• Animation: representations
 o Sequence of 3D meshes that represent the same object over time
• An animation could have:
 o Deformations (bending, etc)
 o Translations, Scaling
 o Merging of connected components
 o Topology changes
 o Increase/Decrease in detail, resolution
• Numbers
 o For each frame, we have to store
 ▪ Connectivity
 ▪ Geometry
 o We can use compression techniques
• Sampling
 o Interpolation vs. key frames
 o Choice of key frame given raw animation
 ▪ Over regular interval
 ▪ Over relative motion
 ▪ Component movement
 ▪ Joint movement
 o Keep the animation smooth
 ▪ Geomorphing
• Dynapack (’03)
 o Use prediction techniques that exploit space and time coherence
 o Lossless compression except for quantization
 o Fast
 o Only works with constant connectivity
• Extended Lorenzo Predictor (ELP)
 o Parallelogram predictor
 o Perfect for translations
 o Not good for rotation and scaling
• Improving ELP
 o Coefficient based approach
 ▪ Make use of local coordinate system
 ▪ The set of coefficients remain the same
 o Replica solution
 ▪ Use the normal of the original plane does not work
 ▪ Rotation in next frame is not captured
 ▪ Losing information
 ▪ Normal grows too fast, need to be scaled back
 ▪ Translation, rotation and scaling are taken care of after correction
However, improvement is not significant in tests

- Barycentric coordinates
 - Extend to 3D
 - Use volume of a tetrahedron

- Jed Lengyel’s approach (’99)
 - Problems
 - Lost of generality
 - How to identify the set of vertices that go together?
 - May change overtime

- Marc Alexa’s Approach (’00)
 - Use the animation as a whole new dimensional space
 - All the frames together in a huge matrix, decompose with PCA
 - Principle component analysis
 - Typical dimensionality reduction technique
 - Finds projections where data creates most variance
 - Good for reconstruction
 - Lossy compression
 - Useful for progressive transmission
 - Problem
 - Computationally expensive
 - Hard to control error level

- Geometry Images
 - Take advantage of image techniques to do animation compression

- Research in Dynapack
 - New features:
 - Simplification of the animation
 - Geomorphs, new prediction
 - Segmentation
 - Animation Simplification

- How to simplify an animation
 - Frame by frame
 - Loss of coherence
 - Identify moving components

- Hard