Sampling Distributions

Guy Lebanon

February 14, 2006

In this note we study the distributions of functions of iid samples $X_1, \ldots, X_n \sim N(\mu, \sigma^2)$. The assumed scenario is that the samples are given to us, but we don’t know μ, σ. We need to construct statistics that are functions of the provided samples and which will provide estimates for the unknown quantities. The statistic $T(X_1, \ldots, X_n)$ is a RV since it is a function of RVs. Uncovering its distribution is the first step in evaluation of the estimation the statistic provides. We will describe statistics that correspond to RVs with distributions χ^2, t and F. These distributions are important if the iid samples X_1, \ldots, X_n are normally distributed. If they are not, we can still use the above distributions as approximations through the central limit theorem.

The most common estimator for the expected value μ is the empirical mean $\overline{X} = n^{-1} \sum_{i=1}^n X_i$ which is normally distributed $\overline{X} \sim N(\mu, \sigma^2/n)$. We can prove this by using the result that a linear combination of normal RVs is a normal RV (see the note on the moment generating function). The same result also proves that the standardized variables $(X_i - \mu)/\sigma \sim N(0, 1)$.

Definition 1. The Chi-squared distribution with n degrees of freedom (dof) χ_n^2 is a Gamma distribution with parameters $\alpha = n/2, \beta = 1/2$, with mgf $(1 - 2t)^{-n/2}$.

From the mgf (or from the formula for expectation and variance of a Gamma distribution), it is clear that χ_n^2 has expectation n and variance $2n$. The main use of the χ_n^2 distribution is due to the following fact.

Theorem 1. If Z_1, \ldots, Z_n are iid $N(0, 1)$ then $\sum_{i=1}^n Z_i^2 \sim \chi_n^2$.

Proof. Consider first the case $n = 1$. The mgf of Z_1^2 is

$$E(e^{Z_1^2}) = \int_{-\infty}^{+\infty} e^{t^2} (2\pi)^{-1/2} e^{-t^2/2} dt = \int_{-\infty}^{+\infty} (2\pi)^{-1/2} e^{-(1-2t)^2/2} dt = \frac{1}{(1-2t)^{1/2}} \int_{-\infty}^{+\infty} \frac{e^{-z^2/2}}{(2\sqrt{\pi})^{-1}} dz = \frac{1}{(1-2t)^{1/2}} \cdot 1$$

which is the mgf of χ_1^2. In the case $n > 1$, the mgf of the sum is the product of the mgfs (again, see mgf note) resulting in the χ_n^2 mgf $\prod_{i=1}^n (1 - 2t)^{-1/2} = (1 - 2t)^{-n/2}$. \hfill \square

The most common estimator for the variance of a sample is $S^2(X_1, \ldots, X_n) = \frac{1}{n-1} \sum_{i=1}^n (X_i - \overline{X})^2$. We will just write S^2, but remember that it is a function of the sample. The reason for the $n-1$ in the denominator and not n will become clear later on.

Theorem 2. Let $X_1, \ldots, X_n \sim N(\mu, \sigma)$ and S^2 be defined as above. Then $\frac{S^2}{(n-1)\sigma^2} = \sum_{i=1}^n X_i^2/\sigma^2 \sim \chi_{n-1}^2$. Furthermore, \overline{X}, S are independent RVs.

Proof. (from Degroot and Schervish) We first prove the result if $X_1, \ldots, X_n \sim N(0, 1)$. Consider the unit-norm vector $u = (1/\sqrt{n}, \ldots, 1/\sqrt{n})$ and an orthonormal matrix A built from u using the Gram Schmidt procedure. Specifically, we look at $Y = AX$. $Y_1 = u^T X = \overline{X} \cdot X$. Since A is an orthonormal matrix it preserves the norm and therefore $\sum_{i=1}^n X_i^2 = \sum_{i=1}^n Y_i^2$ and

$$\sum_{i=1}^n Y_i^2 = \sum_{i=1}^n Y_i^2 - Y_1^2 = \sum_{i=1}^n X_i^2 - Y_1^2 = \sum_{i=1}^n X_i^2 - n\overline{X}^2 = \sum_{i=1}^n (X_i - \overline{X})^2.$$
The joint pdf of Y_1, \ldots, Y_n is precisely the same as that of X_1, \ldots, X_n since

$$ f_{Y_1, \ldots, Y_n}(y) = \frac{1}{|\text{det} A|} (2\pi)^{n/2} e^{-\frac{1}{2} \sum_i |A^{-1} y|^2} = \frac{1}{(2\pi)^{n/2}} e^{-\frac{1}{2} \sum_i y_i^2}. $$

So, Y_1, \ldots, Y_n are independent, and by the previous result, $\sum (X_i - \overline{X})^2$ and $\sqrt{n} \cdot \overline{X}$ are independent. Since \overline{X} and S^2 are functions of independent RVs they are independent as well. Furthermore, $\sum (X_i - \overline{X})^2$ is shown to be a sum of squares of $n - 1$ iid standard normal RVs and so its distribution is χ^2_{n-1}.

Now, assume X_i are distributed normal, but not standard normal. From the above, it follows that the result holds for the standardized RVs $Z_i = (X_i - \mu)/\sigma$. However, $\sum_{i=1}^n (Z_i - \overline{Z})^2 = \frac{1}{\sigma^2} \sum_{i=1}^n (X_i - \overline{X})^2$ proving the result in the general case.

The problem with the above result is that we don’t know σ^2 and so we can’t use it in a statistic. If we replace σ^2 with S^2 the χ^2_{n-1} distribution turns into a t-distribution with $n - 1$ dof.

Definition 2. Let $Z \sim N(0,1), W \sim \chi^2_{\nu}$ be two independent RVs. Then the distribution of $\frac{Z}{\sqrt{W/\nu}}$ is known as a t-distribution with ν degrees of freedom, denoted t_ν.

Using the above notations we have

$$ \sqrt{n} \left(\frac{\overline{Y} - \mu}{S} \right) = \frac{\sqrt{n}(\overline{Y} - \mu)/\sigma}{\sqrt{((n-1)S^2/\sigma^2)/(n-1)}} = \frac{Z}{\sqrt{W/(n-1)}} \sim t_{n-1}. $$

Finally, assume we have two populations $X_1, \ldots, X_n \sim N(\mu, \sigma^2), Y_1, \ldots, Y_m \sim N(\eta, \tau^2)$ and we are interested in comparing σ^2 to τ^2 or looking at the magnitude of σ^2/τ^2. This leads to the statistic that is the ratio of the two variance estimates S_1^2/S_2^2 which leads to the F-distribution.

Definition 3. Let $W_1 \sim \chi^2_p, W_2 \sim \chi^2_q$ be two independent RVs. Then $\frac{W_1}{W_2}$ has a distribution known as the F distribution with (p, q) dof denoted $F_{p,q}$.

We have

$$ \frac{S_1^2/\sigma^2}{S_2^2/\tau^2} = \frac{((n-1)S_1^2/\sigma^2)/(n-1)}{((m-1)S_2^2/\tau^2)/(m-1)} = \frac{W_1/(n-1)}{W_2/(m-1)} \sim F_{n-1,m-1}. $$