
Designing and Implementing an Interactive
Scatterplot Visualization for a Tablet Computer

Ramik Sadana
Georgia Institute of Technology

ramik@gatech.edu

John Stasko
Georgia Institute of Technology

stasko@cc.gatech.edu
ABSTRACT
Tablet computers now offer screen sizes and computing
capabilities that are competitive with traditional desktop PCs.
Their popularity has grown tremendously, but we are just
beginning to see information visualization applications designed
for this platform. One potential reason for this limited
development is the challenge of designing and implementing a
multi-touch interface for visualizations on mobile, tablet devices.
In this work, we identify the primary challenges that touch screen
interactions pose for information visualization applications. We
explore the design space of multi-touch interactions for
visualizations and present a prototype information visualization
application using a specific technique, a dynamic scatterplot, for
an iPad.

Categories and Subject Descriptors
H.5.0 [Information Interfaces and Presentation]: General

General Terms
Design, Algorithms, Human Factors.

Keywords
Information visualization, multi-touch interaction, scatterplot,
tablet computer, gesture.

1. INTRODUCTION
The popularity of tablet computers has grown tremendously in

recent years. Devices such as the Apple iPad, Amazon Kindle,
and Microsoft Surface constitute a significant portion of computer
sales today and a wide variety of applications have been tailored
to tablet platform. However, one area with just a few initial
applications for tablets is information visualization. Though
popular commercial systems such as Tableau and Spotfire have
introduced tablet versions in the last two years, these systems still
feel much like a port of a desktop application. They do not yet
leverage the set of gestural interactions that touch-based interfaces
provide and do not offer a rich, multi-touch interface in the style
of other tablet applications.

We speculate that the limited development of information
visualization applications for tablets has resulted from the
challenge of designing and implementing the interface. First, most
tablets still provide a smaller screen size, which is a limitation for
data visualization. Perhaps more importantly, information
visualization applications generally have many small visual

objects to select and manipulate, and they contain many
interactive widgets such as buttons, sliders, menus, and dialog
boxes. Desktop information visualization applications typically
make extensive use of a WIMP (window, icon, menu, pointer)
interface. Translating visualization interfaces and interactive
operations to a finger-directed multi-touch interface without a
keyboard and mouse is simply a very challenging problem [18].

Some recent research has begun to address this challenge,
however. One particular avenue of research has been the
development of multi-user, multi-touch data visualization
applications for tabletop computers [12], [14]. These systems have
explored the design space for multi-touch interaction, but
developing for tablet computers is subtly different than for large
tabletop computers. Baur et al. [2] recently designed a multi-touch
tablet interface for a StreamGraph-style information visualization.
This application is much more aligned with what we seek to
create. Our specific focus, however, is on a more general, widely
used visualization technique. Rzeszotarski and Kittur’s [24] tablet
application is a similar technique to ours but focuses on physics-
driven interactions.

Rather than viewing the movement of information visualization
applications to multi-touch tablets as a simple translation or
software port, we see this problem as an interesting design
challenge. Initial research [25] has noted the richness of the
interaction design space – for any interactive operation in an
information visualization system, multiple multi-touch
implementations make sense and appear totally reasonable.
Furthermore, we will show that adopting current multi-touch
gestures from tablet applications presents complications when
applied to data visualizations.

In this work, we further explore this design space and
implement a working information visualization application for a
tablet PC. We chose a dynamic scatterplot visualization as the
technique of our focus. Scatterplots are well-known and pervasive
in information visualization; many systems include them in their
suite of provided techniques. Scatterplots also have a long history
in data visualization, including the pioneering Starfield-display
FilmFinder system [1] that led to the development of Spotfire.
Our project starts from “ground zero”, that is, we are not porting
an existing system. Our application was developed to take full
advantage of, and to address all the limitations and constraints of,
a tablet interface using only fingers and touch for interaction.

The contributions of our work are multiple and align with the
sections of this article. By studying the Tableau and Spotfire
commercial implementations of a dynamic scatterplot, we derive a
set of tasks and interactive operations that our tablet application
would support (Section 3). Next, we analyze the characteristics of
the tasks and describe how those characteristics will influence
design (Section 4). We ultimately explore the design space of
multi-touch operations for each task, explain the nuances required
for each, propose multiple potential gestures, and implement
many of the options in a prototype interactive scatterplot
application for the iPad (Section 5). Because the static nature of a
paper may not convey all the operations well, we include a video
overview summarizing the application with this submission.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. Copyrights for
components of this work owned by others than the authors must be
honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior
specific permission and/or a fee.
AVI' 14, May 27 - 29 2014, Como, Italy
Copyright is held by the authors. Publication rights licensed to ACM.
ACM 978-1-4503-2775-6/14/05…$15.00.

2. RELATED WORK
Early data visualization research for computers other than

desktop PCs includes systems designed for mobile devices.
Buering et al. [6] presented a zoomable user interface (ZUI) based
scatterplot visualization for a PDA that used a stylus for input. In
a user study comparing two scatterplot applications, one
displaying both a detail view and an overview and the other
displaying only the detail view, participants solved search tasks on
a phone display faster without the overview scatterplot. While
mobile phones present similar design issues as tablets, a stylus for
input is substantially different than touch.

As multitouch devices became more common, a variety of
research emerged for visualizations on touch-based tabletops that
especially focused on the collaboration aspects. Cambiera [14] is a
search result visualization system supporting collaborative
brushing and linking of search results. Heilig et al. describe
ScatterTouch [12], a two-dimensional scatterplot visualization
technique that used the concept of multi-focus regions to support
simultaneous, multi-user interactions. North et al. [22] compared
how people manipulate node-link diagrams on a touch-based
tabletop and a mouse-based desktop.

Frisch et al.’s study [9], somewhat similar to our research, uses
the guessability study approach [30] to obtain user-elicited pen
and touch gestures for manipulating node-link diagrams on a
tabletop. The study reports that the user-defined gesture set
contained many ambiguities. Our own experiments employing the
guessability approach for scatterplots on tablets generated
similarly ambiguous and non-novel results. Hinckley et al. [13]
called this an expected behavior, citing lack of any experience as
the reason why users have difficulty envisioning gestures and
interactions.

SketchVis is a system that allows users to sketch visualizations
on a whiteboard [5]. The user draws representative visualization
constituents such as the coordinate system, labels on axes, and
some initial glyphs; the system responds by filling in the chart
correspondingly. Walny et al. [29] investigated the use of pen and
touch for data exploration on whiteboards. Their study explored
the interaction styles people employ, in particular the role of pen
and touch for representations and linking. While there are some
similarities between their work and ours, their major focus is on
the creative aspects of visualization, while ours is on the
interaction aspects of the data visualizations.

Within information visualization, only a few initial systems
have focused on small-to-medium size screens with touch as the
mode of interaction. For work particular to tablets, Baur et al. [2]
examined the stacked graph for their TouchWave system, and
developed a new set of multi-touch gestures for scaling, scrolling,
providing context, extracting layers, and many other activities.
They noted that developing a consistent interaction set was one of
the primary challenges of their project. Rzeszotarski and Kittur
[24] present TouchViz, a scatterplot visualization system for

tablets that employs zoom lens and razor filter interactions. The
authors enhance the playfulness of the interface using physics-
based interactions and gravity. Their focus is more on exploring
this metaphor rather than considering the broader design space of
multi-touch interactions. It is not clear how well their interactions
would map to other visualization techniques.

Recently, there has been a growing interest in understanding
interaction models for visualizations on touch-screen interfaces.
Lee et al. [18] survey multiple forms of post-mouse/keyboard
interaction, such as touch, gesture, speech, and whole body
engagement. They specify the interaction design considerations
for the new modalities, eliciting four principle dimensions: the
individual, the technology, social aspects of interactions between
people, and the interspace between a person and the technology.
They specifically identify “going beyond mouse and keyboard” as
an opportunity and a topic worthy of further research.

Isenberg et al. [15] discuss the visualization space specifically
for touch-based surfaces, highlighting the technical, design and
social challenges in supporting visualization on touch devices. For
touch interaction in particular, they outline the creation of a
gesture vocabulary that is both global to various visualization
types and low in complexity as a central research topic. Jansen
and Dragicevic [16] describe a modification of the infovis
pipeline to accommodate beyond-the-desktop visualization
systems. They suggest unifying the infovis pipeline and
instrumental-interaction model [3] for post-WIMP interfaces that
include touch-based interfaces as well as physical, fabricated
visualizations.

3. SCATTERPLOT VISUALIZATIONS
We began our research broadly and set out to design an

intuitive, powerful, and useful suite of touch-based interactive
operations for data visualization. We wanted to identify
interactions that would be effective across a variety of
visualization techniques. Very quickly, however, we realized that
beginning with such a broad focus made the problem unwieldy.
Instead, we decided to focus on a particular visualization
technique and explore it in depth. We believed that the knowledge
gained from this study would be valuable toward the larger, more
general problem.

A multitude of visualization techniques can be used for
representing data [11]. However, a few canonical examples, such
as line charts, bar charts and scatterplots, are widely used across
many different visualization systems. For this study, we chose to
focus on scatterplots. A scatterplot primarily consists of two axes
and glyphs that represent the data points. Attributes of the data
encoded on the x and y axes typically are quantitative in nature,
and nominal data attributes are often encoded using visual
properties of the glyphs such as color, shape, and size.

A salient feature of a scatterplot’s representation is that it
displays every data item in the view individually. As a result,

!

Figure 1. Interactive Scatterplot prototype for an Apple iPad.

scatterplots excel at highlighting clusters, outliers, and trends.
Decreasing the size of the glyphs and employing opacity to
manage overlap helps achieve a high data density. Small glyph
sizes work reasonably well for mouse-based interaction because a
precise cursor is able to address and identify individual glyphs.
However, this precise resolution is not feasible in the case of
finger-based interaction (the so-called “fat finger” problem [26]),
which is one of the primary challenges for scatterplots on tablets.
Since this problem arises for many other visualization techniques,
we believe that our work will be applicable for those techniques
as well.

To help construct a feature-complete implementation of
scatterplots on a tablet, we examined two widely used
visualization systems available on desktop computers: Spotfire
and Tableau. Both systems provide a powerful, comprehensive
scatterplot implementation. The purpose of this examination was
to identify a set of interactive tasks/operations that support
exploration with scatterplots. Analyzing the two systems
generated a list of 35 tasks. We further categorized each task
using the visualization interaction intent framework [31]. This
categorization helped us to ensure that most aspects of interaction
are covered and to minimize redundancy across the tasks.

We next pruned the list of tasks to a more concise set
containing what we call “primary tasks.” Primary tasks are those
that we consider central to data exploration with scatterplots. We
included tasks fundamental to interactive visualization such as
selection and filtering. We did not include others that, while
useful for some analysis, clearly are not used as commonly, such
as showing trend lines and highlighting clusters. We excluded
other operations such as “swap variables on axes” that could be
achieved using a short set of primary operations. Finally, we did
not implement system-related commands such as printing, saving
snapshots, changing chart background color, etc., that would be
needed for a commercial tool, but are not necessary for a research
prototype. The resulting set of primary tasks is shown in Table 1.

Table 1. Primary Interaction Tasks and their categorization

Task Interaction Intent [31] Categorization

Assign x and y Encode Data-centric, Essential

Assign color Encode Data-centric, on-demand

Assign size Encode Data-centric, on-demand

Find detail Abstract/Elaborate View-driven

Select Select View-driven

Zoom Abstract/Elaborate View-driven

Filter on points Filter View-driven

Filter on values Filter Data-centric, on-demand

Change axis scale Reconfigure Data-centric, on-demand

4. CLASSIFYING INTERACTIONS
In this section, we explore the design space of interactions for

the set of primary tasks we identified for scatterplots. We quickly
learned that this design space is much larger than one might
expect. This section provides a sense of that breadth, and the
subsequent section presents the ultimate design choices we made.

Previous work in the area of touch-screen interaction includes
various interaction taxonomies. In our work, we primarily
consider two different types of interactions: WIMP-derived and
gesture-driven. One initial, natural way to develop tablet
interfaces is to simply port desktop counterparts consisting of
WIMP elements such as menus, buttons, and toolbars onto the

touch screens. These elements leverage users’ familiarity and
allow for easy discovery of features. However, they occupy
valuable screen space and sometimes felt less than optimal for
these types of devices.

Over time, as touch screen technology evolved to provide faster
response times and support multi-touch interaction, user interfaces
began leveraging the strengths of gesture-driven interactions.
Gesture interactions provide direct access to the objects of interest
[15] and free up screen space previously utilized by WIMP
elements. Conversely, gestures do not support feature discovery or
learnability as well as WIMP elements.

Drucker et. al. [7] highlight the difference between gesture-
driven and WIMP-driven interaction for information visualization
applications. They compared two different interfaces that use a
barchart to present the same data. Both interfaces provided the
same functionality. The first interface (WIMP) used interface
elements such as menus and buttons for interaction while the
second interface (FLUID) used gestures. In their experiment,
participants performed a series of tasks using both interfaces.
Results showed that the FLUID interface performed better than
WIMP. Participants were faster at performing tasks using gestures
and also demonstrated fewer errors. A majority of participants
also expressed preference for the gesture interface.

Although the study offers strong evidence for gestures being
more effective for bar chart interactions than WIMP on a tablet,
we have some reservations about generalizing the results for
scatterplots and other techniques. First, the study employed a
small number of operations. This reduced the potential for any
conflict to arise between different interactions. Second, bars in a
barchart are inherently easier to touch than scatterplot glyphs
given their larger size. Thus, tasks such as selection and filter are
considerably simpler. Finally, the primary aim of the study was to
compare representative gesture and WIMP interfaces and not to
find the most effective gestures for interacting with the technique.

For our application, we aim to develop a suite of effective
interactions that comprehensively support data exploration on
scatterplots. In the previous section, we presented a list of nine
primary tasks to be supported. We believe that using only gestures
for all these tasks would inherently be a weak solution. A large
number of gestures would introduce issues of gesture conflicts,
learnability, and discoverability. Moreover, operations such as
changing the axis attributes cannot be supported effectively using
only gestures. We believe that a useful solution will, instead, be
one that uses a combination of gestures and WIMP elements.

To develop interactive operations for each task, we followed a
two-step approach:
1. We differentiated the tasks into two categories based on their

context: data-centric and view-driven.
a. Data-centric tasks are motivated by users' need to
change (aspects of) the underlying data and are independent of
the visualization. Examples of data-centric tasks are filtering
and changing the axis attribute. To perform these tasks, the
user typically needs to pick an option from a set of options or
a range. For instance, to filter data by an attribute, the user
needs to view the entire range of values as well as the
currently active range. Similarly, to change the attribute of an
axis, the user needs to view all the attributes to pick one. Since
these tasks require presentation of options, they are natural
candidates for WIMP-style interactions.
b. View-driven tasks, on the other hand, are motivated by
users’ desire to interact with the visualization or modify it, and
do not affect the underlying data. Zoom, sort, and selection are
examples of view-driven tasks. The selection task, for

instance, is independent of whether the data attributes being
selected are quantitative or nominal. Since these operations do
not require a presentation of options, we believe that gestures
can be used to implement interactions for them.

2. We further subdivide the data-centric (1a) tasks based on
frequency of use into essential and on-demand tasks. This
categorization helps position the interactions and their
interface elements onto either the main view or in menus &
submenus. Essential tasks are frequently used and it is vital
that users are able to perform these tasks in a minimum
number of steps. Hence, there is value in making them
available to users on the main view. Examples are selection,
changing attribute on an axis, and showing data details.
Conversely, on-demand tasks are applied by users
infrequently and do not need interaction elements on the main
view. Examples are changing the axis scale from linear to log
and adding jitter to the glyphs.

The two-step categorization of tasks based on context and
frequency helped to focus and clarify our development of the
scatterplot application and its interactive operations. In the
subsequent section, we describe both the design considerations
and implementation decisions that we made.

5. DESIGN AND IMPLEMENTATION
We implemented the interactive scatterplot prototype

application on an Apple iPad using iOS’s Cocoa Touch
framework. The application is optimized for a 9.7 inch screen
with a 2048 x 1536 resolution. The initial view of the application
presents a scatterplot using a random pair of variables from the
dataset. The main view consists of data points, the two axis lines,
and axis labels placed next to each line. The application reads data
from a csv file where the first row contains attribute names.

In the following subsections, we highlight potential options that
we considered for interactions for the primary tasks. The options
are a mix of some that we obtained from past research and others
that we crafted ourselves. We implemented most of the options in
order to gain a “feel” of what they are like in practice. We relate
these experiences and discuss the merits and limitations of these
options. Finally, we highlight one or more options that we
consider best for each task. Figure 1 shows images from the
application and an accompanying video provides a more
interactive look at the design choices described below and some
of the operations that we implemented.

5.1 Selection
Selection is a core task in any visualization system. In

traditional desktop systems, selection can be realized both through
hover and click-to-select actions. A selection task predominantly
constitutes the following use cases:
1. A user identifies a data point and wants to learn its details.

2. A user wants to highlight a point and track it across views,
such as a change in axis attributes.

3. A user identifies a point and wants to include it in or exclude
it from subsequent operations.

Each of these tasks is applicable to a single point or a set of
points. Moreover, the set of points can be located close together or
at diverse locations in the visualization. In the case of closely
located points, the points could be non-overlapping, partially
overlapping, or completely overlapping with each other.

To support the above tasks, the chosen interaction must be able
to select each individual data point. On a touch screen, this causes
considerable usability problems because large finger sizes do not
match well to the typically small size of scatterplot glyphs. As a
consequence, a glyph’s minimum size may be limited by the size
of a finger. The glyph size in turn then limits the number of data
points that effectively can be shown. In our prototype, although
we do not limit the size of the input, we found the interface to be
most effective when number of data items is less than 1000.

Similar issues of selection on touch screens have been carefully
studied in the past. Moscovich [21] presents precise selection
techniques for closely placed widgets by enhancing the pointer
activation areas. Although quite useful, the technique fails to
address situations where the underlying objects have overlaps.
Benko et al. [4] highlight a host of other options for precise
selection on touch. All these options suggest that there is no ideal
selection technique for touchscreen interaction as there is for
cursor-based interactions. Here we highlight some potential
options that we considered suitable for scatterplots:
A. Lasso: User draws a path to enclose a region containing the

point(s) of interest.

B. Rubber band: User drags on the view to draw a rectangular
area containing the point(s) of interest. This is likely faster
but less precise than lasso selection.

C. Zoom view: User taps-and-holds near the data points. This
reveals a zoom lens (similar to the iOS text correction view).
User taps to select the data point inside the lens and hides the
lens by tapping outside.

D. Swipe+Lens: User swipes on the intended point to select it. If
system detects multiple points with the swipe, a lens opens
with a magnified view to assist in precise selection [19].

E. Off-centered pointer: User taps-and-holds the screen to
reveal a cursor positioned n-pixels above and to the left of
the touch location. The user drags the cursor over the
intended point. Dragging over the point reveals details and
lifting the finger performs selection [28].

F. Axis Pan: User slides one finger on both axes
simultaneously. This creates a horizontal and vertical
reference line. The data point under the intersection of the
two lines is selected.

Various studies [4], [10], [20] have compared a combination of
the above selection techniques. However, they all consider
interfaces with a relatively low density of selectable elements. In
our experimentation with these options, we identified issues with
a number of them. Off-centered pointer (E) has the limitation that
certain positions on the view, such as the bottom edge, are
inaccessible because of the way the cursor is placed. Axis pan (F)
necessitates bimanual input that, though feasible on tablets,
requires the user to first place the tablet on some surface. Zoom
view (C) and swipe+lens (D) use a zoomed-in lens view. Selection
inside a lens creates issues for scatterplots since the shapes and
colors of the glyphs are often the same. As a result, switching
between the lens and non-lens modes causes a loss of target.

From among the list of possibilities, we found lasso (A, Figure
2a) and rubber-band (B) to be most effective for selection. We
support both these options in our prototype. Rubber-band builds
on user’s familiarity from use in visualization systems on
desktops. Alternately, lasso gives users finer control during
selection. To provide the user with feedback while drawing a path,
we highlight the area formed by completing the path between the
start and the current point.

Another approach to selection is by means of zooming [4], [23].
We can break down selection of a data point in a densely packed
region into three steps: zooming in, selecting, and zooming out.
The steps ensure high precision, as there is no limit to how much
the view can be zoomed. On the other hand, zooming increases
the time cost of selection and also leads to a loss in context similar
to lens-based solutions. However, in some situations, the location
of data points makes performing selection without zooming near
impossible. In our prototype, we support selection of points at all
states of zooming (discussed in the next section).

5.2 Zoom
The zoom operation is another vital interaction for

visualizations. The operation modifies the viewport to increase
clarity of data points that lie too close to each other. Below we
highlight some potential ways to perform zooming:
A. Pinch-to-zoom: User performs a pinch operation using two

fingers. The visualization scales depending on finger
movement.

A1. Fixed aspect ratio: The visualization scales up or down
uniformly in both directions.

A2. Flexible aspect ratio: The visualization scales up or
down independently in each direction.

A3. Critical angle: If the angle between the x-axis and the
line that connects the two fingers is less than 45
degrees, the visualization scales on X. If the angle is
greater than 45 degrees, the visualization scales on Y.

B. Axis-based zoom: Instead of performing a gesture on the
view, the user performs the pinch operation directly on the
axis that s/he wants to scale.

C. Select + zoom: The user highlights a region on the axis or a
set of points on the view. The user then double-taps to scales
the view to the selected points.

D. Zoom lens: The user performs a pinch operation to reveal a
lens containing the magnified view of the region between
fingers. The user can select the data within the lens and
modify its magnification. [17]

E. Automatic zoom: The user double taps on the view to
magnify the region around the touch location. The view is
magnified by an amount that minimizes the number of
overlapping points in the region.

On touch-based devices, the pinch-to-zoom (P2Z) gesture (A1)
has been employed extensively to perform zoom across
applications, such as maps, documents, and so on. However, we
identified a number of problems in using P2Z for scatterplots. The
primary problem arose as a result of the fixed aspect ratio
constraint of P2Z. When scaling content such as images, maps or
documents, the gesture typically maintains the aspect ratio of the
underlying content and does not permit scaling in only one
direction. For these content types, maintaining a constant aspect
ratio is appropriate since the two dimensions of the view are
dependent. However, in a scatterplot, the two dimensions, i.e.
axes, are largely independent. It is fairly common for the data to
be densely packed in such a manner that zooming in only one
direction suffices. As a result, although P2Z was effective in some
situations, we decided against using it because of restrictions it
caused in many other situations.

We modified the P2Z gesture by relaxing the fixed-aspect ratio
constraint (A2). However, in our implementation, we found this
modified gesture to be fairly difficult to use. In particular, when

!

Figure 2. Interaction techniques used for primary tasks in
the prototype running on an Apple iPad. Illustrations
provided using GestureWorks® (www.gestureworks.com)

we intended to scale the view in only one direction, we needed to
move fingers very precisely only in that direction so as not to
perform any movement in the other direction. We subsequently
also considered other variations to P2Z (A3), but they lead to a
less desirable situation where the default behavior of pinch-to-
zoom that users have learned and expect is modified.

In all these variations of P2Z, the primary issues arise as a
result of the gesture operating on both dimensions simultaneously.
We can manage this by adding context information (position) to
the gesture. Axis-based zoom (B) provides one way to do that
(Figure 2b). The user scales each dimension individually by
performing the pinch gesture directly on the corresponding axis.
Alternately, the user can also tap-and-drag to highlight a range on
the axis and select the zoom action (select+zoom: C, Figure 2c).
These options have the advantage that users can be precise about
zooming into a region on the view or zooming to a range of values
on the axis.

We found both axis-based zoom and select+zoom to be useful
for zooming. Since the interactions do not conflict, we currently
support both in our prototype. However, both of these are
performed on the axes, not the data portion of the view. As a
result, the user will not receive feedback when s/he performs P2Z
in the data area. Given users’ expectations and familiarity with
P2Z on touchscreens, we believe that it is essential for the system
to support the gesture. Thus, we utilize zoom lens (D) as an
additional mechanism for zooming in the view (Figure 2d). The
zoom lens uses the P2Z gesture and is particularly useful when
users want to view data density around a point without losing the
overall context. The lens supports repositioning, changing zoom
level and selection of points inside. The lens module is also
extensible to support filters [27].

Finally, we also incorporate automatic zooming (E). Users
primarily zoom to distinguish data points located in a dense area.
To facilitate this, the system can automatically calculate an
appropriate zooming amount in order to minimize overlaps and
close contacts among the glyphs in that area. Images and maps on
smartphones support a similar style of zooming, called smart
zoom, where a user double-taps on the screen to zoom the content
by a fixed amount (for maps, the amount is the subsequent tile
level). We extend smart zoom by utilizing the same gesture –
double tap – thus utilizing users’ familiarity.

5.3 Change attributes
In section 4, we defined changing the axis attribute as a data-

centric task that entails presenting the user with a set of options.
We believe that a list is ideal for such tasks. We also classified the
task as essential due to its frequency of use. It is desirable for the
task to be achievable in fewest steps possible. As a result, we
incorporate the task in the main scatterplot view. We made the
labels representing the axis attributes interactive so that tapping
them reveals a list of attributes the user can choose. Once the user
selects an option, the data points animate to their new positions
and the list closes. Alternately, the user can dismiss the list by
tapping outside it. The position of the axis labels on the view suits
both the feedback on the currently selected attribute and easy
access to the change action.

One extension to this attribute switching is preview mode [8].
The main purpose of this mode is to show users a preview of the
effects of an action before they commit it. They then choose to
either commit the action or revert to the original state. In a
visualization system, preview mode serves an additional purpose.
Consider the situation where a user selects two data points and
wants to compare them on different attributes. Normally, the user

would have to then sequentially switch to every attribute. With the
preview mode, the user can simply enable preview states serially
on each attribute without committing selection to any one.
Further, this allows the user to compare the position of points in
the previewed state and the current state. Preview mode is also
useful for tracking changes in color, shape, and size.

On mouse-based interfaces, the preview mode is typically
engaged using mouse-hover. On touch interfaces, the equivalent
of mouse-hover, i.e. finger panning, conflicts with the default
scrolling operation of a list view. We experimented with
modifications to a list view to support preview mode, such as:
A. Two finger drag: User performs a two-finger-pan on the list

of options. The system previews the data attribute
corresponding to the row at the centroid of the fingers.

B. Hold for preview: Tap-and-hold on the list engages the
preview mode that allows the user to pan on the attribute
rows to preview.

C. Preview Handle: The pop-up list contains a circular handle
on the right edge. The handle can be dragged up and down.
The preview mode is engaged for the row the handle is
currently over.

D. Preview Strip: The list contains a vertical strip on one end.
Panning on the strip previews the row corresponding to the
position of the finger.

E. Fisheye: The height of each row in the list view is
compressed so that all rows are visible. Panning on the list
magnifies the row below the finger and shows the preview
for that attribute. Lifting the finger selects the row.

In our trials, two-finger drag (A) caused considerable occlusion
since multiple fingers were placed on a single row of the list. Hold
for preview (B) had the problem of lag as the user had to wait to
first engage the preview mode. Fisheye (E) was feasible for small
sized lists (~10 items) but for longer lists, the text size became
very small. Although we could still access each option using a
fisheye, we could not get an overview of all the options simply by
looking. More importantly however, similar to modifications of
P2Z, these three options have the disadvantage that they modify
the default scroll behavior of lists that users are familiar with.

Preview handle (C) and preview strip (D), on the other hand, do
not affect the default scroll behavior. Preview handle provides a
circular handle that the user drags over each row to preview the
row. Preview strip provides a rectangular strip that extends
through the height of the list. Whereas panning the finger on the
list scrolls it vertically, panning on the strip previews the row
corresponding to the finger. We found both these options to be
effective, and support both in our prototype. However, given its
size, it is considerably easier to touch the strip than the handle,
particularly with fingers. As a result, we use the strip as the
default mode (Figure 2e). The strip contains a texture that helps
separate the region from the main list and also affords panning on
the strip. To select a row (attribute) while previewing, the user can
simply lift his/her finger. Alternately, a user can drag the finger
outside the strip to cancel the preview.

5.4 Filter
Filter interaction techniques enable users to change the set of

data items being presented based on some specific conditions.
Users typically specify a data range or condition, and the system
shows only those data items that meet the criteria. Data items
outside of the range or not satisfying the condition are either
hidden from the display or shown differently.

In a scatterplot, the filter operation is similar to zoom in that the
same visual representation can often be achieved using either
operation. They differ in how the effect is achieved, however.
Zoom operations are view-based and change the range of values
being used to display glyphs. Conversely, filter operations operate
on the data space; particular values or ranges of values can be
selected, and only data matching those criteria are shown.
Filtering out data removes it from every subsequent visual
operation (including zoom) until the filter is explicitly removed.

5.4.1 Data-centric filter
A user’s intention to filter data is primarily motivated by two

use cases. In the first use case, the user wants to filter points based
on values of some attributes. For instance, in a scatterplot showing
data for average salaries for people in a country, the user wants to
view data for only those with age above 50 or those with a PhD
degree. This is the data-centric, on-demand filter we present in
Table 1. To support this task, the system needs to extract the
entity details from the data model, find the range of values for the
various attributes, and display filter options. And since the user
needs to view the options, a reasonable solution for tablets is to
show interface widgets such as checkboxes and sliders, similar to
desktops. These widgets have proved to be very effective [21] and
tablet operating systems such as iOS and Android use these
extensively. Apart from supporting filtering, the widgets also
present the currently active range of values. Since we classify
data-centric filters as on-demand, these filters are placed in a
menu positioned off-screen to the right (Figure 2f). The menu can
be dragged on the screen by swiping inwards from the right edge.

5.4.2 View-driven filter
In the second use case for filtering, the user identifies a set of

points in the view that s/he wants to either focus on or filter out of
the data. For instance, the user might want to concentrate only on
a set of outlying data points. This is the view-driven filter from in
Table 1. To support this operation, each time the user selects a
few data points, the interface provides the user with buttons to
‘keep only’ or ‘exclude’ the selected data. Users can select the
data to filter using a lasso (5.1.A) or rubber band (5.1.B)
interaction. Alternately, the user can also tap-and-pan (5.2.C) on
an axis to select a range of values. Tap-and-pan has the added
advantage of enabling both view-driven and data-centric filtering.

Each view-driven filter operation updates the filter widgets
appropriately. Additionally, a badge representing the filter also
appears in a stack on the scatterplot view as additional feedback to
the user (Figure 2g). This is essential because a view-driven filter
operation might generate a situation where the data filtered does
not produce any change in the widgets (e.g. if the data filtered out
lies in the middle of a slider). Additionally, the badge allows the
user to individually disable or remove the filter.

5.5 Find Data Details
Viewing details of data points (all their attributes) is crucial to

any data exploration task using visualizations. A table view is an
ideal widget to present these details. Hence, we use a table in our
prototype (Figure 2h).

Each time the user selects data points on the scatterplot, a table
view is populated with the details of these points. This table is
initially placed off-screen at the bottom. The user can drag the
table in using a handle that animates into view after selection. The
table and the handle hide automatically when the user deselects
the data points. Alternately, the user can hide the table manually

with the handle. The user also can snap the table to always stay in
view using the snap button. If snapped, the visualization
compresses vertically to fit the remaining area. The table also has
a preview strip similar to attribute popup. Panning on the strip
highlights the glyph corresponding to the touched row.

For the table view, instead of using a handle to drag the table,
we considered using a bottom edge swipe-up gesture. However,
the gesture conflicts with iPad’s system-wide gesture to bring up
the control center. More importantly, the table view is not
available when no data is selected. A swipe-up gesture, however,
does not provide feedback of unavailability of the table in the
manner the absence (or disappearance) of the handle does.

In situations when the user wants to only view the data values
for attributes on the axes, instead of revealing the table view, the
user can pan on any axis to reveal a reference line. When the
reference line intersects a data point, a perpendicular reference
line becomes visible, highlighting the exact value on the other
axis.

5.6 Modify Visual Mappings
The data-centric on-demand features (ODF) from Table 1 (map

color and size, change axis scale) are assembled and placed in the
same menu as the data-dependent filters. The menu has separate
tabs for filters and ODF. The ODF tab offers options to assign
color and size to the glyphs as well as options to change the axis
scale from linear to log for both the x and y axis. The axis scale
options are disabled in case of nominal attributes on the two axes.

6. CONCLUSION
In this article, we explored the key challenges in designing an

information visualization system for multi-touch tablet computers.
More specifically, we explored the design space of interactions for
an interactive scatterplot visualization. By investigating two
widely used, commercial desktop scatterplot applications, we
derived a set of tasks that our system should support. To make the
construction of a prototype more feasible, we chose to implement
only a subset of primary tasks. For these tasks, we then developed
a suite of potential multi-touch interactions, based either on prior
research or our own designs. We iterated on most of these options,
explored their usability, and developed a prototype using the best
alternatives we identified.

A natural follow up to this work is a user evaluation of our
prototype system. Multiple approaches make sense. First, user
testing on the various options for each task will provide helpful
feedback about their usability. We could then take the interactions
that emerge and bundle them into a complete prototype. The
resulting application could be compared with a current
commercial system for tablets or a WIMP-style system in the
manner done by [7]. Finally, a longer-term usage study would be
the best evaluation of an application like this. Clearly, people’s
prior experience with multi-touch applications will have a strong
influence. Issues such as discoverability, learnability, and longer-
term satisfaction emerge better when testing is conducted in a
realistic setting for an extended period of time.

Because visualization systems seldom provide only a single
representation for viewing data, we would also like to examine the
applicability of the developed interactions for other types of
visualizations. An obvious extension to our application would be
to incorporate other visual representations such as linecharts,
barcharts, treemaps, and parallel coordinates. However, once
different visual representations appear together in an application,
one confronts issues relating to gestures and interactive operations

transferring across different representations. This clearly presents
a further challenge – developing a suite of compatible multi-touch
gestures across a variety of visualizations.

Finally, we would also like to analyze the feasibility of porting
our prototype to other operating systems such as Android and
Windows. We speculate that a number of issues will emerge since
some components of our interaction design, such as swiping in
from the right and bottom, are available for developers to use only
on iOS. On Android and Windows, the OS uses these gestures for
system level tasks and an application cannot override their default
use. Conversely, gestures such as swipe up from bottom are
available on both Android and Windows, but are in use by iOS.
Discovering a combination of interactions that work
independently of the operation system remains a challenge.

7. REFERENCES
[1] Ahlberg, C. and Shneiderman, B. Visual Information

Seeking: Tight Coupling of Dynamic Query Filters with
Starfield Displays. Proc. of ACM CHI, Apr 1994, 313–317.

[2] Baur, D., Lee, B. and Carpendale, S. TouchWave: Kinetic
Multi-touch Manipulation for Hierarchical Stacked Graphs.
Proc. of ACM ITS, Nov. 2012, 255–264.

[3] Beaudouin-Lafon, M. Instrumental Interaction: An
Interaction Model for Designing post-WIMP User Interfaces.
Proc. of SIG CHI, Apr. 2000, 446–453.

[4] Benko, H., Wilson, A.D. and Baudisch, P. Precise Selection
Techniques for Multi-touch Screens. Proc. of ACM CHI,
Apr. 2006, 1263–1272.

[5] Browne, J., Lee, B., Carpendale, S., Riche, N. and Sherwood,
T. Data Analysis on Interactive Whiteboards Through
Sketch-based Interaction. Proc. of ACM ITS, Nov. 2011,
154–157.

[6] Buering, T., Gerken, J. and Reiterer, H. User Interaction with
Scatterplots on Small Screens - A Comparative Evaluation of
Geometric-Semantic Zoom and Fisheye Distortion. IEEE
Trans. on Visualization and Computer Graphics. 12, 5
(2006), 829–836.

[7] Drucker, S.M., Fisher, D., Sadana, R., Herron, J. and
schraefel, m. c. TouchViz: A Case Study Comparing Two
Interfaces for Data Analytics on Tablets. Proc. of ACM CHI,
Apr. 2013, 2301–2310.

[8] Forlines, C., Shen, C. and Buxton, B. Glimpse: A Novel
Input Model for Multi-level Devices. CHI’05 Extended
Abstracts, Apr. 2005, 1375–1378.

[9] Frisch, M., Heydekorn, J. and Dachselt, R. Investigating
Multi-touch and Pen Gestures for Diagram Editing on
Interactive Surfaces. Proc. of ACM ITS, Nov. 2009, 149–156.

[10] Gunn, T.J., Zhang, H., Mak, E. and Irani, P. An Evaluation
of One-handed Techniques for Multiple-target Selection.
CHI’09 Extended Abstracts, Apr. 2009, 4189–4194.

[11] Heer, J., Bostock, M. and Ogievetsky, V. A tour through the
visualization zoo. Commun. ACM. 53, 6, Jun. 2010, 59–67.

[12] Heilig, M., Huber, S., Demarmels, M. and Reiterer, H.
ScatterTouch: A Multi Touch Rubber Sheet Scatter Plot
Visualization for Co-located Data Exploration. Proc. of ACM
ITS, Nov. 2010, 263–264.

[13] Hinckley, K., Yatani, K., Pahud, M., Coddington, N.,
Rodenhouse, J., Wilson, A., Benko, H. and Buxton, B.
Manual Deskterity: An Exploration of Simultaneous Pen +
Touch Direct Input. CHI’10 Extended Abstracts, Apr. 2010,
2793–2802.

[14] Isenberg, P., Fisher, D., Morris, M.R., Inkpen, K. and
Czerwinski, M. An exploratory study of co-located

collaborative visual analytics around a tabletop display.
Proc. of IEEE VAST, Oct. 2010, 179–186.

[15] Isenberg, P., Isenberg, T., Hesselmann, T., Lee, B., von
Zadow, U. and Tang, A. Data Visualization on Interactive
Surfaces: A Research Agenda. IEEE Computer Graphics and
Applications. 33, 2, (2013), 16–24.

[16] Jansen, Y. and Dragicevic, P. An Interaction Model for
Visualizations Beyond The Desktop. IEEE Trans. on
Visualization and Computer Graphics. 19, 12 (2013), 2396–
2405.

[17] Käser, D.P., Agrawala, M. and Pauly, M. FingerGlass:
Efficient Multiscale Interaction on Multitouch Screens. Proc.
of ACM CHI, May 2011, 1601–1610.

[18] Lee, B., Isenberg, P., Riche, N.H. and Carpendale, S. Beyond
Mouse and Keyboard: Expanding Design Considerations for
Information Visualization Interactions. IEEE Trans. on
Visualization and Computer Graphics. 18, 12 (2012), 2689–
2698.

[19] Mankoff, J., Hudson, S.E. and Abowd, G.D. Interaction
Techniques for Ambiguity Resolution in Recognition-based
Interfaces. Proc. of ACM UIST, Nov. 2000, 11–20.

[20] Mizobuchi, S. and Yasumura, M. Tapping vs. Circling
Selections on Pen-based Devices: Evidence for Different
Performance-shaping Factors. Proc. of ACM CHI, Apr. 2004,
607–614.

[21] Moscovich, T. Contact Area Interaction with Sliding
Widgets. Proc. of ACM UIST, Oct. 2009, 13–22.

[22] North, C., Dwyer, T., Lee, B., Fisher, D., Isenberg, P.,
Robertson, G. and Inkpen, K. Understanding Multi-touch
Manipulation for Surface Computing. Proc. of INTERACT,
Aug. 2009, 236–249.

[23] Olwal, A., Feiner, S. and Heyman, S. Rubbing and Tapping
for Precise and Rapid Selection on Touch-screen Displays.
Proc. of ACM CHI, Apr. 2008, 295–304.

[24] Rzeszotarski, J.M. and Kittur, A. TouchViz:
(Multi)Touching Multivariate Data. CHI ’13 Extended
Abstracts, Apr. 2013, 1779–1784.

[25] Sadana, R. and Stasko, J. Interacting with Data
Visualizations on Tablets and Phones: Developing Effective
Touch-based Gestures and Operations (Poster). IEEE Vis,
Atlanta, GA, Oct 2013.

[26] Siek, K.A., Rogers, Y. and Connelly, K.H. Fat Finger
Worries: How Older and Younger Users Physically Interact
with PDAs. Proc. of INTERACT, Sep 2005, 267–280.

[27] Stone, M.C., Fishkin, K. and Bier, E.A. The Movable Filter
As a User Interface Tool. In Proc. of ACM CHI, Apr. 1994,
306–312.

[28] Vogel, D. and Baudisch, P. Shift: A Technique for Operating
Pen-based Interfaces Using Touch. Proc. of ACM CHI, Apr.
2007, 657–666.

[29] Walny, J., Lee, B., Johns, P., Riche, N.H. and Carpendale, S.
Understanding Pen and Touch Interaction for Data
Exploration on Interactive Whiteboards. IEEE Trans. on
Visualization and Computer Graphics. 18, 12 (2012), 2779–
2788.

[30] Wobbrock, J.O., Morris, M.R. and Wilson, A.D. User-
defined Gestures for Surface Computing. Proc. of ACM CHI,
Apr. 2009, 1083–1092.

[31] Yi, J.S., Kang, Y., Stasko, J. and Jacko, J. Toward a Deeper
Understanding of the Role of Interaction in Information
Visualization. IEEE Trans. on Visualization and Computer
Graphics. 13, 6 (Nov. 2007), 1224–1231.

