InfoVis Evaluation

CS 7450 - Information Visualization December 3, 2012 John Stasko

Area Focus

- Most of the research in InfoVis that we've learned about this semester has been the introduction of a new visualization technique or tool
 - Fisheyes, cone trees, hyperbolic displays, tilebars, themescapes, sunburst, jazz, ...
 - "Isn't my new visualization cool?..."

Evaluation – Why?

• Reasons?

Fall 2012 CS 7450 3

Evaluation – Why?

- Want to learn what aspects of visualizations or systems "works"
- Want to ensure that methods are improving
- Want to insure that technique actually helps people and isn't just "cool"
- NOT: Because I need that section in my paper to get it accepted ... sigh

Fall 2012 CS 7450

Evaluation – How?

- What do we measure?
 - What data do we gather?
 - What metrics do we use?
- What evaluation techniques should we use?
- (Channel your HCI knowledge)

Fall 2012 CS 7450 5

Evaluation in HCI

- Takes many different forms
 - Qualitative, quantitative, objective, subjective, controlled experiments, interpretive observations, ...
- So, which ones are best for evaluating InfoVis systems?

Fall 2012 CS 7450

Controlled Experiments

- Good for measuring performance or comparing multiple techniques
- Often quantitative in nature
- What do we measure?
 - Performance, time, errors, ...
- Strengths, weaknesses?

Fall 2012 CS 7450

Subjective Assessments

- Often observational with interview
- Learn people's subjective views on tool
 - Was it enjoyable, confusing, fun, difficult, ...?
- This kind of personal judgment strongly influence use and adoption, sometimes even overcoming performance deficits
- Strengths, weaknesses?

Running Studies

- Beyond our scope here
- You should learn more about this in CS 6750 or 6455

Fall 2012 CS 7450

Evaluating UI vs. InfoVis

- Seems comparable but...
- What are some differences?

Usability vs. Utility

- Big difference
- Usability is not the same as utility, which seems to be a key factor for InfoVis
- Can think of visualizations that are very usable but not useful or helpful
- More difficult to measure success of an infovis because more domain knowledge and situated use is required

Fall 2012 CS 7450 11

Evaluating InfoVis in General

- Very difficult in InfoVis to compare "apples to apples"
 - Hard to compare System A to System B
 - Different tools were built to address different user tasks
- UI can heavily influence utility and value of visualization technique

Evaluating Research

 How does one judge the quality of work in Information Visualization?

Fall 2012 CS 7450 13

Research Evaluation

- Different possible ways
 - Impact on community as a whole, influential ideas
 - Assistance to people in the tasks they care about

Strong View

 Unless a new technique or tool helps people in some kind of problem or task, it doesn't have any value

Fall 2012 CS 7450 15

Broaden Thinking

- Sometimes the chain of influence can be long and drawn out
 - System X influences System Y influences
 System Z which is incorporated into a practical tool that is of true value to people
- This is what research is all about (typically)

OK, what has research community done?

Past Review

- Old journal issue whose special topic focus was Empirical Studies of Information Visualizations
 - International Journal of Human-Computer Studies, Nov. 2000, Vol. 53, No. 5
- A bit dated now

Fall 2012 CS 7450 17

9

Plaisant '04

 Discusses challenges, possible next steps, and gives examples from work at Maryland

Fall 2012 CS 7450 1:

Evaluation Challenges

- Matching tools with users, tasks, and real problems
- Improving user testing
 - Looking at the same data from different perspectives, over a long time
 - Answering questions you didn't know you had
 - Factoring in the chances of discovery and the benefits of awareness
- Addressing universal usability

Possible Next Steps

- Repositories of data and tasks
- Case studies and success stories
- The role of toolkits and development tools

Fall 2012 CS 7450 21

Carpendale '08

- Challenges in infovis evaluation
- Choosing an evaluation approach

Evaluation Approaches

- Desirable features
 - Generalizability
 - Precision
 - Realism

Fall 2012 CS 7450 23

Quantitative Methods

- Laboratory experiments & studies
- Traditional empirical scientific experimental approach
- Steps
 - Hypothesis development
 - Identification of independent variables
 - Control of Independent variables
 - Elimination of complexity
 - Measurement of dependent variables
 - Application of statistics

Quantitative Challenges

- Conclusion Validity
 - Is there a relationship?
- Internal Validity
 - Is the relationship causal?
- Construct Validity
 - Can we generalize to the constructs (ideas) the study is based on?
- External Validity
 - Can we generalize the study results to other people/places/times?
- Ecological Validity
 - Does the experimental situation reflect the type of environment in which the results will be applied?

Fall 2012 CS 7450 25

Qualitative Methods

- Types
 - Nested methods
 - Experimenter observation, think-aloud protocol, collecting participant opinions
 - Inspection evaluation methods
 Heuristics to judge
- Observational context
 - In situ, laboratory, participatory
 - Contextual interviews important

Qualitative Challenges

- Sample sizes
- Subjectivity
- Analyzing qualitative data

Fall 2012 CS 7450 27

Lam, et al '12

- Meta-review: analysis of 850 infovis papers (361 with evaluation)
- Focus on evaluation scenarios

Fall 2012 CS 7450 28

14

Evaluation Taxonomies

TABLE 1
Taxonomies of Evaluation Methods and Methodologies Based on the Type of Categorization, the Main Categories Themselves, and the Corresponding References

Type	Categories	Refs
Evaluation goals	Summative (to summarize the effectiveness of an interface), formative (to inform design)	Andrews [2], Ellis and Dix [22]
Evaluation goals	Predictive (e. g., to compare design alternatives and compute usability met- rics), observational (e. g., to understand user behaviour and performance), participative (e. g., to understand user behaviour, performance, thoughts, and experience)	Hilbert and Redmiles [34]
Evaluation challenges	Quantitative (e. g., types validity: conclusion (types I & II errors), construct, external/internal, ecological), qualitative (e. g., subjectivity, sample size, analysis approaches)	Carpendale [10]
Research strategies	Axes (generalizability, precision, realism, concreteness, obtrusiveness) and research strategies (field, experimental, respondent, theoretical)	McGrath [53]
Research methods	Class (e.g., testing, inspection), type (e.g., log file analysis, guideline reviews), automation type (e.g., none, capture), effort level (e.g., minimal effort, model development)	Ivory and Hearst [42]
Design stages	Nested Process Model with four stages (domain problem characterization, data/operation abstraction, encoding/interaction technique design, algorithm design), each with potential threats to validity and methods of validation	Munzner [54]
Design stages	Design/development cycle stage associated with evaluation goals ("ex- ploratory" with "before design", "predictive" with "before implementation", "formative" with "during implementation", and "summative" with "after implementation"). Methods are further classified as inspection (by usability specialists) or testing (by test users).	Andrews [2]
Design stages	Planning & feasibility (e. g., competitor analysis), requirements (e. g., user surveys), design (e. g., heuristic evaluation), implementation (e. g., style guide), test & measure (e. g., diagnostic evaluation), and post release (e. g., remote evaluation)	Usability.net [88]
Design stages	Concept design, detailed design, implementation, analysis	Kulyk et al. [46]
Data and method	Data collected (qualitative, quantitative), collection method (empirical, analytical)	Barkhuus and Rode [5]
Data	Data collected (qualitative, quantitative, mixed-methods)	Creswell [17]
Evaluation scope	Work environment, system, components	Thomas and Cook [82]

Fall 2012 CS 7450 29

Evaluation Scenarios

- Understanding data analysis
 - Understanding environments and work practices (UWP)
 - Evaluating visual data analysis and reasoning (VDAR)
 - Evaluating communication through visualization (CTV)
 - Evaluating collaborative data analysis (CDA)

Evaluation Scenarios

- Understanding visualizations
 - Evaluating user performance (UP)
 - Evaluating user experience (UE)
 - Evaluating visualization algorithms (VA)

Fall 2012 CS 7450 31

Methods

Coded each paper with tags

TABLE 3
Original Coding Tags, the Number of Papers Classified, and the Final Scenario to Which They Were Assigned

Paper Tags	EuroVis	InfoVis	IVS	VAST	Total	Scenario
Proces	s					
1. People's workflow, work practices	3	1	3	0	7	UWP
2. Data analysis	0	5	3	5	13	VDAR
3. Decision making	0	2	1	4	7	VDAR
4. Knowledge management	0	1	0	2	3	VDAR
Knowledge discovery	1	1	0	1	3	VDAR
6. Communication, learning, teaching, publishing	0	0	4	1	5	CTV
7. Casual information acquisition	0	4	0	0	4	CTV
8. Collaboration	0	3	2	4	9	CDA
Visualiza	tion					
Visualization-analytical operation	0	12	1	0	13	UP
10. Perception and cognition	17	24	15	3	62	UP
11. Usability/effectiveness	25	84	31	18	158	UP&UE
12. Potential usage	7	1	5	9	22	UE
13. Adoption	0	1	3	1	5	UE
14. Algorithm performance	17	37	15	0	69	VA
15. Algorithm quality	1	10	12	5	28	VA
Not included in	scenarios					
16. Proposed evaluation methodologies	0	3	0	2	5	-
17. Evaluation metric development	2	6	1	1	10	-

Methods

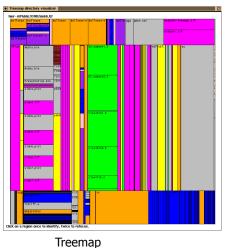
- For each category the authors describe
 - Goals and outputs
 - Evaluation questions
 - Methods and examples

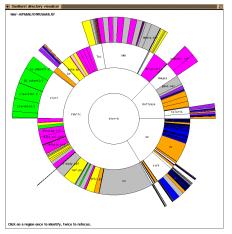
Fall 2012 CS 7450 33

Examples

 Let's examine a few example studies utilizing different goals and styles

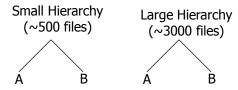
Which Technique is Best?


- Space-filling hierarchical views
- Compare Treemap and Sunburst with users performing typical file/directoryrelated tasks
- Evaluate task performance on both correctness and time


Stasko et al IJHCS '00

Fall 2012 CS 7450 35

Tools Compared


Treemap SunBurst
Fall 2012 CS 7450

36

Hierarchies Used

Four in total

 Used sample files and directories from our own systems (better than random)

Fall 2012 CS 7450 37

Methodology

- 60 participants
- Participant only works with a small or large hierarchy in a session
- Training at start to learn tool
- Vary order across participants

SB A, TM B
TM A, SB B
SB B, TM A
TM B, SB A
32 on small hierarchies
28 on large hierarchies

Tasks

- Identification (naming or pointing out) of a file based on size, specifically, the largest and second largest files (Questions 1-2)
- Identification of a directory based on size, specifically, the largest (Q3)
- Location (pointing out) of a file, given the entire path and name (Q4-7)
- Location of a file, given only the file name (Q8-9)
- Identification of the deepest subdirectory (Q10)
- Identification of a directory containing files of a particular type (Q11)
- Identification of a file based on type and size, specifically, the largest file of a particular type (Q12)
- Comparison of two files by size (Q13)
- Location of two duplicated directory structures (Q14)
- Comparison of two directories by size (Q15)
- Comparison of two directories by number of files contained (Q16)

Fall 2012 CS 7450 39

Hypothesis

- Treemap will be better for comparing file sizes
 - Uses more of the area
- Sunburst would be better for searching files and understanding the structure
 - More explicit depiction of structure
- Sunburst would be preferred overall

Small Hierarchy

Hierarch	ny A		Hierarch	ny B	
Tool	Phase	Correct	Tool	Phase	Correct
TM (n = 8)	1	9.88 (3.23)	TM (n = 8)	1	11.50 (2.14)
SB (n=8)	1	12.88 (1.96)	SB(n=8)	1	10.38 (1.69)
TM(n=8)	2	12.25 (1.75)	TM(n=8)	2	10.75 (2.77)
SB (n=8)	2	12.63 (2.00)	SB (n=8)	2	11.50 (2.00)
TM (collapsed across phase)		11.06 (2.79)	TM (collapsed across phase)		11.13 (2.42)
SB (collapsed across phase)		12.75 (1.91)	SB (collapsed across phase)		10.94 (1.88)

Correct task completions (out of 16 possible)

Fall 2012 CS 7450 41

Large Hierarchy

Hierarch	ıy A		Hierarch	ny B	
Tool	Phase	Correct	Tool	Phase	Correct
TM(n=7)	1	8.71 (1.60)	TM(n=7)	1	8.29 (2.14)
SB $(n=7)$	1	11.43 (1.27)	SB $(n=7)$	1	11.14 (2.67)
TM(n=7)	2	11.57 (1.27)	TM(n=7)	2	10.86 (1.57)
SB $(n=7)$	2	11.00 (2.16)	SB(n=7)	2	11.00 (2.00)
TM (collapsed across phase)		10.14 (2.03)	TM (collapsed across phase)		9.57 (2.24)
SB (collapsed across phase)		11.21 (1.72)	SB (collapsed across phase)		11.07 (2.27)

Correct task completions (out of 16 possible)

Performance Results

- Ordering effect for Treemap on large hierarchies
 - Participants did better after seeing SB first
- Performance was relatively mixed, trends favored Sunburst, but not clear-cut
 - Oodles of data!

Fall 2012 CS 7450 43

Subjective Preferences

- Subjective preference:
 SB (51), TM (9), unsure (1)
- People felt that TM was better for size tasks (not borne out by data)
- People felt that SB better for determining which directories inside others
 - Identified it as being better for structure

Strategies

- How a person searched for files etc. mattered
 - Jump out to total view, start looking
 - Go level by level

Fall 2012 CS 7450 45

DQ vs. BH

- Empirical Study
 - Use DataMaps, a geographic (US states) data visualization tool
 - Have participants do different tasks with both methods

How many states have pop between x and y in 1970? Given 3 states, which has the lowest median income? What's the relationship between education and income? List states with pops. 0->x and y->z. What kind of a state is Florida?

We saw this earlier in term

Li & North InfoVis '03

Findings

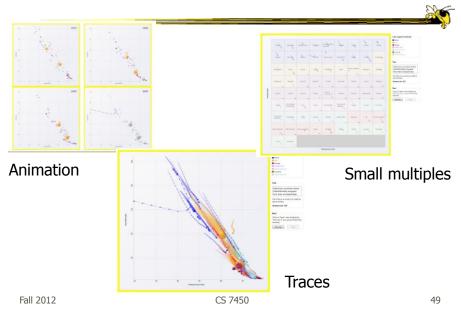
Functioned more as its own infovis tool

- Brushing histograms better and more highly rated for more complex discovery tasks
 - Attribute correlation, compare, and trend evaluation
- Dynamic queries better for more simple range specification tasks
 - Single range, multiple ranges, multiple criteria

Functioned more as auxiliary control for other vizs

Fall 2012 CS 7450 47

Animation Helpful?

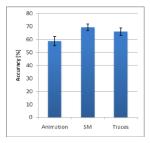

Start

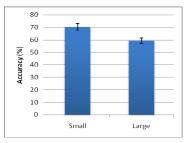
- Examine whether animated bubble charts (a la Rosling and GapMinder) are beneficial for analysis and presentation
- Run an experiment to evaluate the effects of animation

Robertson et al TVCG (InfoVis) '08

Visualizations Studied

Experiment Design


- 3 (animation types) x 2 (data size: small & large) x 2 (presentation vs. analysis)
- Data
 - UN data about countries
- Tasks
 - 24 tasks, 1-3 requires answers per
 Example: Select 2 countries with significant decreases in energy consumption


Results

Accuracy

Measured as percentage correct 65% overall (pretty tough)

Significant:

SM better than animation Small data size more accurate than large

Fall 2012 CS 7450 51

Results

- Speed
 - Presentation

Animation faster than small multiples & traces 15.8 secs vs. 25.3 secs vs. 27.8 secs.

Analysis

Animation slower than small multiples & traces 83.1 secs. vs. 45.69 secs. vs. 55.0 secs.

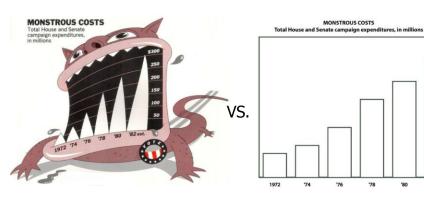
Discussion

- People rated animation more fun, but small multiples was more effective
- As data grows, accuracy becomes an issue
 - Traces & animation get cluttered
 - Small multiple gets tiny
- Animation:
 - "fun", "exciting", "emotionally touching"
 - Confusing, "the dots flew everywhere"

Fall 2012 CS 7450 53

Useful Junk?

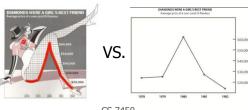
Start



- Tufte claimed that graphs loaded with chartjunk are no good
- Is that really so?
- How could you test this?

Comparing

150


Bateman et al CHI '10

Fall 2012 CS 7450 55

Methodology

- Two versions of each chart
- Participant sees one
 - Asked immediate interpretation accuracy questions
 - Asked similar questions again 5 minutes or 2-3 weeks later

Results

- No significant difference in immediate interpretation accuracy, or after 5 minute gap
- After 2-3 week gap, recall of chart topic and details was significantly better for chartjunk graphs
- Participants found the chartjunk graphs more attractive, enjoyed them more, and found them easiest and fastest to remember

Fall 2012 CS 7450 57

Caveats

- Small datasets
- "Normal" charts were really plain
- No interaction
- How about other added interpretations from the flowery visuals?
- Be careful reading too much into this

More Complex Task Eval

- Consider investigative analysis tasks involving sensemaking, awareness, and understanding
- Research questions
 - How do people use systems?
 - What characteristics matter?
 - What should we measure/observe?
- Exploring methods for utility evaluation

VAST '08 & *TVCG* '11

Fall 2012

CS 7450

System Examined - Jigsaw

Fall 2012 CS 7450 60

30

Study Design

- Task and dataset
- Your HW 8
- 50 simulated intelligence case reports
 Each a few sentences long
 23 were relevant to plot
- Identify the threat & describe it in 90 minutes

Source: doc017 **Date**: Oct 22, 2002

Abu H., who was released from custody after the September 11 incidents and whose fingerprints were found in the U-Haul truck rented by Arnold C. [see doc033] holds an Egyptian passport. He is now known to have spent six months in Afghanistan in the summer of 1999.

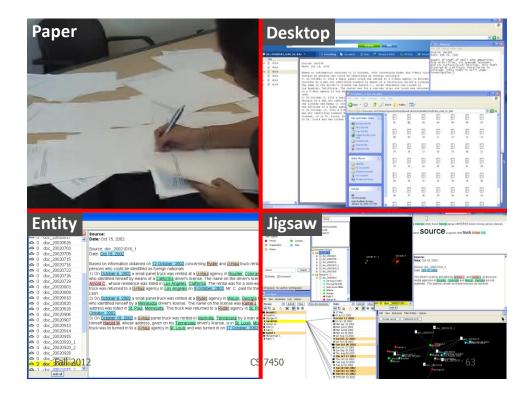
Fall 2012 CS 7450 61

Study Design - Settings

2: Desktop

3: Entity

4: Jigsaw


Fall 2012

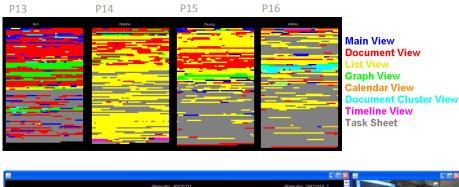
Performance Measures

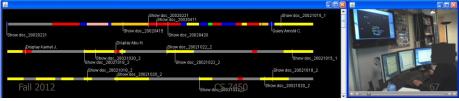
- Task sheets (like VAST Contest)
 - Three components (relevant people, events, locations)
 - +1 for correct items, -1 for a misidentified items
- Summary narrative
 - Subjective grading from 1 (low) to 7 (high)
- Two external raters
- Normalized, each part equal, mapped to 100point scale

Results

		Pa	per			Des	ktop		Entity Jigsaw							
	P1	P2	P3	P4	P5	P6	P7	P8	P9	P10	P11	P12	P13	P14	P15	P16
Final Score	22.87	65.00	24.26	87.08	62.08	67.13	42.13	29.41	52.23	15.00	29.26	81.19	95.05	58.07	75.20	90.00
Performance	Fair	Very good	Fair	Excel- lent	Very good	Very good	Good	Fair	Good	Poor	Fair	Excel- lent	Excel- lent	Good	Very good	Excel- lent
Average Score		49	.80			50	.19			44	.42			79	.59	
Documents Viewed	50	50	50	50	50	50	50	50	49	31	45	50	31	50	46	23
# of Queries					19	18	48	8	23	61	59	91	44	4	26	8
First Query					40:49	19:55	2:47	12:41	1:31	0:29	0:59	3:12	0:18	5:35	25:37	4:18
Amount of Notes	Many	None	Many	Some	Many	Some	Few	Some	Some	None	None	Few	Some	Few	Few	Few
First Note Taking	0:07		0:05	0:16	1:53	19:57	2:47	8:20	2:37			3:14	0:48	0:32	5:15	78:45
First Task Sheet	43:20	32:53	70:13	3:25	61:35	20:26	7:33	64:11	28:09	0:52	2:55	7:20	48:26	41:48	43:00	5:33

Fall 2012 CS 7450 65


Results



		Paper					Desktop			Entity				Jigsaw			
	P1	P2	P3	P4	P5	P6	P7	P8	P9	P10	P11	P12	P13	P14	P15	P16	
Final Score	22.87	65.00	24.26	87.08	62.08	67.13	42.13	29.41	52.23	15.00	29.26	81.19	95.05	58.07	75.20	90.00	
Performance	Fair	Very good	Fair	Excel- lent	Very good	Very good	Good	Fair	Good	Poor	Fair	Excel- lent	Excel- lent	Good	Very good	Excel- lent	
Average Score		49	.80			50	.19			44	.42			79	.59		
Documents Viewed	50	50	50	50	50	50	50	50	49	31	45	50	31	50	46	23	
# of Queries					19	18	48	8	23	61	59	91	44	4	26	8	
First Query					40:49	19:55	2:47	12:41	1:31	0:29	0:59	3:12	0:18	5:35	25:37	4:18	
Amount of Notes	Many	None	Many	Some	Many	Some	Few	Some	Some	None	None	Few	Some	Few	Few	Few	
First Note Taking	0:07		0:05	0:16	1:53	19:57	2:47	8:20	2:37			3:14	0:48	0:32	5:15	78:45	
First Task Sheet	43:20	32:53	70:13	3:25	61:35	20:26	7:33	64:11	28:09	0:52	2:55	7:20	48:26	41:48	43:00	5:33	

Jigsaw Usage Patterns

Investigative Strategies

- 1. Overview, filter and detail (OFD)
- 2. Build from detail (BFD)
- 3. Hit the keyword (HTK)
- 4. Find a clue, follow the trail (FCFT)

P16: "I like this people-first approach. Once I identify key people, then things that are potentially important come up, too. I'm an impatient person and don't want to read all documents chronologically."

Results by Strategy

		Pa	per			Des	ktop			En	tity		Jigsaw			
	P1	P2	P3	P4	P5	P6	P7	P8	P9	P10	P11	P12	P13	P14	P15	P16
Strategy Used	OFD	OFD	BFD	OFD	OFD	OFD	FCFT	BFD	BFD	HTK	HTK	FCFT	FCFT	HTK	OFD	FCFT
Performance	Fair	Very good	Fair	Excel- lent	Very good	Very good	Good	Fair	Good	Poor	Fair	Excel- lent	Excel- lent	Good	Very good	Excel- lent
Documents Viewed	50	50	50	50	50	50	50	50	49	31	45	50	31	50	46	23

Fall 2012 CS 7450 69

Results by Strategy

		Pa	per		Desktop					En	tity		Jigsaw			
	P1	P2	P3	P4	P5	P6	P7	P8	P9	P10	P11	P12	P13	P14	P15	P16
Strategy Used	OFD	OFD	BFD	OFD	OFD	OFD	FCFT	BFD	BFD	HTK	HTK	FCFT	FCFT	HTK	OFD	FCFT
Performance	Fair	Very good	Fair	Excel- lent	Very good	Very good	Good	Fair	Good	Poor	Fair	Excel- lent	Excel- lent	Good	Very good	Excel- lent
Documents Viewed	50	50	50	50	50	50	50	50	49	31	45	50	31	50	46	23

Results by Strategy

		Paper				Desktop				En	tity		Jigsaw			
	P1	P2	P3	P4	P5	P6	P7	P8	P9	P10	P11	P12	P13	P14	P15	P16
Strategy Used	OFD	OFD	BFD	OFD	OFD	OFD	FCFT	BFD	BFD	HTK	HTK	FCFT	FCFT	HTK	OFD	FCFT
Performance	Fair	Very good	Fair	Excel- lent	Very good	Very good	Good	Fair	Good	Poor	Fair	Excel- lent	Excel- lent	Good	Very good	Excel- lent
Documents Viewed	50	50	50	50	50	50	50	50	49	31	45	50	31	50	46	23

Fall 2012 CS 7450 71

Results by Strategy

	Paper				Desktop					En	tity		Jigsaw			
	P1	P2	P3	P4	P5	P6	P7	P8	P9	P10	P11	P12	P13	P14	P15	P16
Strategy Used	OFD	OFD	BFD	OFD	OFD	OFD	FCFT	BFD	BFD	HTK	HTK	FCFT	FCFT	HTK	OFD	FCFT
Performance	Fair	Very good	Fair	Excel- lent	Very good	Very good	Good	Fair	Good	Poor	Fair	Excel- lent	Excel- lent	Good	Very good	Excel- lent
Documents Viewed	50	50	50	50	50	50	50	50	49	31	45	50	31	50	46	23

Results by Strategy

	Paper			Desktop			Entity				Jigsaw					
	P1	P2	P3	P4	P5	P6	P7	P8	P9	P10	P11	P12	P13	P14	P15	P16
Strategy Used	OFD	OFD	BFD	OFD	OFD	OFD	FCFT	BFD	BFD	HTK	HTK	FCFT	FCFT	НТК	OFD	FCFT
Performance	Fair	Very good	Fair	Excel- lent	Very good	Very good	Good	Fair	Good	Poor	Fair	Excel- lent	Excel- lent	Good	Very good	Excel- lent
Documents Viewed	50	50	50	50	50	50	50	50	49	31	45	50	31	50	46	23

Fall 2012 CS 7450 73

Tool Design Implications

- Support finding starting points/clues
- Guide the analyst to follow the right trail
- Support different strategies of SM process
- Support smooth transition between SM stages
- Provide a workspace
- Allow flexibility in organizing
- Support to find next steps when dead-end
- Facilitate further exploration

Jigsaw's Influence

- Supporting different strategies
- Showing connections between entities
- Helping users find the right clue
- Helping users focus on essential information
- Reviewing hypotheses
- Increasing motivation

Fall 2012 CS 7450 75

Evaluation Recommendations

- Compare system usage to traditional methods
- Collect qualitative data, support with quantitative data
- Consider questions to be answered
- Possible metrics
 - Number of documents viewed
 - When note-taking initiated
 - The quantity of representations created
 - Amount of time and effort in organizing
 - Time spent in reading/processing relevant information

How to Evaluate Many Eyes?

- Two main evaluation papers written about system
- Studied use of system, visualizations being created, discussions about system, etc.

Fall 2012 CS 7450 77

Paper 1

- Case study of early use
- System uses
 - Visual analytics
 - Sociability
 - Generating personal and collective mirrors
 - Sending a message

Viégas et al HICSS '08

Use Characteristics

Data Topic/Area	Percentage
Society	14.0
Economics	12.7
Obscured/Anon	12.4
Art & culture	10.8
Web & new media	10.3
Science	10.0
Test data	9.5
Politics	7.4
Technology	6.6

Comment Type	Percentage
Observation	46.3
Question	15.8
Affirmation	13.7
Hypothesis	11.6
Socializing	11.6
System design	11.6
Data integrity	9.5
Testing	4.2
Tips	4.2
To do	4.2

Fall 2012 CS 7450 79

Paper 2

- Interview-based study
- Individual phone interviews with 20 users
 - Lots of quotes in paper
- Bloggers vs. regular users
- Also includes stats from usage logs
 - 3069 users
 - 1472 users who uploaded data
 - 5347 datasets
 - 972 users who created visualizations
 - 3449 visualizations
 - 222 users who commented
 - 1268 comments

Danis et al CHI '08

Findings

- User motivations
 - Analyzing data
 - Broadening the audience, sharing data
- Lots of collaborative discussion
 - Much off the ManyEyes site
- Concerns about data and other eyes

Fall 2012 CS 7450 81

Specific to Infovis?

 How about evaluation techniques specifically focused on infovis?

Insight

- Isn't one of the key ideas about InfoVis that it helps generate insights?
- OK, well let's count/measure insights
- What challenges do you see in this?

Fall 2012 CS 7450 83

Problem Domain

Start

- Microarray experiments: Gain insight into the extremely complex and dynamic functioning of living cells
- Systems-level exploratory analysis of thousands of variables simultaneously
- Big data sets

Saraiya, North, Duca *TVCG* '05

Insight

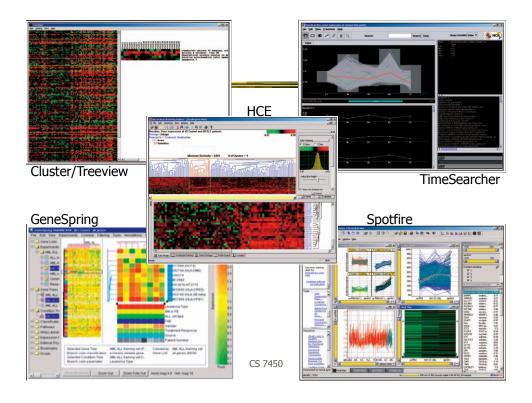
- Insight: An individual observation about the data by the participant, a unit of discovery
- Characteristics
 - Observation
 - Time
 - Domain Value
 - Hypotheses
 - Directed vs Unexpected
 - Category

Fall 2012 CS 7450 85

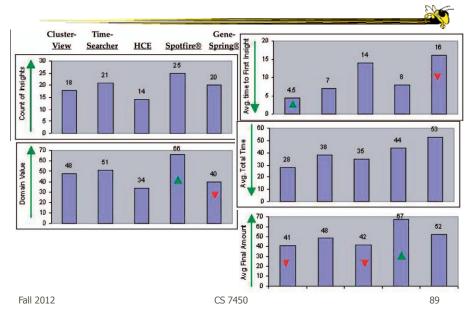
Insight Characteristics

North

- Complex
 - Involving large amounts of data in a synergistic way
- Deep
 - Builds over time, generates further questions
- Qualitative
 - Can be uncertain and subjective
- Unexpected
 - Often unpredictable, serendipitous
- Relevant
 - Deeply embedded in data domain, connecting to existing domain knowledge CG&A '06


CS 7450 Fall 2012 86

Experiment Design



• Data: Timeseries, Virus, Lupus

Tool	Visual Representations	Interactions
Cluster/ Treeview	Heat-map, Clustered heat-map	O+D
Time- Searcher	Parallel coordinates, line graph	Brushing, O+D, DQ
HCE	Cluster dendrogram, parallel coordinates, heat-map, scatterplot, histogram	Brushing, Zooming, O+D, DQ
Spotfire® 7.2 Functional Genomics	Parallel coordinates, heat-map, scat- terplots (2D/3D), histogram, bar/pie chart, tree view, spreadsheet view, Clustered parallel coordinates	Brushing, Zooming, O+D, DQ
GeneSpring ® 5.0	Parallel coordinate, heat-map, scatter- plots (2D/3D), histogram, bar chart, block view, physical position view, array layout view, pathway view, spreadsheet view, compare gene to gene, Clusterested parallel coordinates	Brushing, Zooming

Results

Discussion

- Methodology difficulties
 - Labor intensive
 - Requires domain expert
 - Requires motivated subjects
 - Training and trial time
- Weakness: Short session time (2 hours) when long-term use more desirable

Reconsidering Insight

- Insight with visualization
 - Is not spontaneous "aha!" moments (eg, in cognitive science)
 - Is knowledge-building and modelconfirmation

Like a substance that people acquire with the aid of systems

Chang et al CG&A '09

Fall 2012 CS 7450 91

Rethinking Methodology

 Do controlled lab experiments really tell us very much in information visualization?

MILC Technique

- Multi-dimensional
 - observations, interviews, surveys, logging
- **I**n-depth
 - intense engagement of researchers with domain experts so as to almost become a partner
- Long-term
 - longitudinal use leading to strategy changes
- Case Study
 - detailed reporting about small number of people working on their own problems in their own domain

Shneiderman & Plaisant BELIV '06

Fall 2012 CS 7450 93

Influences

- Ethnography
 - Preparation
 - Field study
 - Analysis
 - Reporting

Guidelines

Start

- Specify focused research questions & goals
- Identify 3-5 users
- Document current method/tool
- Determine what would constitute professional success for users
- Establish schedule of observation & interviews
- Instrument tool to record usage data

- Provide attractive log book for comments, problems, and insights
- Provide training
- Conduct visits & interviews
- Encourage users to continue using best tool for task
- Modify tool as needed
- Document successes and failures

Fall 2012 CS 7450 95

SocialAction

- The second of th
- Evaluation inspired by MILC ideas goals
 - Interview (1 hour)
 - Training (2 hours)
 - Early use (2-4 weeks)
 - Mature use (2-4 weeks)
 - Outcome (1 hour)

Perer & Shneiderman CHI '08

Methodology

- Four case studies
 - Senatorial voting patterns
 - Medical research knowledge discovery
 - Hospital trustee networks
 - Group dynamics in terrorist networks
- Named names
 - I like it!
- Tell what they did with system

Fall 2012 CS 7450 97

My Reflections

- Nice paper
- Stark contrast to comparative, controlled experiments
- We likely need more of this in InfoVis

Summary

- Why do evaluation of InfoVis systems?
 - We need to be sure that new techniques are really better than old ones
 - We need to know the strengths and weaknesses of each tool; know when to use which tool

Fall 2012 CS 7450 9

Challenges

- There are no standard benchmark tests or methodologies to help guide researchers
 - Moreover, there's simply no one correct way to evaluate
- Defining the tasks is crucial
 - Would be nice to have a good task taxonomy
 - Data sets used might influence results
- What about individual differences?
 - Can you measure abilities (cognitive, visual, etc.) of participants?

Challenges

- Insight is important
 - Great idea, but difficult to measure
- Utility is a real key
 - Usability matters, but some powerful systems may be difficult to learn and use
- Exploration
 - InfoVis most useful in exploratory scenarios when you don't know what task or goal is So how to measure that?!

Fall 2012 CS 7450 101

Project

- Demos on Thursday
- 15 minutes, plan appropriately, leave open-ended exploration time
- Bring page or two describing project
- Video due next Monday

Upcoming

- Review & recap
 - ReadingFew chapter 13Heer et al '10