Expectation and Vector Random Variables

Guy Lebanon

January 6, 2006

Conditional expectation comes in two flavors. The first a number \(E(Y|X = x) \in \mathbb{R} \) and the second \(E(Y|X) \) is a random variable itself (a function from \(\Omega \) to \(\mathbb{R} \)). We cover these cases and then proceed to discuss covariance and correlation which are the analogue of variance for vector random variables.

Definition 1. The conditional expectation of the RV \(Y|X = x \) is

\[
E(Y|X = x) = \begin{cases}
\int_{-\infty}^{\infty} yf_{Y|X=x}(y) \, dy & \text{\(Y=X \) is a discrete RV} \\
\sum_{y \in \mathbb{R}} yp_{Y|X=x}(y) & \text{\(Y=X \) is a continuous RV}
\end{cases}
\]

Intuitively, it represents the mean or average value of \(Y \) if we know that \(X = x \). The above definition extends naturally to conditioning on multiple RVs e.g. \(E(X_i|\{X_j = x_j : j \neq i\}) \) (just use the appropriate conditional pdf or pmf in the definition above).

The conditional expectation \(E(Y|X = x) \) is a real number, assuming that \(x \) is fixed ahead of time. If we look at it as a function of \(x \) i.e., \(g(x) = E(Y|X = x) \), we obtain a function that assigns a real number \(g(x) \) for every value \(x \in \mathbb{R} \). This leads to the following definition. It is an elusive concept which require careful thinking.

Definition 2. The conditional expectation \(E(Y|X) \) is a RV \(E(Y|X) : \Omega \rightarrow \mathbb{R} \) defined as follows:

\[E(Y|X)(\omega) = E(Y|X = X(\omega)). \]

In other words, for every value \(\omega \in \Omega \) we obtain a value \(X(\omega) \in \mathbb{R} \) which we may denote as \(x \) and this in turn leads to the real number \(E(Y|X = x) \). Note that \(E(Y|X) \) is a RV that is a function of the RV \(X \).

Since \(E(Y|X) \) is a random variable, we can compute its expectation. The following theorem is sometimes useful.

Theorem 1. For any two RVs \(X, Y \) we have \(E(E(Y|X)) = E(Y) \).

Proof. We prove the result for the continuous case. The discrete case can be proven using an analogous proof.

\[
E(E(Y|X)) = \int_{-\infty}^{\infty} E(Y|X = x)f_X(x) \, dx = \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} yf_{Y|X=x}(y) \, dyf_X(x) \, dx
\]

\[
= \int_{-\infty}^{\infty} y \int_{-\infty}^{\infty} f_{X,Y}(x,y) \, dx \, dy = \int_{-\infty}^{\infty} yf_Y(y) \, dy = E(Y)
\]

where the first equality holds by the formula for expectation of a function of a random variable \(E(g(X)) = \int g(x)f_X(x) \, dx \).

Example: Suppose that \(X \) is uniform on \([0,1]\) and that \(Y|X = x \) is uniform on \([x,1]\). What is \(E(Y) \)?

For each given value of \(x \) between 0 and 1, \(E(Y|X = x) \) will equal the midpoint \((x+1)/2\) of the interval \([x,1]\). Therefore \(E(Y|X) = (X + 1)/2 \) and by the linearity of the expectation,

\[
E(Y) = E(E(Y|X)) = (E(X) + 1)/2 = \left(\frac{1}{2} + 1 \right)/2 = 3/4.
\]
As for RVs, the expectation of a function of a vector RV \(Y = g(\mathbf{X}) \) (\(Y \) is a one dimensional RV here) is

\[
E(Y) = \begin{cases} \int_{\mathbb{R}^n} g(\mathbf{x}) f_{\mathbf{X}}(\mathbf{x}) \, d\mathbf{x} & \text{\(\mathbf{X} \) is continuous} \\
\sum_{\mathbf{x} \in \mathbb{R}^n} g(\mathbf{x}) p_{\mathbf{X}}(\mathbf{x}) & \text{\(\mathbf{X} \) is discrete}
\end{cases}
\]

Important note: When you see expectation over several RVs, for example \(E(X + Y) \), it is assumed that the expectation is taken with respect to (the integral, or sum) the joint distribution or all variables that appear in the argument.

We have that (if \(X, Y \) are discrete replace integrals with sum and pdf with pmf)

\[
E(X + Y) = \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} (x + y) f_{X,Y}(x, y) \, dx \, dy = \int_{-\infty}^{\infty} x \int_{-\infty}^{\infty} f_{X,Y}(x, y) \, dy \, dx + \int_{-\infty}^{\infty} y \int_{-\infty}^{\infty} f_{X,Y}(x, y) \, dx \, dy = E(X) + E(Y).
\]

By induction we obtain the linearity property of expectation for a finite sum of RVs (not necessarily independent):

\[
E(X_1 + \ldots + X_n) = \sum_{i=1}^{n} E(X_i).
\]

If \(X, Y \) are independent, we have (again, for discrete RV, replace integrals with sums and pdf with pmf) for some functions \(g_1, g_2 \) (that could be the identity)

\[
E(g_1(X)g_2(Y)) = \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} g_1(x)g_2(y)f_{X,Y}(x, y) \, dx \, dy = \int_{-\infty}^{\infty} g_1(x)g_2(y)f_X(x)f_Y(y) \, dx \, dy
\]

\[
= \left(\int_{-\infty}^{\infty} g_1(x)f_X(x) \, dx \right) \left(\int_{-\infty}^{\infty} g_2(y)f_Y(y) \, dy \right) = E(g_1(X))E(g_2(Y)).
\]

In particular, we have that for independent \(X, Y \), \(E(XY) = E(X)E(Y) \). Again the above result may be generalized by induction to a finite product of functions of RVs.

The covariance of \(X, Y \) is the generalization of the variance \(E((X - E(X))^2) \).

Definition 3. The covariance of two RV \(X, Y \) is \(\text{Cov}(X, Y) = E((X - E(X))(Y - E(Y))) \).

An alternative expression that is sometimes more convenient is

\[
\text{Cov}(X, Y) = E(XY -XE(Y) -YE(X)+E(X)E(Y)) = E(XY) - 2E(X)E(Y) + E(X)E(Y) = E(XY) - E(X)E(Y).
\]

Recall that for independent \(X, Y \) \(E(XY) = E(X)E(Y) \) and so \(\text{Cov}(X, Y) = 0 \). However, the converse statement is false as there exists random variables that have covariance 0 but are dependent. Intuitively, the covariance measures the extent to which there exists a linear relationship between \(X, Y \) e.g. \(X = \alpha Y + \beta \).

If there is no linear relationship, the covariance is zero but the variables may still be dependent.

Definition 4. For two random variables \(X, Y \) the correlation coefficient \(\rho_{X,Y} \) is defined as

\[
\rho_{X,Y} = \frac{\text{Cov}(X,Y)}{\sqrt{\text{Var}(X)} \sqrt{\text{Var}(Y)}}.
\]

Its virtue is in the fact that it is a normalized version of the covariance. While \(\text{Cov}(X,Y) \) can take on any real value, \(-1 \leq \rho_{X,Y} \leq 1\) always with \(|\rho_{X,Y}| = 1 \) if there is a linear relationship between \(X, Y \) e.g. \(X = \alpha Y + \beta \) and 0 if \(X, Y \) are independent.

To see that \(-1 \leq \rho_{X,Y} \leq 1\) observe that since the expectation of a non-negative RV is non-negative,

\[
0 \leq E \left(\left(\frac{X - E(X)}{\sqrt{\text{Var}(X)}} + \frac{Y - E(Y)}{\sqrt{\text{Var}(Y)}} \right)^2 \right) = \frac{E((X - E(X))^2)}{\text{Var}(X)} + \frac{E((Y - E(Y))^2)}{\text{Var}(Y)} \pm 2 \rho_{X,Y} = 2(1 \pm \rho_{X,Y})
\]

which implies that \(0 \leq 1 \pm \rho \) that is equivalent to \(-1 \leq \rho_{X,Y} \leq 1\).