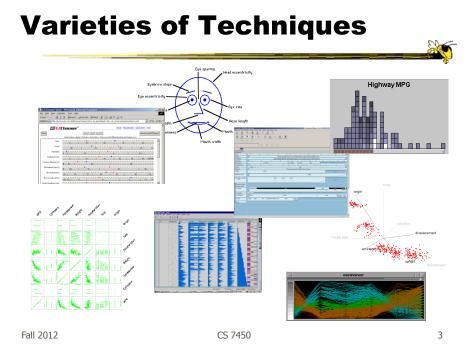
Multivariate Visual Representations 2

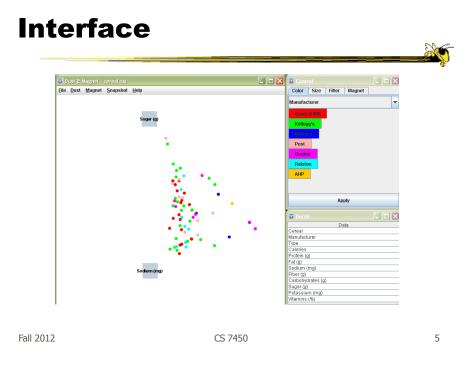

CS 7450 - Information Visualization Sep. 12, 2012 John Stasko

Recap

 We examined a number of techniques for projecting >2 variables (modest number of dimensions) down onto the 2D plane

- Scatterplot matrix
- Table lens
- Parallel coordinates
- etc.

CS 7450


Dust & Magnet

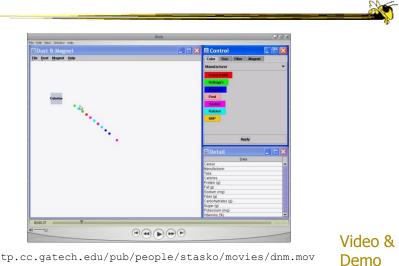
• Altogether different metaphor

- Data cases represented as small bits of iron dust
- Different attributes given physical manifestation as magnets
- Interact with objects to explore data

Yi, Melton, Stasko & Jacko Information Visualization `05

Fall 2012

Interaction


- Iron bits (data) are drawn toward magents (attributes) proportional to that data element's value in that attribute
 - Higher values attracted more strongly
- All magnets present on display affect position of all dust
- Individual power of magnets can be changed
- Dust's color and size can connected to attributes as well

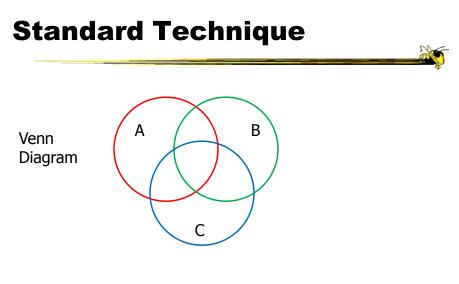
Interaction

- Moving a magnet makes all the dust move - Also command for shaking dust
- Different strategies for how to position magnets in order to explore the data

Fall 2012	CS 7450	7

See It Live

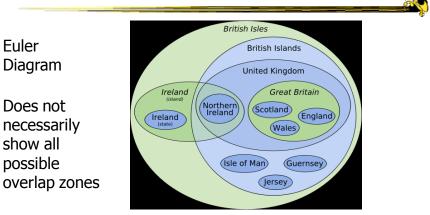
ftp://ftp.cc.gatech.edu/pub/people/stasko/movies/dnm.mov


Fall 2012

Set Operations

- Different type of problem
 - Large set of items, each can be in one or more sets
 - How do we visually represent the set membership?

Fall ZUIZ

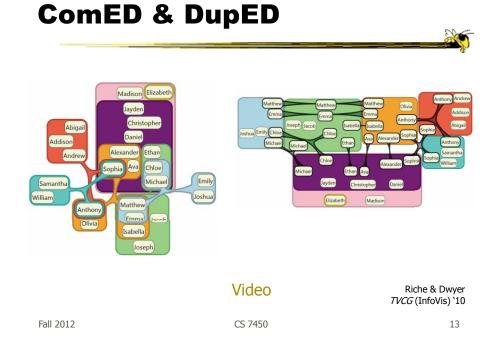

CS 7450

Contains all possible zones of overlap

CS 7450

Alternately

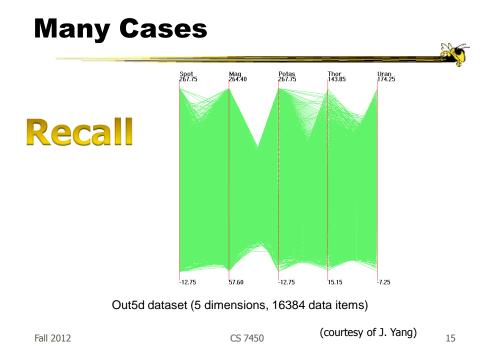
CS 7450

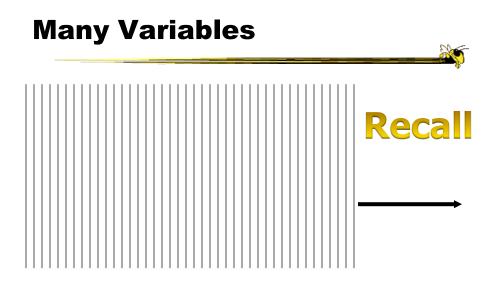

http://en.wikipedia.org/wiki/File:British_Isles_Euler_diagram_15.svg

But what's the problem?

11

Fall 2012


Bubble Sets Video 14 Collins et al TVCG (InfoVis) '09 CS 7450 12



Step Back

 Most of the techniques we've examined work for a modest number of data cases or variables

– What happens when you have lots and lots of data cases and/or variables?

Fall 2012

Strategies

 How are we going to deal with such big datasets with so many variables per case?

• Ideas?

Fall 2012

CS 7450

General Notion

- Data that is similar in most dimensions ought to be drawn together
 - Cluster at high dimensions
- Need to project the data down into the plane and give it some ultra-simplified representation
- Or perhaps only look at certain aspects of the data at any one time

CS 7450

Mathematical Assistance 1

- There exist many techniques for clustering high-dimensional data with respect to all those dimensions
 - Affinity propagation
 - k-means
 - Expectation maximization
 - Hierarchical clustering

Fall 2012

CS 7450

Mathematical Assistance 2

 There exist many techniques for projecting n-dimensions down to 2-D (dimensionality reduction)

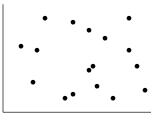

- Multi-dimensional scaling (MDS)
- Principal component analysis
- Linear discriminant analysis
- Factor analysis

Comput Sci & Eng courses Visual Analytics, Prof. Lebanon Data mining Knowledge discovery

Fall 2012

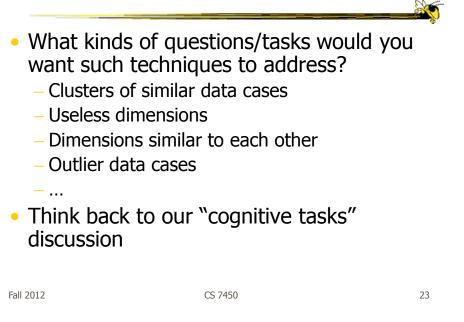
CS 7450

Other Techniques

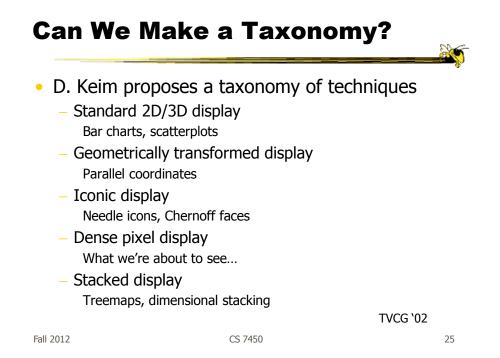


- Sampling We only include every so many data cases or variables
- Aggregation We combine many data cases or variables
- Interaction (later)
 - Employ user interaction rather than special renderings to help manage scale

Fall 2012	CS 7450


Our Focus

- Visual techniques
- Many are simply graphic transformations from N-D down to 2-D


CS 7450

Use?

Now

 We'll examine a number of other visual techniques intended for larger, higherdimensional data sets

Minimum Possible?

20

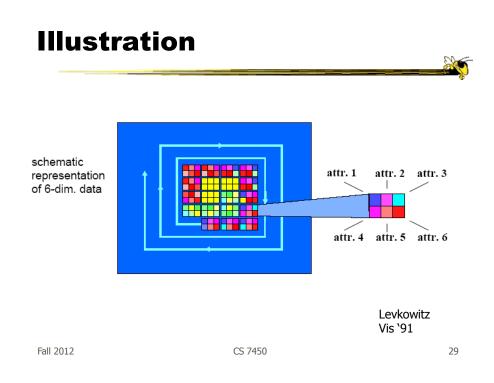
- We have data cases with variables
- What's the smallest representation we can use?

- How?

Dense Pixel Display

- Represent data case or a variable as a pixel
- Million or more per display
- Seems to rely on use of color
- Can pack lots in
- Challenge: What's the layout?

Fall	2012	


CS 7450

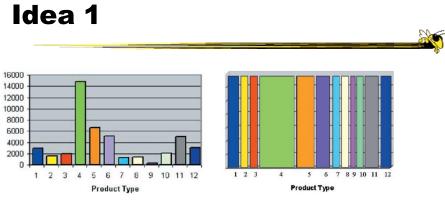
One Representation

- Grouping arrangement
- One pixel per variable
- Each data case has its own small rectangular icon
- Plot out variables for data point in that icon using a grid or spiral layout

Uses color scale	

CS 7450

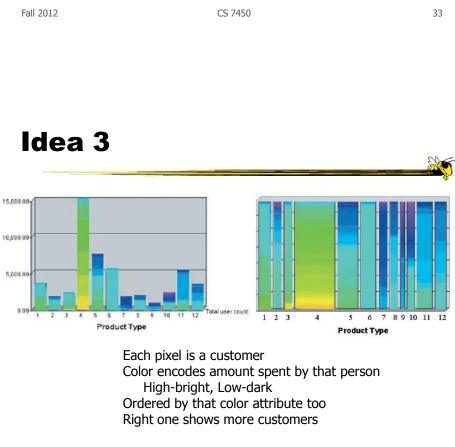
Spiral Technique

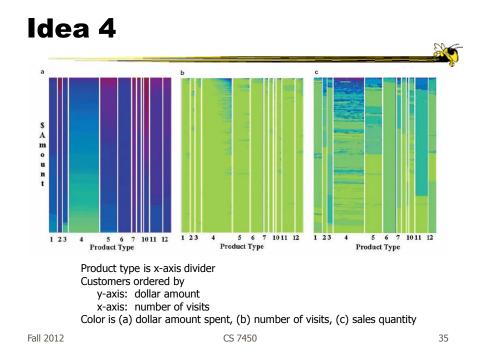

9	10	
8	1	2
7	0	3
6	5	4

Dimensions

Related Idea

- Pixel Bar Chart
- Overload typical bar chart with more information about individual elements




Height encodes quantity

Width encodes quantity


ldea 2

- Make each pixel within a bar correspond to a data point in that group represented by the bar
 - Can do millions that way
- Color the pixel to represent the value of one of the data point's variables

Idea 5 a_{1} a_{2} a_{2

Color maps to some attribute (Same item always at same x,y position)

Figure 9 Multiple coloring attributes (e.g., C_1 =dollar amount, C_2 =no. of visits, C_3 =quantity, C_4 =region).

Fall 2012

CS 7450

Idea 6

Mapping specified by 5 tuple $\langle D_x, D_y, O_x, O_y, C \rangle$

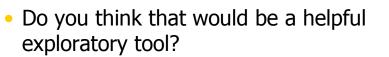
- D_x Attribute partitions x axis
- $D_y Attribute partitions y axis$
- $O_x Attribute specifies x ordering$
- $\hat{O_y}$ Attribute specifies y ordering C Attribute specifies color mapping

Fall 2012

CS 7450

Example Application ~^ 🔊 high ustome 345,000 custome 25 visits custo 500 item 12 1 23 4 12 1 2 3 4 5 6 10 12 1 2 3 4 5 6 10 5 6 7 10

Figure 13 Multi-pixel bar chart for mining 405,000 sales transaction records. ($D_x = Product Type$, $D_y = \bot$, $O_x = no. of visits$, $O_y = D_y = D_y = D_y$, $D_y = D_y$, Ddollar amount, C). (a) Color: dollar amount. (b) Color: no. of visits. (c) Color: quantity.


1. Product type 7 and product type 10 have the top dollar amount customers (dark colors of bar 7 and 10 in Figure 13a)2. The dollar amount spent and the number of visits are clearly correlated, especially for product type 4 (linear

increase of dark colors at the top of bar 4 in Figure 13b)

3. Product types 4 and 11 have the highest quantities sold (dark colors of bar 4 and 11 in Figure 13c) 4. Clicking on pixel A shows details for that customer

Fall 2012

Thoughts?

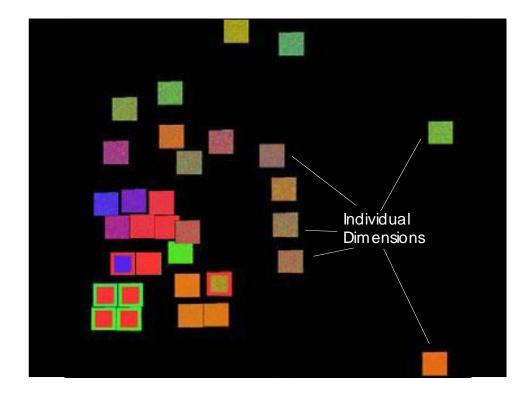
Fall 2012

CS 7450

High Dimensions

 Those techniques could show lots of data, but not so many dimensions at once
Have to pick and choose

CS 7450


Another Idea

- Use the dense pixel display for showing data and dimensions, but then project into 2D plane to encode more information
- VaR Value and relation display

		Yang et al InfoVis `04
Fall 2012	CS 7450	41

Algorithm

- Find a correlation function for comparing dimensions
- Calculate distances between dimensions (similarities)
- Make each dimension into a dense pixel glyph
- Assign position for each glyph in 2D plane using multi-dimensional scaling

Questions

• What order are the data cases in each dimension-glyph?

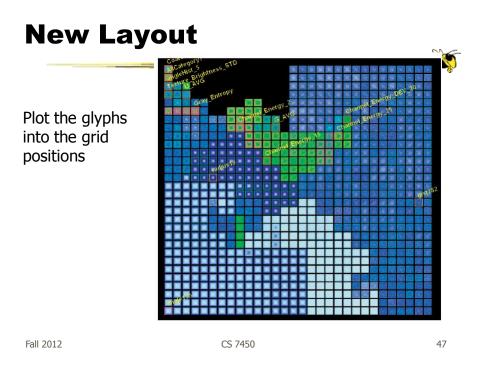
- Maybe there is a predefined order

 Choose one dimension as "important" then order data cases by their values in that dimension

"Important" one may be the one in which many cases are similar

Alternative

 Instead of each glyph being a dimension, it can be a data case


Fall 2012

CS 7450

Follow-on Work

- Use alternate positioning strategies other than MDS
- Use Jigsaw map idea (Wattenberg, InfoVis '05) to lay out the dimensions into a grid
 - Removes overlap
 - Limits number that can be plotted

CS 7450

HCE

- Hierarchical Clustering Explorer
- Implements "rank by feature" framework
- Help guide user to choose 1D distributions and 2D scatterplots from various dimensions of a data set
- Combine statistical analysis with userdirected exploration

Seo & Shneiderman Information Visualization `05

ldea

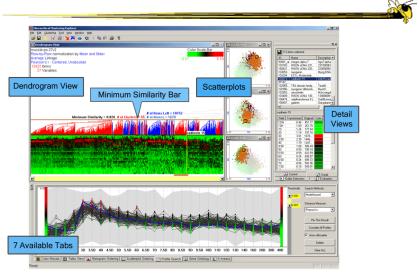
- Choose a feature detection criterion to rank 1D and 2D projections of a data set
- Use person's perceptual abilities to pick out interesting items from view

Fall 20	12	CS 7450		49
H	CE UI			<u></u>
	fransk afstang (span 16 / codes / Rec	Some chosen distributi	ons and scatterplots	
Cases in columns, variables in rows	K (K (a)			
Group similar cases				
	Image: state in the s			

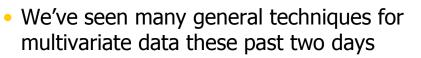
Seven tabs at bottom to choose from

Fall 2012

Operation


-

51


- When you choose the histogram ordering or scatterplot ordering tabs at the bottom left, these give results based on various statistical measures
- You can then choose some of them to visualize

Fall 2012	CS 7450

Demo

Recap

- Know strengths and limitations of each
- Know which ones are good for which circumstances

- We still haven't explored interaction much

Fall 2012	CS 7450	53
	C3 / +30	55

HW 3

- Visualization design for ozone data
- Due Monday
 - Bring two copies
- Questions?

Project

- Team & topic due Monday
 - Bring two copies

Fall 2012

CS 7450

Upcoming

- Tufte's Design Principles
 - Reading: *Envisioning Information* (if you have it)
- Few's Design Guidance
 - Reading Now You See It chapters 5-12

CS 7450