, as has been observed before us, tak-
ing the majority vote over several classification rules can
sometimes result in an increase in the expected classifica-
tion error. This simple observation suggests that it may be
inherently more difficult or even impossible to find a bias-
variance decomposition for classification as natural and sat-
isfying as in the quadratic regression case.

This difficulty is reflected in the myriad definitions that
have been proposed for bias and variance [5, 13, 14, 18].
Rather than discussing each one separately, for the remain-
der of this section, except where noted, we follow the def-
initions given by Kong and Dietterich [14], and referred to
as “Definition 0” by Breiman [5].

Bagging and variance reduction. The notion of vari-
ance certainly seems to be helpful in understanding bagging;
empirically, bagging appears to be most effective for learn-
ing algorithms with large variance. In fact, under idealized
conditions, variance is by definition the amount of decrease
in error effected by bagging a large number of base hy-
potheses. This ideal situation is one in which the bootstrap
samples used in bagging faithfully approximate truly inde-
pendent samples. However, this assumption can fail to hold
in practice, in which case, bagging may not perform as well
as expected, even when variance dominates the error of the
base learning algorithm.

This can happen even when the data distribution is very
simple. For example, consider data generated according
to the following distribution. The label � � � �

1 � � 1 � is
chosen uniformly at random. The instance � � � �

1 � � 1 � 7

is then chosen by picking each of the 7 bits to be equal to� with probability 0 � 9 and
� � with probability 0 � 1. Thus,

each coordinate of � is an independent noisy version of � .
For our base learner, we use a learning algorithm which
generates a hypothesis that is equal to the single coordinate
of � which is the best predictor of � with respect to the
training set. It is clear that each coordinate of � has the
same probability of being chosen as the hypothesis on a
random training set, so the aggregate predictor over many
independently trained samples is the unweighted majority
vote over the coordinates of � , which is also the Bayes op-
timal predictor in this case. Thus, the bias of our learning
algorithm is exactly zero. The prediction error of the ma-
jority rule is roughly 0 � 3%, and so a variance of about 9 � 7%
strongly dominates the expected error rate of 10%. In such
a favorable case, one would hope that bagging could get
close to the error of the Bayes optimal predictor.

However, using a training set of 500 examples, the gen-
eralization error achieved by bagging is 5 � 6% after 200
iterations. (All results are averaged over many runs.) The
reason for this poor performance is that, in each random
sample, some of the coordinates of � are slightly more
correlated with � and bagging tends to pick these coordi-
nates much more often than the others. Thus, in this case,
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Kong & Dietterich [14] definitions Breiman [5] definitions
stumps C4.5 stumps C4.5

error pseudo-loss error error pseudo-loss error
name – boost bag boost bag – boost bag – boost bag boost bag – boost bag
waveform bias 26.0 3.8 22.8 0.8 11.9 1.5 0.5 1.4 19.2 2.6 15.7 0.5 7.9 0.9 0.3 1.4

var 5.6 2.8 4.1 3.8 8.6 14.9 3.7 5.2 12.5 4.0 11.2 4.1 12.5 15.5 3.9 5.2
error 44.7 19.6 39.9 17.7 33.5 29.4 17.2 19.7 44.7 19.6 39.9 17.7 33.5 29.4 17.2 19.7

twonorm bias 2.5 0.6 2.0 0.5 0.2 0.5 1.3 0.3 1.1 0.3 0.1 0.3
var 28.5 2.3 17.3 18.7 1.8 5.4 29.6 2.6 18.2 19.0 1.9 5.6
error 33.3 5.3 21.7 21.6 4.4 8.3 33.3 5.3 21.7 21.6 4.4 8.3

threenorm bias 24.5 6.3 21.6 4.7 2.9 5.0 14.2 4.1 13.8 2.6 1.9 3.1
var 6.9 5.1 4.8 16.7 5.2 6.8 17.2 7.3 12.6 18.8 6.3 8.6
error 41.9 22.0 36.9 31.9 18.6 22.3 41.9 22.0 36.9 31.9 18.6 22.3

ringnorm bias 46.9 4.1 46.9 2.0 0.7 1.7 32.3 2.7 37.6 1.1 0.4 1.1
var . 7 � 9 6.6 . 7 � 1 15.5 2.3 6.3 6.7 8.0 2.2 16.4 2.6 6.9
error 40.6 12.2 41.4 19.0 4.5 9.5 40.6 12.2 41.4 19.0 4.5 9.5

Kong & bias 49.2 49.1 49.2 7.7 35.1 7.7 5.5 8.9 49.0 49.0 49.0 5.3 29.7 5.1 3.5 6.2
Dietterich var 0.2 0.2 0.2 5.1 3.5 7.2 6.6 4.3 0.4 0.3 0.5 7.5 8.9 9.8 8.5 6.9

error 49.5 49.3 49.5 12.8 38.6 14.9 12.1 13.1 49.5 49.3 49.5 12.8 38.6 14.9 12.1 13.1

Table 1: Bias-variance experiments using boosting and bagging on synthetic data. Columns labeled with a dash indicate that the base
learning algorithm was run just once.

the behavior of bagging is very different from its expected
behavior on truly independent training sets.

Boosting, on the same data, achieved a test error of
0 � 6%.

Boosting and variance reduction. Breiman [5] ar-
gued that boosting is primarily a variance-reducing pro-
cedure. Some of the evidence for this comes from the
observed effectiveness of boosting when used with C4.5
or CART, algorithms known empirically to have high vari-
ance. As the error of these algorithms is mostly due to
variance, it is not surprising that the reduction in the error is
primarily due to a reduction in the variance. However, our
experiments show that boosting can also be highly effective
when used with learning algorithms whose error tends to be
dominated by bias rather than variance.5

We ran boosting and bagging on four artificial datasets
described by Breiman [5], as well as the artificial problem
studied by Kong and Dietterich [14]. Following previous
authors, we used training sets of size 200 for the latter prob-
lem and 300 for the others. For the base learning algorithm,
we tested C4.5. We also used a very simple base learn-
ing algorithm that essentially finds the single-node binary-
split decision tree (a decision “stump”) that minimizes ei-
ther the training error or the “pseudoloss” (see Freund and
Schapire [10] for details). We then estimated bias, vari-
ance and average error of these algorithms by rerunning
them many times. For these experiments, we used both the
bias-variance definitions given by Kong and Dietterich [14]
and those proposed more recently by Breiman [5]. For
multi-class problems, following Freund and Schapire [10],
we tested both error-based and pseudoloss-based versions
of bagging and boosting. For two-class problems, only the
error-based versions were used.

The results are summarized in Table 1. Clearly, boost-
ing is doing more than reducing variance. For instance,
on “ringnorm,” boosting decreases the overall error of the

5In fact, the original goal of boosting was to reduce the error
of so-called “weak” learning algorithms which tend to have very
large bias.

stump algorithm from 40 � 6% to 12 � 2%, but actually in-
creases the variance from

�
7 � 9% to 6.6% using Kong

and Dietterich’s definitions, or from 6.7% to 8.0% using
Breiman’s definitions.

Breiman also tested boosting with a low-variance base
learning algorithm—namely, linear discriminant analysis
(LDA)—and attributed the ineffectiveness of boosting in
this case to the “stability” (low variance) of LDA. The ex-
periments with the fairly stable stump algorithm suggest
that stability in itself may not be sufficient to predict boost-
ing’s failure. Our theory is more specific and rigorous in
pinpointing the reasons that boosting can fail. Taken to-
gether, Theorem 1 and Theorem 2 state that boosting can
perform poorly only if: (1) there is insufficient training
data relative to the “complexity” of the base hypotheses, or
(2) the training errors of the base hypotheses (the

4 � ’s in
Theorem 2) become too large too quickly.

6 RELATION TO VAPNIK’S MAXIMAL
MARGIN CLASSIFIERS

The use of the margins of real-valued hypotheses to predict
generalization error was previously studied by Vapnik [19]
in his work with Boser and Guyon [3] and Cortes [6] on op-
timal margin classifiers. This method, like boosting, aims
to find a linear combination of base hypotheses which max-
imizes margins on training data. However, the two methods
differ in the assumptions used on the norms of the base hy-
potheses and the weights. In the optimal margin method,
the sum of the squared outputs of the base hypotheses and
the sum of the squared weights (that is, the squared

�
2

norms) are both assumed to be bounded. In boosting, the
maximum absolute value of the base hypotheses (

���
norm)

and the sum of the absolute values of the weights (
�
1 norm)

are assumed to be bounded. These assumptions mean that
boosting is particularly suited for the case when all the base
hypotheses have a similar output range, such as

� �
1 � � 1 � .

On the other hand, the optimal margin method is suitable
for the case where the magnitudes of the base hypotheses
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decay as their number increases, such as in the dual spaces
used by Vapnik. Related to this, the optimal margin method
uses quadratic programming for its optimization, whereas
the boosting algorithm can be seen as a method for approx-
imate linear programming [11].

Vapnik [19] showed that, with an
�
2 constraint on a

set of points, the set of normalized (in
�
2) linear combi-

nations of these points that have margin at least
%

on all
points has VC-dimension that decreases as 1 � % 2. This re-
sult implies bounds on the generalization error in terms of
the expected margin on test points (but typically this is not
known). Shawe-Taylor et al. [16] used techniques from
the theory of learning real-valued functions to give bounds
on generalization error in terms of margins on the training
examples, for linear combinations with an

�
2 bound on co-

efficients. Shawe-Taylor et al. [17] also gave related results
for arbitrary real classes, and Bartlett [1] gave bounds of
this type for neural networks with bounded weights (in

�
1).

(Like boosting, neural network learning algorithms attempt
to find functions with large margins.)

Vapnik [19] gave an alternative analysis of optimal mar-
gin classifiers, based on the number of support vectors, i.e.,
the number of examples that define the final hypothesis.
This analysis is preferable to the analysis that depends on
the size of the margin when only a few of the training exam-
ples are support vectors. Previous work [9] has suggested
that boosting also can be used as a method for selecting a
small number of “informative” examples from the training
set. Investigating the relevance of this type of bound when
applying boosting to real-world problems is an interesting
open research direction.

7 OPEN PROBLEMS

The methods in this paper allow us to upper bound the gen-
eralization error of a classifier based on simple statistics
which can be measured using the training data. We believe
that these bounds give correct qualitative predictions regard-
ing the behavior of the generalization error. Unfortunately,
however, in their current form, our upper bounds are too
pessimistic to be used as actual numerical estimates of the
error, something which would be quite useful in practice.
An important open problem is to derive more careful and
precise bounds which can be used for this purpose. Besides
paying closer attention to constant factors, such an analysis
might also involve the measurement of more sophisticated
statistics.
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