1) What is the power set of the set \(\{0, 1\} \)?

Answer: \(\{\emptyset, \{0\}, \{1\}, \{0,1\}\} \)

2) What can you say about the sets \(A \) and \(B \) if we know that \(A - B = B - A \)?

Answer: \(A = B \)
(Can be proven by contradiction.)

3) What can you say about the sets \(A \) and \(B \) if we know that \(A \oplus B = A \)?

Answer: \(B = \emptyset \)
(Can be proven by contradiction.)

4) a) Find \(f \circ g \) where \(f(x) = x^2 + 1 \) and \(g(x) = x + 2 \) are functions from \(\mathbb{R} \) to \(\mathbb{R} \).

Answer: \(f \circ g(x) = (x + 2)^2 + 1 \)

b) Find \(g^{-1}(\{0\}) \) where \(g(x) = \lfloor x \rfloor \) is a function from \(\mathbb{R} \) to \(\mathbb{R} \).

Answer: \([0,1) \)
(I.e., the set of all real numbers that have a floor of 0 is everything from 0 to 1, not including 1).

5) Show that if \(A \) and \(B \) are sets, then \(A - B = A \cap \overline{B} \)

Answer:
\[
A - B = \{ x : x \in A \land x \notin B \} = A \cap \overline{B}
\]