
Sesame: Informing User Security Decisions with
System Visualization

Jennifer Stoll, Craig S Tashman, W. Keith Edwards, Kyle Spafford
Georgia Institute of Technology, School of Interactive Computing

Atlanta, Georgia 30332
jstoll@gatech.edu, {craig, keith, kyle}@cc.gatech.edu

ABSTRACT

Non-expert users face a dilemma when making security
decisions. Their security often cannot be fully automated
for them, yet they generally lack both the motivation and
technical knowledge to make informed security decisions
on their own. To help users with this dilemma, we present a
novel security user interface called Sesame. Sesame uses a
concrete, spatial extension of the desktop metaphor to
provide users with the security-related, visualized system-
level information they need to make more informed deci-
sions. It also provides users with actionable controls to
affect a system's security state. Sesame graphically facili-
tates users' comprehension in making these decisions, and
in doing so helps to lower the bar for motivating them to
participate in the security of their system. In a controlled
study, users with Sesame were found to make fewer errors
than a control group which suggests that our novel security
interface is a viable alternative approach to helping users
with their dilemma.

Author Keywords: Security usability, security interface
design, system visualization

ACM Classification: H.5.2 User Interfaces, User-centered
design; K.6.5 Management of Computing and Information
Systems: Security and Protection

INTRODUCTION

“AVG Update downloader is trying to access the Internet”

“The firewall has blocked Internet access to your computer
[FTP] from 192.168.0.105 [TCP Port 57796, Flags: S]”

“[Your] AntiSpyware has detected that the Windows
NetBIOS Messenger Service is currently running. (This
service should not be confused with the peer-to-peer
Windows Messenger service, or MSN Messenger service
which are used for Internet Chat). Beginning with Windows
XP Service Pack 2, the Windows NetBIOS Messenger

service… …What would you like to do?”

The above are examples of actual alerts [15] that users are
given from their anti-virus, anti-spyware and firewall tools.
While some alerts are purely informational, most require
users to make a decision. The choices they face are often
“Always”, “This one time” or “Never,” posing the quandary
of whether to suffer through even more messages or per-
form an action that may be irreversible. Further, the
information given to help users make these decisions is
often highly technical or vague (e.g., “Destination IP:
192.168.0.1: DNS” or “This program has changed since
the last time it ran!”). Even when tools have a “More Info”
button to provide access to more detailed information, that
information is often confusing as well.

How do users cope with such security decisions? Some turn
to online research in an attempt to comprehend the alerts.
This strategy is evident in the multitude of online forums
where users ask questions, sharing their collective wisdom
about such decisions (e.g., antionline.com or fo-
rumz.tomshardware.com). In contrast, some cope by simply
ignoring pop-ups or warnings from their security tools [20].
In fact some security books even advise users to turn off the
annoying alerts; for example, one self-help security book
quips, “the [stop alerts] button should say Shut Up, You
are Driving Me Crazy” [15].

Simply put, users are asked to make decisions about things
they do not understand, based on information that is diffi-
cult to comprehend. The poor decision making that
(expectedly) is an outcome of this can result in dire conse-
quences [18], including phishing attacks, bot infestations,
and various forms of malware

End-user security decisions present a troubling dilemma.
On the one hand, because users must be involved in decid-
ing how to balance security risks against the work they want
to accomplish, many of these decisions are impossible to
effectively automate [2, 3, 4, 5, 6] (e.g., as in the case of
personal firewalls). On the other hand, the users who must
make these decisions are generally uninterested in security
as an end in itself [18] and, as noted, often have little useful
information to help them make good decisions [4, 16].
Further, most of these decisions require a level of technical
knowledge not possessed by most end-users. The key
question this paper then explores is: since users must make
security decisions (in particular, ones requiring system-level

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. To copy
otherwise, or republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee.

CHI 2008, April 5–10, 2008, Florence, Italy.

Copyright 2008 ACM 978-1-60558-011-1/08/04…$5.00.



knowledge), how can we help them understand their system
well enough to make better-informed security choices?

We explore this issue of informed security decision making
through Sesame, an interactive, visual, firewall-like tool
designed to assist non-experts in making better informed
security decisions. Sesame addresses threats similar to those
of consumer firewalls, but uses a visual, direct manipulation
interface that exposes system-level information in a mean-
ingful, comprehensible way. To this end, Sesame provides
users a ‘behind-the-scenes’ view of their computer, integrat-
ing existing elements of the desktop UI (such as windows)
with previously hidden systems-level components (such as
the processes that own those windows, the network connec-
tions those processes are making, and so forth). Essentially,
the desktop metaphor is extended to convey system-level
concepts in terms of their relationship to familiar desktop-
level abstractions. We conjecture that this view can help to
inform user security decisions and, by lowering barriers to
this information, may help to motivate them as well [18].

Our initial study results suggest that this behind-the-scenes
view of their system’s underlying architecture seems to help
users make better security decisions involving system-level
knowledge. In the sections that follow, we briefly survey
current research and commercial security tools. We then
describe the design of the Sesame UI and present the results
of our user study. We conclude with a discussion of our
study results and implications for future work.

RELATED WORK

While there are many security tools available, few are
designed specifically to support end-users in their security
decision making process. However, of the tools available
for security decision making, many can be grouped into two
categories: those for expert users and those for non-experts.

Experts

Visualization tools: The majority of prior research focuses
on visualization-based approaches intended for the expert
user. While inappropriate for non-experts, they do illustrate
types of information that experts find useful in order to
detect security problems and make informed decisions with
regard to security. For example, many of these tools support
monitoring of network connections; these include Rumint,
IDS Rainstorm, VisAlert [7], and others that provide
experts with a variety of useful network data representa-
tions [1]. However, these tools are highly technical and
complex (presenting data at the level of individual packets),
and do not integrate with, or build on, existing metaphors of
the desktop GUI.

Text-based tools: Another set of very common tools pro-
vides extensive system behavior and status information in a
text-based approach. Although these systems often ship on
consumer computing platforms, they are generally intended
for knowledgeable users or even system- or network-
administrators. These include tools like ProcessExplorer,
tcpview, and Windows Task Manager [22]. Again, these
tools present system-level information useful in making
informed security decisions. However, they convey infor-
mation in a piecemeal fashion (different tools for different
information), leaving users to assimilate and make sense of
it; and the textual presentation neither supports visual
metaphors nor integrates with the existing and well-known
features of the desktop UI.

Non-Experts

In contrast to the wealth of tools available for network and
security professionals, research in the area of supporting
security decision making for end users remains nascent [4,
18]. Discussed below are two classes of such tools.

Figure 1: The Sesame ‘Behind-the-Scenes’ View running on a live system



Tools for specific activities: Some tools for non-experts
provide support only for security decisions that relate to a
specific user activity, e.g., browsing, searching, making
online transactions, sharing files, and so forth [2, 3, 21]. For
example, Web Wallet [19] can be used to ensure that a
user’s information will be sent to the desired site rather than
to a spoof. While these tools help support security decisions
in the context of a specific activity, they do not address the
range of ‘system level’ security situations that are inde-
pendent of what the user is doing. Consequently, security
decisions which do not map to a specific activity are largely
overlooked by these tools. For example, a spyware or bot
infection can severely endanger a user’s privacy and secu-
rity regardless of what actions the user is performing [13,9].
Further, since different tools are employed for different
activities, the level of security, as well as the user interface,
can easily be inconsistent. This is not to say that security
tools are only effective if they support all security decisions
across all activities, but rather that activity-specific tools
are not a complete answer to end-user security.

Tools for specific threats: Other tools provide support for
user decisions based on specific types of threats such as
anti-phishing toolbars, anti-virus, -adware, and –spyware
systems. These tools tend to be based on heuristics or black
lists and will only provide protection for against attacks
matching their heuristics or that are on their lists. Users
must constantly update these tools in order for them to be
effective; and the way in which they alert users to problems
is also problematic, as evidence shows that users often find
the information in these alerts to be difficult to understand
and so ignore them [20, 4].

Consumer firewalls are perhaps the most common types of
security software that involves explicit user decision-
making. These systems protect against a range of network-
based attacks, such as worms that exploit software vulner-
abilities. These systems are not task-specific, but present
system-level information in a way that is often undecipher-
able to users (e.g., describing connection attempts in terms
of process names, IP addresses, and port numbers). Users
therefore have little actionable information on which to
base security decisions when faced with firewall popups.

Thus, there are few systems that attempt to provide users
with a framework for making security decisions that are not
tied directly to a specific activity, but instead help with
overall system security. Our goal with Sesame is to fill this
void; to provide general, firewall-like security (not, for
example, detecting of malware at the point of installation),
while helping users to make informed decisions. We fo-
cused specifically on handling common classes of attacks
where user action is necessary to determine the correct
course of action. These include situations where there is no
universally correct action, but rather a tradeoff between
security and convenience that the user must consider, or
situations where the correct action is dependent on context
outside of the system. Thus, unlike current firewalls—
which convey systems-related information textually, using

low-level technical details—Sesame provides a holistic
graphical representation of security-related system informa-
tion in a way designed to be understandable by end-users.
Sesame also provides a means for exploration of the under-
lying system, allowing it be used for a greater range of
purposes than traditional consumer firewalls.

DESIGN PROCESS

In this section we discuss our iterative design process and
choice of the representational paradigm for Sesame.

Representational Paradigm

Our overarching goal with Sesame is to convey a visual
model that allows security-related system information to be
meaningfully interpreted by the user. To do so, we chose a
direct manipulation, model-world paradigm, as this is
known to have significant benefits for learnability [8].
Within this interface we sought to 1) show how important
but unfamiliar abstractions (e.g., processes and networks)
relate to abstractions that are familiar and meaningful to
users (e.g., windows and real-world places); and 2) provide
users with actionable controls that enable them to affect
their security state using the information given.

We believed a spatial, direct-manipulation interface would
yield a number of important benefits, the first of which is to
leverage existing knowledge. Our target, non-expert user
already typically interacts with the computer through the
spatial metaphor of the desktop GUI, which allows us to
leverage that experience to convey other, more complex
relationships via a similar spatial GUI. More subtly though,
desktop objects are familiar and meaningful to users; by
employing an interface that is metaphorically compatible
with the desktop, it should be easier to represent relation-
ships between esoteric security abstractions and the familiar
windows and things found on the desktop. The second
reason to use a visual representation is speed. The human
visual system has an enormous facility for the rapid assess-
ment of visual scenes [14]. By presenting data in this way,
as opposed to a more verbose text-based approach, we hope
to minimize the time users need to assess their security
situation in any particular instance—thereby reducing one
of the known barriers to user motivation for understanding
security [18].

Information Content

Portraying all low-level information about the state of the
user’s system would not only potentially be overwhelming,
but also likely unnecessary for protection against the classes
of threats we are targeting. Thus, we do not attempt to
depict all possible system information, but focus instead on
a smaller subset selected through an analysis of whether the
information is both practically accessible and relevant in
addressing the common types of security threats we are
targeting (spyware, phishing, and bot infections).

Thus, the information we depict includes:

 Process characteristics, including depictions of which
windows are associated with a given process, average and
current CPU usage, putative vendor, whether that vendor



can be confirmed, and process installation date;

 Network characteristics, including incoming and outgo-
ing connections;

 Remote systems, including domain, putative owning
organization, and putative geographical location.

Although far from comprehensive, the above data set
provides enough information to identify and potentially
mitigate many variants of the three types of attacks on
which we focus. Spyware, for example, could be identified
by routine attempts at establishing connections from suspi-
cious processes targeted at suspicious remote servers. A bot
infection could be detected similarly, except in some cases
the remote systems would be initiating the connections. In
this sense, Sesame goes further than current firewalls,
enabling users to proactively explore security risks. For
example, some phishing scams could be identified by
observing one’s web browser connecting to servers that
appear unaffiliated with the nominal proprietor of the
website. We used situations like these to evaluate Sesame
as described below in our User Study section.

Formative Study

To get feedback on potential approaches for visual presen-
tation and terminology, we conducted a small formative
study early in our design process. This formative study was
intended to provide feedback on (1) user preferences with
respect to concrete versus abstract representations of system
information, (2) ability of users to decipher relationships
among system information, and (3) preferred terminology
for technical concepts. We showed three users paper
prototypes of two designs, one using a concrete, spatial
visualization similar to that of figure 1, and another using
more a more abstract presentation. Participants overwhelm-
ingly preferred the more concrete representation, and
understood many of the relationships being conveyed (such
as relationships between processes and windows) without
explanation by the experimenters.

This brief, early study was also helpful in revealing what
participants did not understand. For example, participants
had difficulty understanding that a part of the visualization
represented physically remote computers on the Internet.
Our discussions with participants also informed a number
of elements of our final design, such as the use of geo-
graphic maps to suggest remoteness. Other feedback led to
significant changes in the arrangement of processes used in
the final version of Sesame. Finally, an additional discovery
we made during the formative study was that the term
‘process’ caused significant confusion for our non-technical
users. Based on participant feedback, we chose the term
‘engine’ as one that made more sense to them. (We ac-
knowledge, however, that using such non-standard terms
may confuse the more ‘technical’ users.)

SESAME: EXTENDING THE DESKTOP

In this section we describe how the system level informa-
tion is presented in Sesame, and the controls given to users
for interacting with the tool.

Invocation - Getting ‘behind-the-scenes’

Among the first design choices we faced was deciding
where to place Sesame in relation to the desktop. Our
requirement to connect existing elements (such as windows)
to Sesame-provided elements (such as processes) meant
that the tool somehow had to be integrated into the desktop.
However it could not appear to be ‘just another application’
running on the desktop, because we needed to convey that
Sesame is a level of abstraction ‘below’ the conventional
GUI.

To resolve this challenge, users can access Sesame either by
invoking the always-present “Open Sesame” button on the
desktop, or through a dialog box that appears when Sesame
needs to interact with the user—for example, when a
process requests a connection (the user may ignore the
dialog box if they do not wish to respond). When Sesame is
invoked, the user’s desktop GUI rotates about the vertical
axis to reveal the processes, networks, and other system-
level elements behind it (Figure 1). To exit from the view,
users click the exit button at the top of the screen. A
benefit of this smooth rotation effect is that it provides a
continuous transition from the desktop interface to Sesame
to keep users from becoming disoriented.

Rotating the entire desktop to display the Sesame visualiza-
tion raises several problems. The first is that a full-screen
visualization is heavyweight, and may dissuade users from
invoking it when they do not have to. It further means that
the user cannot have the Sesame visualization visible while
performing other tasks. These issues of motivation and
efficiency may be important to explore in the future, but at
this stage we are principally concerned with effective
information representation. A full screen visualization helps
us with this by offering conceptual advantages in showing
the desktop/system-level separation, as well as the practical
advantages of providing abundant space for the system-
level components we wish to show.

Division of Space

Once behind the desktop, we faced another design chal-
lenge. The effect of rotating the desktop is intended to
suggest that the revealed objects are part of the user’s PC.
Yet to convey abstractions such as remote computers, we
also needed to represent areas that lie outside the user’s PC.
Thus, Sesame provides a clean division where one side of
the visualization (furthest from the rotated desktop) con-
tains all external elements such as remote computers, and
the other side (containing the rotated desktop) represents
the internal elements of the user’s PC; both regions are
labeled and are colored differently to emphasize the distinc-
tion.

Visual Elements

In addition to the rotated desktop, the Sesame visualization
contains several distinct types of visual elements: processes,
remote computers and connection requests. As shown in
Figure 1, blue cubes (representing window-owning proc-
esses) are connected via arrows to each of the windows on
the rotated desktop. Directly beneath them are the non-



window-owning processes, referred to as ‘background’
processes. On the right, in the ‘external’ region, are repre-
sentations of remote computers that are connected via
arrows to the process with which they are communicating.
However, before the remote computers can connect to the
user’s system, a connection request is given to the user with
options to ‘Allow’ or ‘Forbid’ the connection. Also, in the
lower right corner is a ‘More Info’ space providing brief
descriptions when the user hovers over the various visual
elements.

Processes

Processes are arranged either floating parallel to the rotated
desktop or lying on the ground, depending on whether they
own windows (‘foreground’ processes) or not (‘back-
ground’). To highlight the difference between them, the
foreground processes are larger and in blue; the background
processes are smaller and in green. This difference in
representation was the result of our earlier formative user
studies: we found that users preferred significant visual
differences between the process types.

To avoid deluging users with processes, only certain ones
are shown: 1) we show all processes that own windows as
we want to suggest to users that all of their interaction with
the computer is mediated by processes; 2) we show all
processes that have ever connected to the network; and 3)
we cull any process that is a known-safe component of the
Windows OS, unless it is being controlled by another,
untrusted process.

Much of the security-related, system information provided
is actually conveyed with the process cube. On its face is
the name of the executable from which it was started. There
is also a small square, a rectangular bar graph, and a gauge
(Figure 2a). The colored square indicates whether the
vendor of the executable could be verified (green for yes,
yellow for no); the bar graph indicates how long the execu-
table has been installed on the user’s system; and the gauge
indicates both current and average CPU usage.

These three indicators provide users with a fast way of
judging if a process is behaving abnormally. Part of Ses-
ame’s design intent is to help users identify abnormal
behavior by developing a sense of what normal behavior
looks like via the three indicators. To augment their ability
to have a sense of ‘normal’ and in keeping with the safe-
staging principle [17], we also use in-place semantic
zooming, allowing users to learn more information when
they want. When users hover over a process cube with the
mouse, it expands slightly to show small explanatory text
labels next to each of the glyphs on the cube’s face (Figure
2b). To obtain an even more complete explanation, users
can click the cube, expanding it to a full-sized representa-
tion, which also contains an editable list of security policies
applied to the process (Figure 2c). Consequently, users can
visually determine whether a given process’ characteristics
are unusual, then zoom in to learn what they actually mean.

Coming out from the edges of processes are wide arrows
joining them to the windows they own and the remote

computers with which they are communicating (Figures 3a,
3b). The intention here is to connect—both conceptually
and diagrammatically—concepts in the Sesame interface
with familiar related concepts on the user’s desktop and in
the real world. The arrows are rendered in bright colors
with an extruded, gradated appearance to draw attention
and make them feel concrete. We chose double-headed
arrows to imply that information flows both ways.

Remote Computers

The remote computers that act as either servers or, less
likely, clients to the user’s computer are represented as
stacked rectangular tiles on the right of the screen. In earlier
versions of Sesame, we tried to depict the remote computers
as actual concrete renderings of computers; but as it was not
clear to users that these were separate from their PCs.
Users tended to feel that a better way to suggest distantness
would be to use maps, which prompted us to render remote
computers as abstract map images overlaid with pointers to
the putative location of the remote system. The arrows
leading from the processes to the remote system tiles
terminate over the geography of the remote system, and the
panels include a textual description (e.g., “Remote com-
puter owned by XYZ Corp”).

As with processes, remote system tiles also allow semantic
zooming. When the mouse hovers over a tile, it expands to
reveal the domain, owner, and more precise geographic
location associated with the remote system; the information
is obtained via a reverse DNS lookup and query of a

Figure 2a: unexpanded
process

Figure 2b: view of process
when hovered over

Figure 2c: process when clicked upon

Figure 3a: Process-to-window arrow

Figure 3b: Process-to-remote system arrow



WHOIS database of domain registrations (Figure 4).

Connection Requests

When an attempt is made to establish a new incoming or
outgoing connection, the firewall component of the Sesame
backend intercepts the request and Sesame asks the user for
permission. Sesame represents the connection attempt by
showing a double headed arrow between the local process
and remote system tile, but the arrow is solid only on the
side initiating the request, with the other end of the arrow
dotted (Figure 5). There is a gap between the two ends of
the arrow to suggest that they could be, but are not yet,
connected. To make the user’s options more clear, the
buttons where the user can accept or forbid the request
appear at this solid/dotted junction. In order to draw the
user’s attention to the choice, the red border around the
buttons flashes for several seconds after Sesame is invoked.
To ensure that users see the process associated with the
connection request, a border flashes around it as well.

Like current firewalls, Sesame allows the user to set poli-
cies for allowing or denying connections; but unlike most
firewalls, we try to make changes affecting future policy
obvious by representing policies concretely, and visually
associating them with the objects to which they apply.
When the user selects the ‘accept’ or ‘forbid’ buttons, a
policy dialog box is shown animating out of the relevant
process cube and expanding to full size on screen. The user
can select from four policy choices, allowing or denying
connections on a one time basis or indefinitely, and with
respect to any remote computer or just those associated
with a particular domain. Once the user confirms their
policy choice, the selected policy (represented as a card) is
animated to disappear directly into the associated process,
conveying that the policy is ‘inside’ that cube and is later
accessible from it.

Usage Scenarios

To demonstrate how Sesame might be used, we include two
usage scenarios in which we show similar situations, one
where the appropriate action is to allow a connection so that
the user can continue with her task; and one where the
appropriate action is to deny it in order to fend off an

attack. In the first, the user is asked to answer an explicit
question by Sesame about whether to allow access to a
remote system. In the second, the user invokes Sesame
herself to try to decide whether a website is fraudulent.

Scenario 1: Should I allow this connection?

In the first scenario, the user is browsing a web page
containing an embedded video. Upon selecting the ‘Play’
button in the embedded video player, Sesame brings up a
dialog box indicating a remote computer is trying to initiate
communication with a local process, and the user is directed
to click a button in the dialog box to open Sesame. When
clicked, the user’s screen rotates to reveal that the process,
to which the remote system is trying to connect, is the same
process that is running her web browser. Noting the tempo-
ral coincidence between selecting the ‘Play’ button and the
appearance of the dialog box, she suspects that the new
connection is needed to allow the video to play. Unsure if
watching the video is worth the risk of letting a remote
system connect to her computer, she hovers over the remote
system and observes that it is owned by the same company
associated with the website—a company she is familiar
with and feels reasonably comfortable trusting. She clicks
the ‘Allow’ button to permit the connection to proceed.
However, as she does not feel comfortable giving the
company free reign to connect to her computer, she assigns
a permission card allowing the connection just once. The
yellow connection arrow now becomes completely solid
and the user clicks the ‘Exit and Return to Windows’ button
which rotates her desktop back to its normal position and
the video plays as expected.

Scenario 2: Is this a phishing site?

In the second scenario, we begin with a user who is directed
to a website claiming to be affiliated with their bank. When
the site asks for personal information, the user becomes
suspicious and invokes Sesame. Sesame shows the rotated
desktop allowing the user to see which process is connected
to their web browser window. They notice that the same
process is connected to one remote computer. The small
map shows that the remote computer is located in an
unfamiliar geography and the name of the owner of the
remote computer seems unrelated to the user’s bank. Still
uncertain, the user moves their mouse to the remote com-
puter to find out more information. When the mouse hovers
over the remote system, it zooms to show it is associated
with an unknown domain, and located at an address in a
distant country. The user becomes concerned that they may
not really have visited their bank’s website, and therefore
closes their browser and calls the bank.

IMPLEMENTATION

Sesame is implemented in C++ and runs on unmodified
Microsoft Windows XP. All screenshots in this paper were
taken from live execution of the system. The front-end
interface of the system uses the standard windows GDI to
render most graphics, with GDI+ used for more complex
effects, such as the gradient fills on the extruded arrows.
The front-end also includes a series of hooks allowing it toFigure 5: Remote computer requesting connection to local

process.

Figure 4: expanded remote system tile



be driven from synthetic data sets, as this capability was
necessary for our user study. In order to modify the datasets
in real time, Sesame registers several global hotkeys allow-
ing us to use a second keyboard to control the data Sesame
shows to study participants. The Sesame front-end gathers
process list data; the back-end is used to retrieve network
status. It also includes a simple open-source firewall that is
used to intercept attempts at initiating network connections,
and performs reverse-DNS and WHOIS lookups to obtain
information about remote systems. As we did not need
complete functionality for our evaluations, certain backend
features related to firewall operations, process culling, CPU
usage, and vender verification were not fully implemented,
but were mocked up in the front end.

USER STUDY

We conducted a study to evaluate how well users could
judge potential security threats using the visualization
provided by Sesame. Our primary interest was in how well
users could cumulatively leverage the concepts presented in
Sesame to make security-related decisions. We chose to
evaluate these concepts together rather than piecemeal, as
the experience of our formative study suggested that the
different concepts underlying Sesame are heavily interde-
pendent. To perform this cumulative evaluation, we asked
users to make security decisions in an environment with
Sesame, as well as a more conventional environment using
the ZoneAlarm firewall instead. To assess users’ under-
standing of the different ideas in Sesame, we asked various
questions about different parts of the visualization and
about why users made particular choices. Note that our
focus in this study was to understand how the quality of
decision-making was affected by our visual interface, not
on evaluating Sesame’s efficiency as a UI (whether it
allows faster decision-making), or its impact on user moti-
vation (whether it incents people to be more active in
security management); we leave these as future work.

Participants

Our study included a total of 20 participants recruited from
a university campus: 45% female (9 subjects) and 55%
male (11 subjects). All were undergraduate students; none
were computer science or computer engineering majors,
and none considered themselves to be experts in computer
operation. While those pursuing undergraduate degrees may
not ideally represent typical users, we found that our
participants were indeed unfamiliar with basic concepts of
computer operation such as processes, and security threats
such as phishing. We therefore felt they were adequately
representative. We used between-subjects testing, so
participants were divided evenly between control and
experimental groups.

Security Tasks

To determine how well participants could identify security
threats, we gave them several tasks. For each task, they
effectively had to judge whether a given situation posed a
security threat. The tasks were based on the types of deci-
sions users must make in real world use; the first four were

common personal firewall configuration decisions, the latter
two required judging the authenticity of websites. The tasks
included: T1) allow or forbid an incoming connection from
Microsoft.com after clicking on a video player link; T2)
allow or forbid an outgoing connection from a spyware
process named loadsys.exe; T3) allow or forbid an incom-
ing connection from a bot server requesting connection with
a bot process named intmonp.exe; T4) allow or forbid an
outgoing connection from the process named outlook.exe;
T5) determine if the website claiming to be Mid America
Bank is a phishing site; T6) determine if the website claim-
ing to be CitiBank is a phishing site. T5 and T6 are
intentionally similar but whereas T5 represents a threat, T6
does not—this allows us to test for false positives as well as
false negatives. We balanced the tasks between situations
that are triggered by user activity (T1, T5, and T6) and
those with no direct relationship to the user’s actions (T2,
T3, and T4).

Participants performed the security tasks in either the
control or the experimental environment. The control
environment was made to reflect the most common configu-
ration used by non-experts [15], a typical personal
computer with the ZoneAlarm firewall. In addition to its
ubiquity, we used ZoneAlarm in the control because, like
Sesame, it provides firewall functions and therefore offers
many of the same actionable controls, and asks many of the
same questions, as Sesame. It also embodies the textual,
indirect interaction paradigm employed in most end-user
security tools. Further, the firewall tasks (T1-T4) were
derived from actual prompts ZoneAlarm presents to users.
Also, rather than use a live installation of ZoneAlarm, we
made an interactive mockup using actual screenshots from
ZoneAlarm alerts—this was to ensure that we could control
the timing and exact content of the dialog boxes. We
integrated interactive widgets into our mockup as well so
that it would behave, as well as appear, virtually identical to
the actual tool.

Participants in the experimental group used the same
system as those in the control, except that Sesame was
provided in place of ZoneAlarm. Because Sesame offers an
unusual user interface, we gave participants about 90
seconds to explore it before beginning the tasks. We pro-
vided no explanation about the meaning of Sesame’s
behind-the-desktop visual elements; we only demonstrated
how one could hover over and click on some objects to
semantically zoom in on them.

Similarly to ZoneAlarm and other firewalls, for tasks T1-
T4, Sesame alerted the user to the security situation by
bringing up a dialog box. From there the user would click a
button to enter the Sesame UI. For T5-T6, the experimenter
explained the situation and asked the user to click the
always-present “Open Sesame” button to enter the Sesame
interface.

Study Details

As each participant began the study, they were asked a
series of background questions to assess their familiarity



with computers and security tools. Before any tasks were
presented to them, participants were instructed to think
aloud about what information they would be using in
making their decisions. All participants used the same Dell
laptop with a 15” monitor running Windows XP Home
edition. An external keyboard was used by the experiment-
ers to bring up the alerts for each security task. The
participants were asked to make security decisions as if the
laptop being used was their own.

As discussed above, for the first security task participants
were asked to download a video from the Microsoft website
which caused an alert dialog box from the firewall to pop-
up. After completing the first task, participants were in-
structed to browse to any website of their choosing. They
were then presented with the next three tasks while they
browsed online. Upon the completion of each task, the
participant continued browsing until the next one was
presented to them. We were careful during these tasks not
to cause a popup to appear immediately after the user took
an action (e.g., clicking a link) so that they would not
erroneously think they caused the popup in those cases
where they did not. For the final two tasks, none of the
participants were familiar with the term ‘phishing site’ so a
brief explanation was given.

Since we were assessing the intelligibility of the Sesame
visualization, we declined to answer participant questions
about the meanings of Sesame’s visual elements. We asked
them to infer as best they could with the information given.

Participants were asked to think aloud during their decision
making process for the six tasks, in order to aid us in
understanding their reasoning processes. Upon completion
of all tasks participants were asked follow-up questions in a
semi-structured interview regarding the choices they made.
We asked about the clarity of the decisions they had to
make, the choices presented to them and the information
provided by the security tool they used (i.e., Sesame or
ZoneAlarm). We also asked for suggestions for improving
the security tools. Each subject participated in the study
individually and was voice recorded to capture responses to
the interview questions and the think aloud.

RESULTS

For each participant, we gathered the following data: 1)
background information, 2) the participant’s ‘miss-rate’ for
the six tasks, and 3) responses to follow-up questions
regarding comprehension of the system information pro-
vided. We define miss-rate to be the number of potential
threats the participant evaluated erroneously (i.e., judging a
threatening situation to be safe or vice versa).

Participant security background: Based on the background
information gathered, both the control and experimental
groups were similar in terms of experience with computers
and security tools. Participants in the control group had an
average of 10.4 years of experience using the computer and
only 2 out of 10 participants did not use any security tool
(e.g. Norton Anti-virus, firewalls or anti-spyware). Simi-
larly, participants in the experimental group had an average

of 9.2 years of experience using the computer and 2 out of
10 did not use any security tools. Subjects in both groups
were asked to briefly describe their security practices
besides using security software.

Based on the responses in both groups, the majority of the
participants did not have or could not recall additional
security practices they performed besides making occa-
sional updates to their security software when alerted to do
so by their tools. Further, it seems that the amount of time
spent using a computer does not necessarily translate into
familiarity with the system knowledge needed to make
security decisions. Although participants’ computer usage
averaged 9-10 years, all were unfamiliar with basic system-
level concepts, e.g., processes, network connections.

Security task miss-rate: Since our data were non-
parametric, discrete, and did not appear to fit a known
distribution, we used a two-tailed Mann-Whitney test to
determine if the difference in the miss-rate between the
ZoneAlarm (control) and Sesame (experimental) groups
was statistically significant. In the table below, we summa-
rize the miss rate for both groups of participants:

ZoneAlarm group miss-
rate (6 males, 4 females)

Sesame group miss-rate (5
males, 5 females)

Females 45.8% 25% (with outlier* 30%)

Males 36% 20%

Miss-rate 40% 22.2% (with outlier* 26.6%)

*Outlier miss-rate: 66.7%

Table 1. Participant miss-rate for security tasks

Of the 20 participants, we identified one outlier whose
miss-rate was 66.7%. During the study, this participant
expressed concern about completing the tasks because s/he
was very unfamiliar with the Windows environment given
that the participant’s primary computer was a Macintosh.

Cumulatively over all of the tasks, the experimental group
performed significantly better than the control group.
Including the outlier, the miss-rate for the group using
Sesame is 26.6% while the miss-rate is 40% for the control
group (Z=1.97, P=0.05). (When the outlier is excluded, the
Sesame group miss-rate is reduced further to 22.2%,
Z=2.53, P=0.05). Over just the firewall-like tasks (T1-T4),
the experimental group using Sesame performed 41% better
than the control group; but if the outlier is included, the
experimental group performs just 20% better. However,
when tasks were considered individually or in smaller sets,
we did not have statistically significant differences between
groups due to our relatively small sample size. Figure 6
shows the success rates by task, including the outlier.

Information Comprehension: After the completion of the
six security tasks, we interviewed participants to understand
their reactions to the tasks they performed and, for the
experimental group, to assess how much of Sesame they
understood. Most of the participants in the control group
stated that they were uncertain how to use the information
provided by ZoneAlarm in making their security decisions.
Also, many of the participants (seven out of ten) said they



were following a specific strategy in making allow/deny
decisions. Five of the seven were either allowing or denying
every connection request. For example, one participant said
“I don’t want to read all this stuff so I’m just going to deny
it. If I allow it, I may have to do something else.” The
remaining two of the seven allowed or denied based on
whether they could recognize the process name. Even
though all the participants had access to a lot of information
provided by Zone Alarm, only five participants in total
looked at the process name given to help with their deci-
sion. The more info button was consistently ignored.

Cumulatively, as discussed above, the experimental group
performed significantly better than the control group. One
contributing factor for this may have been that none of the
participants reported using a predetermined strategy in
making decisions. But perhaps more importantly, Sesame
users appeared to employ more of the information provided
than the control group in making their allow/deny decisions.
Sesame users reported using information about the proc-
esses themselves as well as the remote systems to which
they were connecting. In contrast, control users tended to
rely on process names only. We suspect that this may be
because Sesame provided a more accessible explanation of
the general significance and specific facts about remote
systems. For example, five participants found the geogra-
phy information provided on remote systems to be helpful.
Participants also reported that the type of language used in
Sesame was helpful, as well as the permission cards in the
allow/deny dialog box—though it is not clear that the latter
specifically aided them in performing the tasks.

To assess the extent to which participants understood the
conceptual model Sesame provides, we asked them to
describe the visualization. We specifically inquired about
the nature of the visual elements such as processes, and
about the distinction between areas representing things
within the computer versus outside of the computer. We
found that 8 of the 10 users understood the basic signifi-
cance of the cubes representing foreground processes.
Background processes posed a challenge, with only 2 users
understanding their purpose. We were surprised by this
finding, as we explicitly included a textual description of
the distinction between the two types of processes within
the UI. The representations of the remote computers were
understood well, with 8 participants recognizing their
meaning. Eight participants also understood the basic

purpose of the arrows connecting processes to the remote
computers. Finally, 8 of the 10 participants were also able
to identify the areas of the Sesame UI that represented
things considered to be within the computer, versus the
areas representing things that were ‘outside’ the computer.

DISCUSSION AND FUTURE WORK

The results of our study are encouraging, suggesting that on
the whole, Sesame’s novel UI helps users make better
security decisions than with typical security environments
with a traditional firewall. We were especially pleased that
our representation could be reasonably well interpreted
without explanation. E.g., nearly all users understood the
division between the internal and external regions of the
design—this was a particular challenge we faced in earlier
prototypes. The results suggest our basic representational
approach to be a viable alternative to conventional textual
approaches; and that novice users seem to rapidly learn a
system-level structure when it is framed visually and in
terms of more familiar concepts as was done in Sesame.
While there is evidence that Sesame’s visual presentation is
more effective than traditional firewalls, additional, larger
studies are needed to confirm this.

Besides the seemingly successful aspects of Sesame, the
shortcomings of the UI were also informative. A common
difficulty for participants was inferring causal relationships.
Many participants felt that actions they took caused Sesame
to bring up dialog boxes, even in cases where the Sesame
visualization itself gave indications to the contrary. Addi-
tionally, participant comments suggested they often had
difficulty grasping the idea of their computer’s software
environment as a collection of quasi-independent causal
agents, instead inferring strong relationships among the
different processes. These difficulties suggest that future
versions of Sesame might use metaphors that better suggest
the agent-causal nature of processes—such as depicting
them with animated, anthropomorphic figures.

While we evaluated Sesame as a holistic combination of its
features, we do believe that there are generalizable design
principles from our experiences that could be applied to
other systems.

First, given our desire to provide a direct manipulation
interface, swiveling the desktop to show the underlying
system seemed to be an accessible way to provide context
to help users understand otherwise hidden features. That
there are other possible approaches is certain; however, we
believe that the generalizable principle here is that contex-
tualization of new information with familiar, known
concepts is a key for non-expert use. Our swivel metaphor
is one (but not the only) way one might accomplish this.

Second, Sesame’s policy cards provide a persistent visual
indication of policy settings, allowing them to be easily
seen and accessed by users in the future. The utility of
persistent visual indicators—to support awareness of
system state, to serve as an affordance for reversibility, and
so forth—seems particularly important for conveying
security state, where re-accessibility and intelligibility are

Success Rate By Task

0

20

40

60

80

100

120

T1 T2 T3 T4 T5 T6
Task (T)

Su
cc

es
s

R
at

e
(%

)
Sesame

Control

Figure 6: Participant hit-rates for security tasks



especially difficult. We believe this to be a severe failing of
current firewalls, in which settings—once configured—are
often difficult to re-access.

Third, we believe that metaphorical 3D models may aid in
helping non-experts understand system information where
necessary; particularly when it involves concepts underly-
ing the desktop metaphor. Such modeling need not be
limited to a firewall UI. Like file management models (e.g.
two file folders with pages transferring from one to the
other to show the status of copying), other system models
can be embedded in applications, perhaps with individual
components rotating aside to reveal relevant underlying
system information. Our study suggests that security
information embedded in such a model can be effectively
leveraged by end-users.

Finally, Sesame shows the viability of direct manipulation
(DM) in low level, security and configuration interfaces,
whereas DM is traditionally only used for windowing and
within applications. We believe that this area is ripe for the
use of other specific design techniques from the HCI
community, such as the use of 2.5D UI’s to extend the
desktop metaphor. Our work suggests that users can under-
stand relationships between different levels of abstraction
through such well-proved techniques, even when dealing
with the complex information necessary for security and
system decision-making.

CONCLUSION

Sesame brings a direct manipulation graphical interface to
end-user security to help non-experts make better informed
security choices. Most prior work in end-user security
tended to be highly task or threat-specific; or largely text-
based and/or designed for experts. There are few tools if
any which focus explicitly on helping non-expert users to
better understand the technical, system-level concepts
needed to make security decisions. With Sesame, we
investigate an approach to providing non-experts with a
general, firewall-like tool that addresses a wider range of
threats independent of specific tasks or applications.

Further, we move toward making system-level concepts
accessible to non-experts by representing them as concrete
objects and relating them to more familiar concepts such as
desktop-level objects and real world abstractions like
geographic locations. In a controlled study, Sesame users
were more likely to identify security threats accurately than
users with more typical software environments. Sesame
users were further able to understand many of the otherwise
unfamiliar system-level concepts conveyed, suggesting
viability to our fundamental interface approach. In the
future, we plan to conduct further studies and explore how
better to convey those concepts with which users struggled.

ACKNOWLEDGEMENTS

We thank our colleagues at Georgia Tech for their helpful
feedback, in particular, John Stasko and Pixi Lab members;
and we thank Symantec for their support for this work.

REFERENCES
1. Conti, G., Abdullah, K., Grizzard, J., Stasko, J., Cope-

land, J., Ahamad, M., Owen, H., Lee, C. Countering
Security Information Overload through Alert and Pack
Visualization. IEEE Computer Graphics (2006).

2. Dhamija, Rachna, Tygar, J.Doug. The Battle Against
Phishing: Dynamic Security Skins. Symposium On Us-
able Privacy and Security, (2005).

3. DiGioia, P., Dourish P. Social Navigation as a Model for
Usable Security. Symposium On Usable Privacy and Se-
curity (2005).

4. Downs, J. S., Holbrook, M. B., Cranor, L. F. Decision
Strategies and Susceptibility to Phishing. Symposium On
Usable Privacy and Security, (2005).

5. Edwards, W. K., Shehan, E., Stoll, J. Security Automation
Considered Harmful? NSPW (2007)

6. Flinn, S.A., Flock of Birds, Safely Staged. DIMACS
Workshop on Usable Privacy & Security Software (2005).

7. Foresti, S., Agutter, J. Visual Correlation of Network
Alerts. IEEE Computer Graphics (2006).

8. Hutchins, E., Hollan, J., Norman, D. Direct Manipulation
Interfaces. Human Computer Interaction, 1985. 1: p. 311-
338.

9. Know Your Enemy: Tracking Botnets. Honeynet Project
and Research Alliance. honeynet.org/papers/bots (2005).

10. Nielsen, J., Landauer, T. K., A mathematical model of the
finding of usability problems. Proceedings of the ACM
INTERCHI’93 Conference (1993).

11. Shukla, S., Nah, F., Web Browsing and Spyware Intru-
sion. Communications of the ACM.Vol. 48, No. 8 (2005).

12. Smetters, D., Grinter, R. Moving from the Design of
Usable Security Technologies to the Design of Useful Se-
cure Applications. NSPW (2002).

13. Spyware. NISCC Technical Note. National Infrastructure
Security Coordination Centre. (2006).

14. Thorpe, S., Fize, D. & Marlot, C. (1996).Speed of proc-
essing in the human visual system. Nature, 381, 520-522.

15. Walker, A. Absolute Beginner’s Guide to Security, Spam,
Spyware & Viruses. Que Publishing, © 2006.

16. Whalen, T., Inkpen, K. Techniques for Visual Feedback
of Security State. DIMACS Workshop on Usable Privacy
and Security Software (2004).

17. Whitten, A., Tygar, J. Safe Security Staging. CHI 2003
Workshop on Human-Computer Interaction and Security
Systems (2003).

18. Whitten, A., Tygar, J., Why Johnny Can’t Encrypt. Proc.
of the 8th USENIX Security Symposium (1999).

19. Wu, M., Miller, R. C., Little, G. Web Wallet: Preventing
Phishing Attacks by Revealing User Intentions. Sympo-
sium On Usable Privacy and Security, (2006).

20. Wu, M., Miller, R. C., Garfinkel, S., Do Security Tool-
bars Actually Prevent Phishing Attacks? CHI (2006).

21. Yee, K., Sitaker, K. Passpet: Convenient Password
Management and Phishing Protection. Symposium On
Usable Privacy and Security, (2006).

22. www.sysinternals.com/Utilities/


