Smooth curves and surfaces are used for aesthetic, manufacturing, and analysis applications where discontinuities due to triangulated approximations would create misleading artifacts. I like to distinguish three classes of surfaces:
- implicit: \(f(x,y,z)=0 \), where \(f \) is often a polynomial of low degree (handy for computing intersections with rays)
- parametric surfaces: \(S(u,v) = (x(u,v),y(u,v),z(u,v)) \), where \(x, y, \) and \(z \) are often low degree polynomials in \(u \) and \(v \)
- generative surfaces, such as sweeps or subdivision surfaces, which are defined in terms of a construction procedure

Piecewise cubic parametric curves and surfaces are popular in CAD, animation, and graphics. A point \(C(t) \) on curve \(C \) has coordinates \((x(t),y(t),z(t)) \), where \(x, y, \) and \(z \) are cubic polynomials in \(t \). The shape of \(C \) is defined by a control polygon with control points (i.e. vertices) \(P_i \). We discuss below how to subdivide the control polygon and how to evaluate \(C(t) \). To define a bi-cubic surface, express each \(P_i \) as a curve \(P_i(s) \). As \(s \) is varied, \(C(t) \) sweeps out a surface \(S(t,s) \).

1. **Split&tweak subdivision of control polygons a uniform cubic B-spline curves**
 Given a control polygon, for example \(a,b,c,d \), repeat the following sequence of two steps, until all consecutive 4-tuples of control points are nearly coplanar.
 1. Split: insert a new control point in the middle of each edge \((2,4,6,8) \)
 2. Tweak: move the old control points half-way towards the average of their new neighbors \((1,3,5,7) \)

The control polygon converges rapidly to the B-spline curve. This works whether the curve is closed or open.

2. **Converting a uniform cubic B spline into a series of cubic Bezier curves**
 Given a control polygon with vertices \(a,b,c, \ldots \) do: (1) insert new vertices \(w,2,3,5,\ldots \) to split each edge into 3 equal parts; (2) move the original vertices to the average of their immediate neighbors \((b1,c4,\ldots) \); and (3) delete the first and last 3 vertices \((a,w,x,y,z,i) \). The consecutive trigons, \((1,2,3,4), (4,5,6,7), (7,8,9,10) \ldots \) are the control polygons of Bezier curves.

3. **Subdividing a cubic Bezier control polygon**
 To replace the control trigon \(\{A,B,D,E\} \) with trigons \(\{A,L,B,M\} \) and \(\{M,D,N,E\} \), each representing a portion of \(C \):
 - Insert points \(L, M, N \) at the centers of the three edges (second figure from left)
 - Move \(B \) and \(D \) to be each the average of their two neighbors (center figure)
 - Move \(M \) to be the average of its two neighbors (second figure from right)

This subdivision may be recursively applied to \(\{A,L,B,M\} \) and/or \(\{M,D,N,E\} \), as desired.

4. **Evaluating a point \(C(t) \) on a cubic Bezier curve**
 To compute \(C(t) \) perform the following sequence of operations: \(\text{slide}(E), \text{slide}(D), \text{slide}(B), \text{slide}(E), \text{slide}(D), \text{slide}(E) \), where \(\text{slide}(K) \) replaces control point \(K \) by \((1-t)J+tK \), where \(J \) precedes \(K \) in the sequence \(\{A,B,D,E\} \). Subscripts indicate order of slides in the figure. The result of the last slide, \(E_6 \), is \(C(t) \). Note that \(C \) starts at \(A \), where it is tangent to \(AB \) and finishes at \(D \), where it is tangent to \(CD \). It is contained in the convex hull of \(\{A,B,C,D\} \).