
Design of a Novel Statistics Counter Architecture with Optimal
Space and Time Efficiency

Qi Zhao Jun (Jim) Xu
College of Computing

Georgia Institute of Technology

Zhen Liu
IBM T.J. Watson Research Center

SIGMETRICS 2006/PERFORMANCE 2006

1

Problem Statement

• To maintain a large array (say millions) of counters that need
to be incremeted (by 1) in an arbitrary fashion (i.e.,A[i1] + +,
A[i2] + +, ...)

• Increments may happen at very high speed (say one increment
every 10ns) – has to use high-speed memory (SRAM)

• Values of some counters can be very large

• Fitting everything in an array of “long” (say 64-bit) SRAM
counters can be expensive

• Possibly lack of locality in the index sequence (i.e.,i1, i2, ...) –
forget about caching

2

Main Idea in Previous Approaches [SIPM:2001,RV:2003]

large DRAM counters

1
2
3

4

N

1
2
3
4

N

Counter
Increments

Overflowing
Counters Counter

Flush to
DRAM

Management
Algorithm

small SRAM counters

Figure 1: Hybrid SRAM/DRAM counter architecture

3

CMA used in [SIPM:2001]

• D. Shah, S. Iyer, B. Prabhakar, and N. McKeown, “Maintain-
ing statistics counters in router line cards”,Hot Interconnects
2001

• Implemented as a priority queue (fullest counter first)

• About 28 bits per counter (when S/D is 10)

• Need pipelined hardware implementation of a heap.

4

CMA used in [RV:2003]

• S. Ramabhadran and G. Varghese, “Efficient implementation
of a statistics counter architecture”,ACM SIGMETRICS 2003

• SRAM counters are tagged when they are at least half full

• Scan from left to right to periodically flush (half-full)+ SRAM
counters, and maintain a small priority queue to preemptively
flush the SRAM counters that rapidly become completely full

• Pipelined hierarchical bitmap data structure to find out “Who’s
the next (half-full)+?” in log(N) time

• 8 SRAM bits per counter for storage and 2 bits per counter for
the bitmap control logic, when S/D is 10.

5

Our scheme

• Our scheme only needs 4 SRAM bits when S/D is 10.

• Flush only when an SRAM counter is “completely full” (e.g.,
when the SRAM counter value changes from 15 to 16 assum-
ing 4-bit SRAM counters).

• Use a small (say hundreds of entries) SRAM FIFO buffer to
hold the indices of counters to be flushed to DRAM

• Key innovation: a simple randomized algorithm to ensure that
counters do not overflow in a burst large enough to overflow
the FIFO buffer, with overwhelming probability

• Our scheme is provably space-optimal (e.g., 3 bits will never
work when S/D is 10).

6

The randomized algorithm

• Set the initial values of the SRAM counters to independent
random variables uniformly distributed in{0, 1, 2, ..., 15} (i.e.,
A[i] := uniform{0, 1, 2, ..., 15}).

• Set the initial value of the corresponding DRAM counter to
the negative of the initial SRAM counter value (i.e.,B[i] :=
−A[i]).

• Adversaries know our randomization scheme, but not the ini-
tial values of the SRAM counters

• We prove rigorously that a small FIFO queue can ensure that
the queue overflows with very small probability

7

A numeric example

• One million 4-bit SRAM counters (512 KB) and 64-bit DRAM
counters with SRAM/DRAM speed difference of 12

• 300 slots (≈ 1 KB) in the FIFO queue for storing indices to be
flushed

• After 1012 counter increments in an arbitrary fashion

• The probability of overflowing from the FIFO queue: less than
10−14 in the worst case

8

Timing diagram of the hardware operation

���������
���������
���������
���������

���������
���������
���������
���������

���������
���������
���������

���������
���������
���������

���������
���������
���������

���������
���������
���������

	�	�	�	�	
	�	�	�	�	
	�	�	�	�	

�
�
�
�

�
�
�
�

�
�
�
�

���������
���������
���������

���������
���������
���������

: read SRAM counter value

:

Cycle 1 Cycle 2 Cycle 3

:increment SRAM counter value (+1 or reset to 0 if it overflows)

append the index of the counter to the queue.

Figure 2: Hybrid SRAM/DRAM counter architecture

9

Tail bound analysis – Intuition

• The average departure rate of the FIFO queue is the speed of
DRAM (e.g, 1 departure every 12 cycles or with the rate 1/12
when S/D is 12)

• The average arrival rate to the FIFO queue is approximately
1/16, as it takes 16 increments for a counter to become full
– and hopefully the randomization makes the arrival process
very smooth!

• Actually, our experimental result is very close to that of the
Geom/D/1 queue

• However, we are NOT able to prove that our queueing pro-
cess is stochasticly comparable to (or bounded by) that of a
Geom/D/1 queue – only able to prove much weaker tail bounds

10

Tail bound analysis (1st step)

• Let D be the event that the FIFO queue overflows aftern in-
crements.

• Let Ds,t be the event that the number of arrivals during the time
interval [s, t] is larger than the maximum possible number of
departures from the FIFO queue (even if serving continuously),
by more than the queue sizeK.

• Lemma 1: D ⊆
⋃

0≤s≤t≤n Ds,t (proved using standard busy
period arguments)

• Therefore

Pr[D] ≤ Pr[
⋃

0≤s≤t≤n

Ds,t] ≤
∑

0≤s≤t≤n

Pr[Ds,t]

11

BoundingPr[Ds,t] using Chernoff bound

• Let cj, j = 1, 2, ..., N be the number of increments to counterj
during time period[s, t] – note our bound will be independent
of thesecj values (note

∑N
j=1 = n)

• Let bj be the number of “flush to DRAM” requests generated
by the counterj during the time interval[s, t]

• It can be shown thatbj−E[bj], j = 1, 2, ..., N , are independent
Bernoulli RV’s:

bj =

{
bcj

2lc with probability1− {2−lcj},
bcj

2lc + 1 with probability{2−lcj}.
(1)

12

Chernoff bound on sum of independent Bernoulli RV’s

• Lemma 3, LetX1, X2, ..., Xm be mutually independent random
variable such that, for1 ≤ j ≤ m, Pr[Xj = 1 − pj] = pj

andPr[Xj = −pj] = 1 − pj, where0 < pj < 1. Then, for
X =

∑m
j=1 Xj anda > 0,

Pr[X > a] < e−2a2/m

• Applying to the sum ofb′js, we obtain Theorem 2:
For anys < t, let τ = t− s.

Pr[Ds,t] ≡ Pr[b(s, t)− µτ > K] < e−2(K+µτ−2−lτ)2/ min{τ,N}

(2)

13

Using 2nd Moment Information to Obtain a New Bound ofPr[Ds,t]

V AR[b(s, t)] ≤


N
4 t− s ≥ 2l−1N,
(2l−t−s

N)(t−s)

22l N ≤ t− s < 2l−1N,
(2l−1)(t−s)

22l 0 < t− s < N.

There is implicitly a quasi minimax analysis in it – imaging that
the adversary has control over the increment index sequence

14

A New Tail Bound Theorem

• Given anyθ > 0 andε > 0, the following holds: LetWj, 1 ≤
j ≤ m, m arbitrary, be independent random variables with
EXP [Wj] = 0, |Wj| ≤ θ andV AR[Wj] = σ2

j . Let W =∑m
j=1 Wj andσ2 =

∑m
i=1 σ2

j so thatV AR[W] = σ2. Let δ =
ln(1 + ε)/θ. Then for0 < a ≤ δσ,

Pr[W > aσ] < e−
a2

2 (1− ε
3)

• Mapping to our problem, it becomes

maximize
a2

2
(1− ε

3
)

subject to 0 < a ≤ δσ

eδ − 1 ≤ ε < 3

aσ ≤ K + µτ − 2−lτ

15

The Hybrid Tail Bound

• Recall thatPr[D] ≤
∑

0≤s≤t≤n Pr[Ds,t]

• We derived the first boundPr[Ds,t] ≤ Ω1(s, t) using Chernoff
bound

• We derived the second boundPr[Ds,t] ≤ Ω2(s, t) using our new
tail bound theorem

• The first bound is better for most of thes, t values, BUT the
second bound can be much better for some criticals, t values

• We refer toPr[D] ≤
∑

0≤s≤t≤n min{Ω1(s, t), Ω2(s, t)} as the
hybrid bound

16

Numerical Examples

GivenN = 106, n = 1012, µ = 1/30 andl = 5 bits,
K First Second Hybrid
500 trivial (≥ 1) trivial (≥ 1) 1.1× 10−11

3033 1.4× 10−6 trivial (≥ 1) 8.7× 10−142

17

Cost-benefit Comparison

Givenl = 64 bits,µ = 1/30, andK = 500 slots
Naive LCF LR(b) Ours

Counter memory64Mb SRAM 9Mb SRAM 9Mb SRAM 5Mb SRAM
64Mb DRAM 64Mb DRAM 65Mb DRAM

Control memory None 20Mb SRAM 2Mb SRAM 10Kb SRAM
Control logic None Hardware heapAggregated bitmap FIFO queue

Implementation Very low High Low Very Low
Complexity

18

Simulation Using Real-world Internet Traffic

• Given N = 1, 000, 000, n = 1012, µ = 1/30 and l = 5 bits,
Trace SRAM counter µ Queue Size

size (in bits) Max Average

USC 4 1/12 21 1.6
5 1/30 61 6.0

UNC 4 1/12 23 1.7
5 1/30 72 7.0

• Computing the hybrid bound, we need 228 slots for the bound
to be nontrivial

• The experimental result is in fact very close to that of Geom/D/1
queue (average is 1.6).

• The experimental result is much better than the bound because
(1) The input is not adversarial, and (2) The union boundPr[

⋃
0≤s≤t≤n Ds,t] ≤∑

0≤s≤t≤n Pr[Ds,t] is very lossy

19

Conclusion

• A simple and efficient counter management algorithm for hy-
brid SRAM/DRAM counter architecture

• Statistical guarantee for queue overflow probability

• A new tail bound theorem for the sum of independent random
variables that can take advantage of both their independence
and their overall low variance

20

Future Work

• Further improve the theoretical bound by possibly ditching the
union bound

• Allow for both increments and decrements – this algorithm
won’t work since an adversary can create thrashing around 0.

• Apply the counter array work to other network applications
(e.g., for implementing millions of token buckets).

21

Thank You!

ANY QUESTIONS?

22

Concern over heavy traffic through system bus

• Concern: shorter SRAM counter size means that much larger
flusing traffic through the system bus, when the SRAM array
is on the L1 cache of a network processor

• “Victim of our own success”: previous schemes are constrained
by the lower efficiencies of their CMA algorithms, not by the
concern that there will be too much bus traffic

• We intend our scheme/algorithm to be generic and we do not
want to bind it to any particular architecture choice just like in
previous works.

• The heavy traffic over the bus may not be an issue in many sce-
narioes: (a) a computer architecture can have a dedicated bus
between CPU and memory (b) the system is built for network
monitoring only (e.g., Sprint’s CMON)

23

