Multivariate Visual Representations 1

CS 7450 - Information Visualization Sep. 10, 2012 John Stasko

Agenda

- General representation techniques for multivariate (>3) variables per data case
 - But not lots of variables yet...

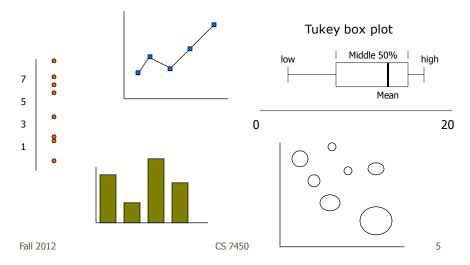
Revisit

How Many Variables?

- Data sets of dimensions 1, 2, 3 are common
- Number of variables per class
 - 1 Univariate data
 - 2 Bivariate data
 - 3 Trivariate data
 - ->3 Hypervariate data Focus Today

Fall 2012 CS 7450 3

Earlier



- We examined a number of tried-and-true techniques/visualizations for presenting multivariate (typically <=3) data sets
 - Hinted at how to go above 3 dimensions

Representations

Some standard ways for low-d data

Hypervariate Data

- How about 4 to 20 or so variables (for instance)?
 - Lower-dimensional hypervariate data
 - Many data sets fall into this category

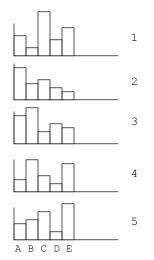
More Dimensions

- Fundamentally, we have 2 geometric (position) display dimensions
- For data sets with >2 variables, we must project data down to 2D
- Come up with visual mapping that locates each dimension into 2D plane
- Computer graphics: 3D->2D projections

Fall 2012 CS 7450 7

Wait a Second

- A spreadsheet already does that
 - Each variable is positioned into a column
 - Data cases in rows
 - This is a projection (mapping)
- What about some other techniques?
 - Already seen a couple

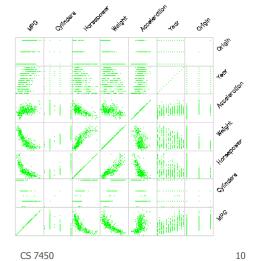

Multiple Views

Revisit

Give each variable its own display

	Α	В	С	D	Ε
1	4	1	8	3 2 4 1	5
2	6	3	4	2	1
3	5	7	2	4	3
4	2	6	3	1	5
5	3	4	5	1	7

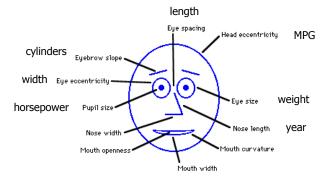
Fall 2012


CS 7450

Scatterplot Matrix

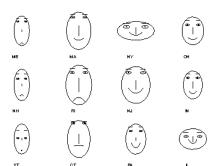
Revisit

Represent each possible pair of variables in their own 2-D scatterplot


Fall 2012

10

Chernoff Faces

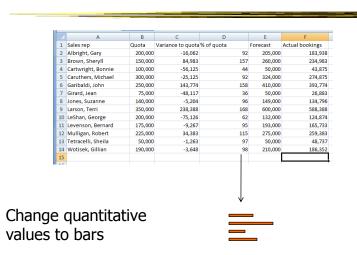

Encode different variables' values in characteristics of human face

Fall 2012 CS 7450 11

Examples

Cute applets: http://www.cs.uchicago.edu/~wiseman/chernoff/http://hesketh.com/schampeo/projects/Faces/chernoff.html

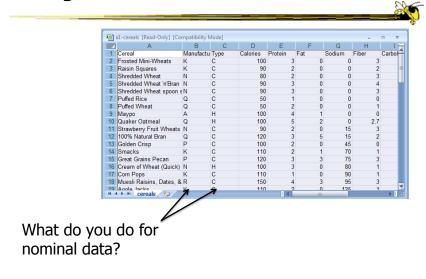
Table Lens



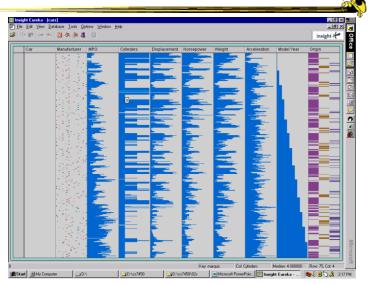
- Spreadsheet is certainly one hypervariate data presentation
- Idea: Make the text more visual and symbolic
- Just leverage basic bar chart idea

Rao & Card CHI '94

Fall 2012 CS 7450 13

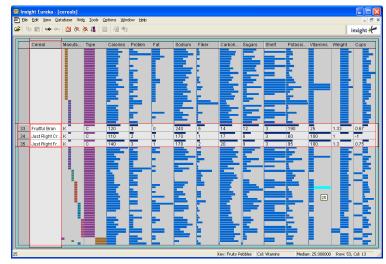

Visual Mapping

Fall 2012 CS 7450 14

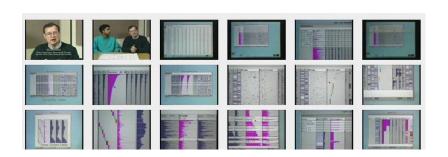

7

Tricky Part

Fall 2012 CS 7450 15


Instantiation

Details

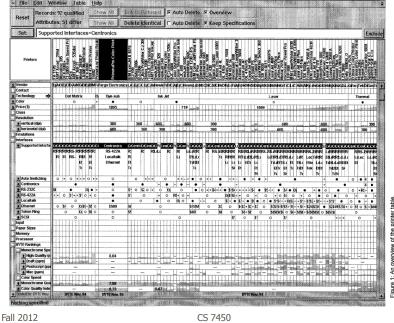

Focus on item(s) while showing the context

Fall 2012 CS 7450 17

See It

http://www.open-video.org/details.php?videoid=8304

Video


FOCUS

- Feature-Oriented Catalog User Interface
- Leverages spreadsheet metaphor again
- Items in columns, attributes in rows
- Uses bars and other representations for attribute values

Spenke, Beilken, & Berlage UIST '96

Fall 2012 CS 7450 19

20

Characteristics

- Can sort on any attribute (row)
- Focus on an attribute value (show only cases having that value) by doubleclicking on it
- Can type in queries on different attributes to limit what is presented too

Fall 2012 CS 7450 21

Limit by Query

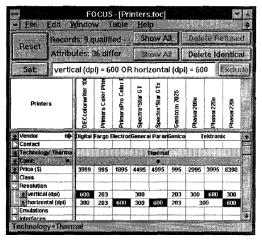
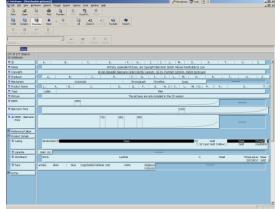



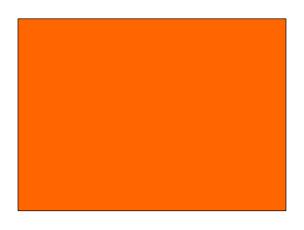
Figure 4: A disjunction.

Manifestation

InfoZoom

Commercial product to be demo'ed coming up

Fall 2012 CS 7450 23

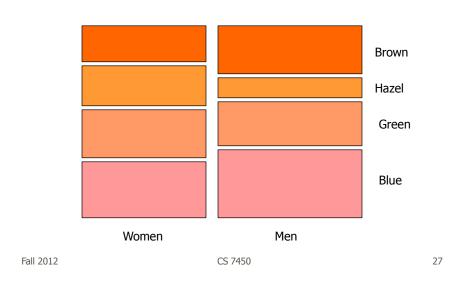

Categorical data?

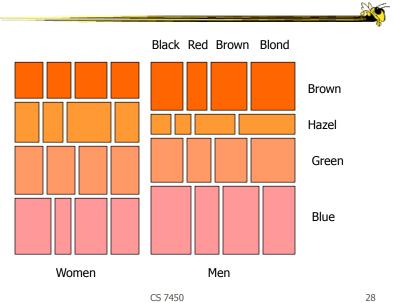
- How about multivariate categorical data?
- Students
 - Gender: Female, male
 - Eye color: Brown, blue, green, hazel
 - Hair color: Black, red, brown, blonde, gray
 - Home country: USA, China, Italy, India, ...

Mosaic Plot



Fall 2012 CS 7450 25


Mosaic Plot


Mosaic Plot

Mosaic Plot

Fall 2012

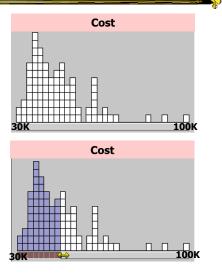
Attribute Explorer

 General hypervariate data representation combined with flexible interaction

Spence & Tweedie
Inter w Computers '98

Fall 2012 CS 7450 29

Characteristics

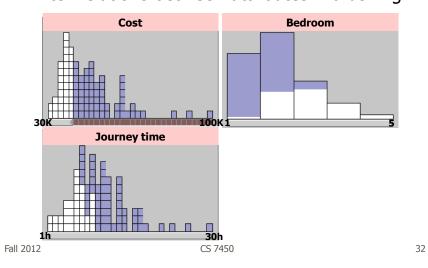


- Multiple histogram views, one per attribute (like trellis)
- Each data case represented by a square
- Square is positioned relative to that case's value on that attribute
- Selecting case in one view lights it up in others
- Query sliders for narrowing
- Use shading to indicate level of query match (darkest for full match)

Features

- Attribute histogram
- All objects on all attribute scales

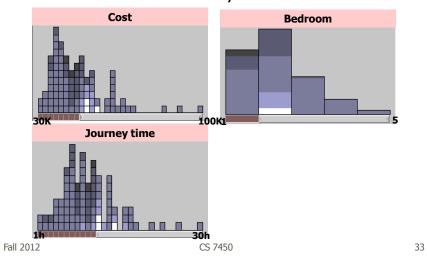
 Interaction with attributes limits



Fall 2012 CS 7450 31

Features

• Inter-relations between attributes – brushing



16

Features

Color-encoded sensitivity

Attribute Explorer

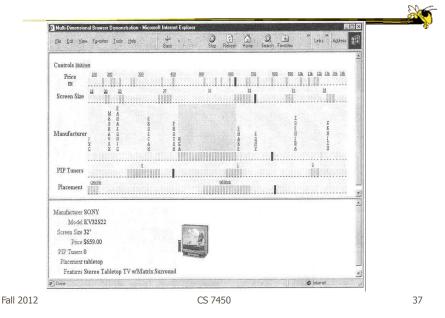
Video

http://www.open-video.org/details.php?videoid=8162

Summary

- Summary
 - Attribute histogram
 - Attribute relationship
 - Sensitivity information
 - Especially useful in "zero-hits" situations or when you are not familiar with the data at all
- Limitations
 - Limits on the number of attributes

Fall 2012 CS 7450 35

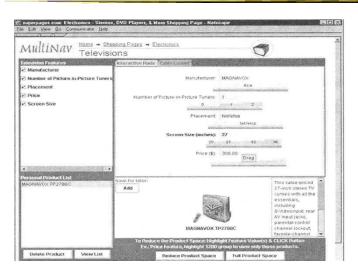

MultiNav

- Each different attribute is placed in a different row
- Sort the values of each row
 - Thus, a particular item is not just in one column
- Want to support browsing

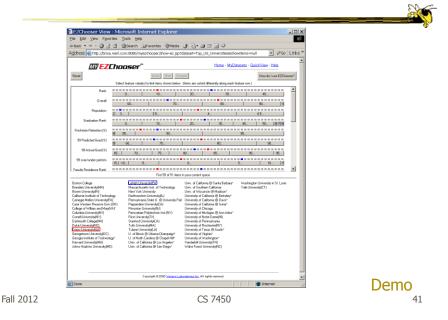
Lanning et al AVI '00

Interface

Alternate UI



- Can slide the values in a row horizontally
- A particular data case then can be lined up in one column, but the rows are pushed unequally left and right

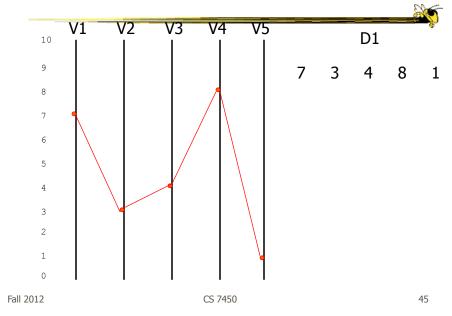

Attributes as Sliding Rods

Information-Seeking Dialog

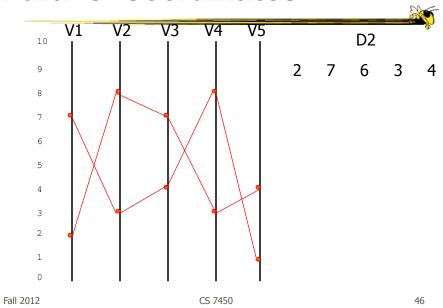
Instantiation

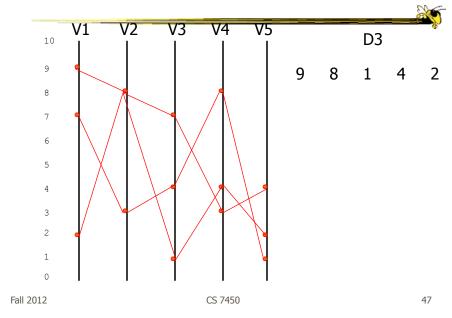
Limitations

- Number of cases (horizontal space)
- Nominal & textual attributes don't work quite as well



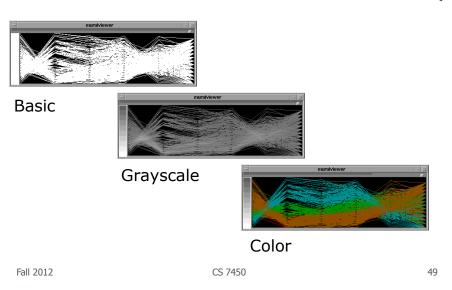
- What are they?
 - Explain...


Fall 2012 CS 7450 43


Parallel Coordinates

Parallel Coordinates

Parallel Coordinates


Encode variables along a horizontal row

Vertical line specifies different values that variable can take

Data point represented as a polyline

Parallel Coords Example

Issue

- Different variables can have values taking on quite different ranges
- Must normalize all down (e.g., 0->1)

Application

- System that uses parallel coordinates for information analysis and discovery
- Interactive tool
 - Can focus on certain data items
 - Color

Taken from:

A. Inselberg, "Multidimensional Detective" InfoVis '97, 1997.

Fall 2012 CS 7450 51

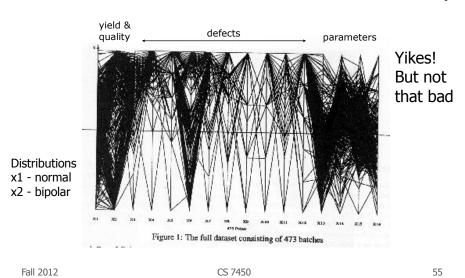
Discuss

- What was their domain?
- What was their problem?
- What were their data sets?

The Problem

- VLSI chip manufacture
- Want high quality chips (high speed) and a high yield batch (% of useful chips)
- Able to track defects
- Hypothesis: No defects gives desired chip types
- 473 batches of data

Fall 2012 CS 7450 53


The Data

- 16 variables
 - -X1 yield
 - X2 quality
 - X3-X12 # defects (inverted)
 - X13-X16 physical parameters

Parallel Coordinate Display

Top Yield & Quality

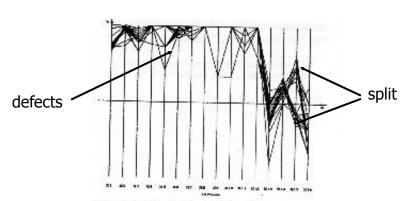


Figure 2: The batches high in Yield, X1, and Quality, X2,

Have some defects

Minimal Defects

Not the highest yields and quality

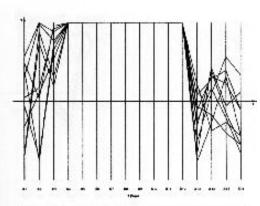


Figure 3: The batches with zero in 9 out of the ten defect types.

Fall 2012

CS 7450

57

Best Yields

Appears that some defects are necessary to produce the best chips

Non-intuitive!

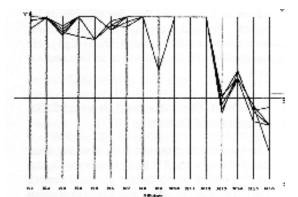
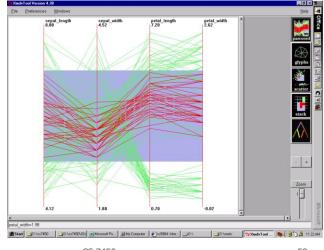


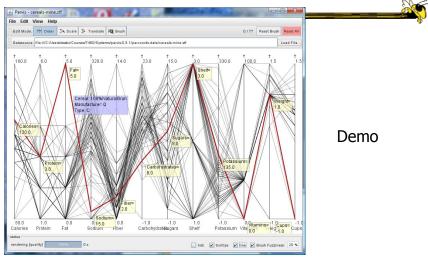
Figure 6: Batches with the highest Yields do not, have the lowest defects in X3 and X6.

Fall 2012

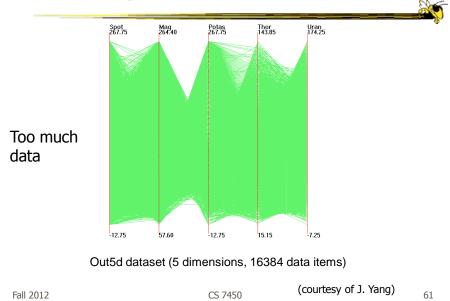
CS 7450


58

XmdvTool

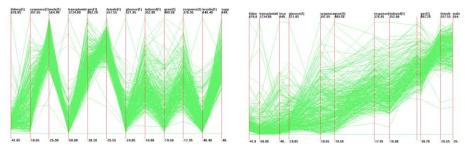

Toolsuite created by Matthew Ward of WPI

Includes parallel coordinate views


Fall 2012 CS 7450 59

ParVis System

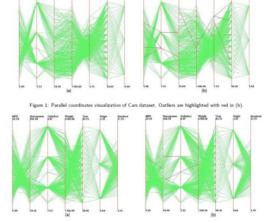
http://www.mediavirus.org/parvis/


Challenges

Dimensional Reordering

Which dimensions are most like each other?

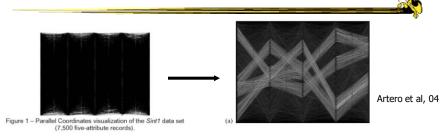
Same dimensions ordered according to similarity

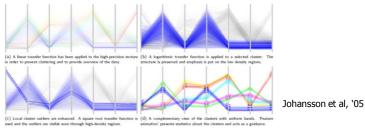

Yang et al InfoVis '03
Fall 2012 CS 7450 62

Dimensional Reordering

63

Can you reduce clutter and highlight other interesting features in data by changing order of dimensions?


Peng et al InfoVis '04

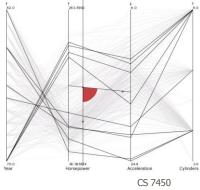

Figure 2: Parallel coordinates visualization of Cars dataset after clutter-based dimension reordering. Outliers are highlighted with red in (b).

Fall 2012 CS 7450

Reducing Density

Jerding and Stasko, '95, '98 Wegman & Luo, '96

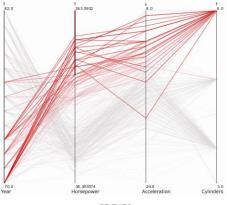
Improved Interaction


- How do we let the user select items of interest?
- Obvious notion of clicking on one of the polylines, but how about something more than that

Fall 2012 CS 7450 65

Attribute Ratios

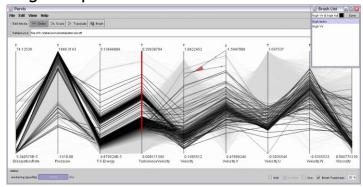
- Angular Brushing
 - Select subsets which exhibit a correlation along 2 axes by specifying angle of interest


Hauser, Ledermann, & Doleisch InfoVis '02

(earlier demo)

Range Focus

- Smooth Brushing
 - Specify a region of interest along one axis



Fall 2012 CS 7450 67

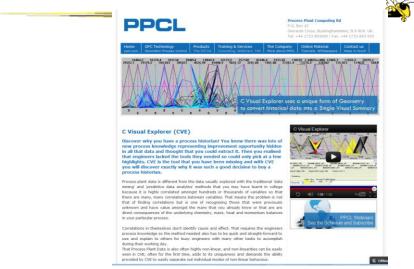
Combining

- Composite Brushing
 - Combine brushes and DOI functions using logical operators

Video

http://www.vrvis.at/via/research/ang-brush/parvis4.mov

Fall 2012 CS 7450 69


Application

 $\verb|http://www.syracuse.com/news/index.ssf/2010/01/data_mining_helps_new_york_cat.html| \\$

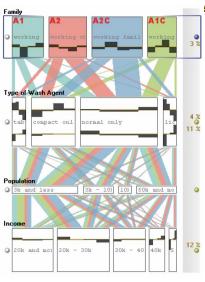
Application

http://www.ppcl.com/cms/index.php/ppcl-products/c-visual-explorer-cve

Fall 2012 CS 7450 71

Different Kinds of Data

- How about categorical data?
 - Can parallel coordinates handle that well?


Parallel Sets

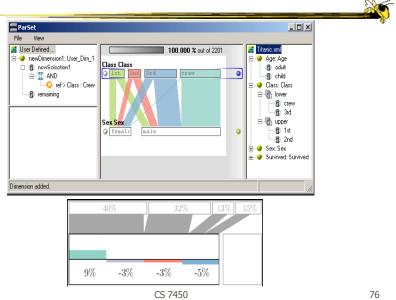
- Visualization method adopting parallel coordinates layout but uses frequencybased representation
- Visual metaphor
 - Layout similar to parallel coordinates
 - Continuous axes replaced with boxes
- Interaction
 - User-driven: User can create new classifications
 Kosara, Bendix, & Hauser TVCG '05

Fall 2012 CS 7450 73

Representation

Color used for different categories

Those values flow into the other variables


Example

Titanic passengers data set

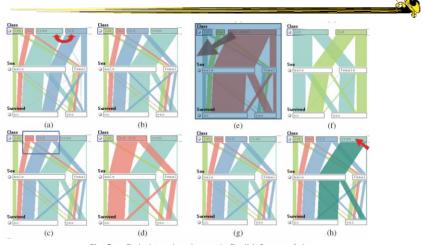
Class	S		
	female	male	
first	145 44.6%	180 55.4%	325
	30.8% 6.6%	10.4% 8.2%	14.8%
second	106 37.2%	179 62.8%	285
	22.6% 4.8%	10.4% 8.1%	12.9%
third	196 27.8%	510 72.2%	706
	41.7% 8.9%	29.5% $23.2%$	32.1%
crew	23 2.6%	862 97.4%	885
	4.9% 1.1%	49.8% 39.1%	40.2%
	470	1731	2201
	21.4%	78.6%	100%

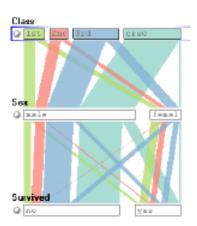
Fall 2012 CS 7450 75

Titanic Data Set

CS 7450 Fall 2012

Interactions

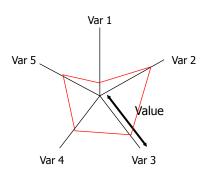



Fig. 7. Basic interaction elements in Parallel Sets: reordering categories (a,b) helps to generate a more meaningful layout; grouping categories (c,d) enables a hierarchical analysis/exploration; excluding categories from the visualization (e,f) allows for interactive filtering; and category highlighting (g,h) enables the selective investigation of high-dimensional relations.

Fall 2012

77

Video



Fall 2012 CS 7450

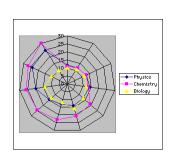
InfoVis `05 $_{78}$

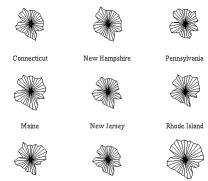
Star Plots

Space out the n variables at equal angles around a circle

Each "spoke" encodes a variable's value

Alternative Rep.


Data point is now a "shape"


Fall 2012 CS 7450 79

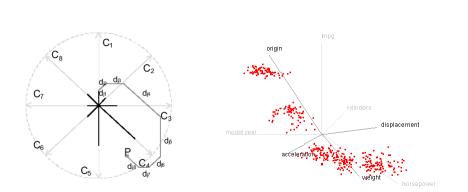
Star Plot examples

Vermont

New York

 $\verb|http://seamonkey.ed.asu.edu/~behrens/asu/reports/compre/compl.html|$

Massachusetts


Star Coordinates

- Same ideas as star plot
- Rather than represent point as polyline, just accumulate values along a vector parallel to particular axis
- Data case then becomes a point

Fall 2012 CS 7450 81

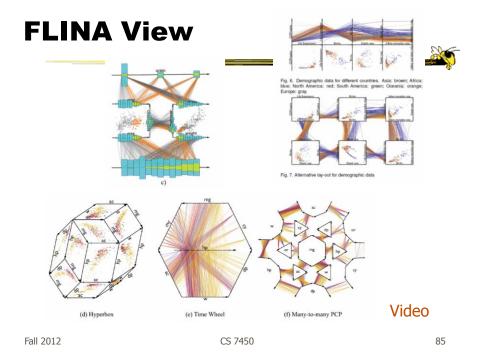
Star Coordinates

E. Kandogan, "Star Coordinates: A Multi-dimensional Visualization Technique with Uniform Treatment of Dimensions", InfoVis 2000 Late-Breaking Hot Topics, Oct. 2000

Demo

Star Coordinates

- Data cases with similar values will lead to clusters of points
- (What's the problem though?)
- Multi-dimensional scaling or projection down to 2D


Fall 2012 CS 7450 83

Generalizing the Principles

- General & flexible framework for axisbased visualizations
 - Scatterplots, par coords, etc.
- User can position, orient, and stretch axes
- Axes can be linked

Claessen & van Wijk TVCG (InfoVis) '11

- Technique
 - Strengths?
 - Weaknesses?

HW 3

- Static visualization design
 - Multivariate data set
 - Ozone experiments
- Due next Monday

Fall 2012 CS 7450 87

Project

- Teams & Topics due Monday
 - Bring 2 copies
- More topic ideas

Upcoming

- Multivariate Visual Representations 2
 - Reading:Keim et al, '02
- Tufte's Design Principles
 - Reading
 Tufte, Envisioning Information (if you have it)
- Read ahead
 - S. Few book chapters 5-12