The Law of Large Numbers and the Central Limit Theorem

Guy Lebanon

September 3, 2010

Theorem 1 (Markov Inequality). For a non-negative scalar RV X (with finite expectation and variance)

$$P(X \geq a) \leq \frac{E(X)}{a}, \quad \forall a > 0$$

Proof. Apply Markov inequality $P(Z^2 \geq a^2) \leq \frac{E(Z^2)}{a^2}$ for the RV Z^2 where $Z = |X - E(X)|$ i.e., $P(|X - E(X)| \geq a) = P(Z \geq a) = P(Z^2 \geq a^2) \leq \frac{\text{Var}(X)}{a^2}$. \hfill \Box

Theorem 2 (Chebyshev Inequality). For a scalar RV X (with finite expectation and variance)

$$P(|X - E(X)| \geq a) \leq \frac{\text{Var}(X)}{a^2}, \quad \forall a > 0$$

Proof. Apply Markov inequality $P(Z^2 \geq a^2) \leq \frac{E(Z^2)}{a^2}$ for the RV Z^2 where $Z = |X - E(X)|$ i.e., $P(|X - E(X)| \geq a) = P(Z \geq a) = P(Z^2 \geq a^2) \leq \frac{\text{Var}(X)}{a^2}$. \hfill \Box

Definition 1. Let $Y^{(1)}, Y^{(2)}, \ldots$ be a sequence of random vectors and Z be a random vector. We say that $Y^{(n)}$ converges in probability to Z, and denote $Y^{(n)} \Rightarrow Z$, if

$$\lim_{n \to \infty} P(||Y^{(n)} - Z|| \geq \epsilon) = 0, \quad \forall \epsilon > 0.$$

Theorem 3 (The Weak Law of Large Numbers). Let $X^{(1)}, X^{(2)}, \ldots$ be a sequence of d-dimensional iid\footnote{independent and identically distributed i.e. all $X^{(i)}$ have the same distribution, and in particular same mean and variance.} random vectors with finite expectation vector μ and covariance matrix Σ. Then the sequence $Y^{(n)} = \frac{1}{n} \sum_{i=1}^{n} X^{(i)}$ converges in probability to μ i.e.,

$$\lim_{n \to \infty} P\left(\left\|\frac{1}{n} \sum_{i=1}^{n} X^{(i)} - \mu\right\| \geq \epsilon\right) = 0, \quad \forall \epsilon > 0.$$

Proof. For scalars RVs $X^{(i)}$ ($d = 1$) with expectation μ and variance σ^2 the proof follows from noting that $E \bar{X} = n^{-1} \sum_{i=1}^{n} EX^{(i)} = (n/n) \mu = \mu$, $\text{Var} \bar{X} = \frac{1}{n^2} \text{Var} \sum_{i=1}^{n} X^{(i)} = \frac{1}{n^2} \sum_{i=1}^{n} \text{Var} X^{(i)} = n^{-1} \sigma^2$ (since $X^{(i)}$ are iid) and applying Chebyshev inequality to $\bar{X} = \frac{1}{n} \sum_{i=1}^{n} X^{(i)}$

$$P\left(\left|\bar{X} - E \bar{X}\right| \geq \epsilon\right) = P\left(||\bar{X} - \mu|| \geq \epsilon\right) \leq \frac{\sigma^2}{n\epsilon^2} \xrightarrow{n \to \infty} 0.$$

For $d > 1$ we proceed by applying Boole’s inequality and the one dimensional result above

$$P\left(\|\bar{X} - E \bar{X}\| \geq \epsilon\right) = P\left(\sum_{j=1}^{d} |\bar{X}_j - \mu_j|^2 \geq \epsilon^2\right) \leq \sum_{j=1}^{d} P\left(|\bar{X}_j - \mu_j|^2 \geq \epsilon^2/d\right)$$

$$= \sum_{j=1}^{d} P\left(|\bar{X}_j - \mu_j| \geq \epsilon/\sqrt{d}\right) \leq \frac{d}{n\epsilon^2} \sum_{j=1}^{d} \text{Var}(X_j) = \frac{d}{n\epsilon^2} \text{trace}(\text{Var}(X)) \xrightarrow{n \to \infty} 0.$$

\hfill \Box
The WLLN shows that the sequence of random vectors \(Y^{(n)} = \bar{X} = \frac{1}{n} \sum_{i=1}^{n} X^{(i)} \), \(n = 1, 2, \ldots \) are increasingly centered around the expectation vector \(\mu \) and thus for large \(n \), they become a good approximation to \(\mu \). The central limit theorem below is characterizing the distribution with which this convergence happens. Interestingly, it shows that the distribution of \(\bar{X} \) for large \(n \) is Gaussian centered around \(\mu \) with variance \(\Sigma/n \). Thus, not only can we say that \(\bar{X} \) is close to \(\mu \), we can say that its distribution is a bell shaped curve centered at \(\mu \) whose width (variance) decays linearly with \(n \).

Definition 2. We say that a sequence of random vectors \(Y^{(1)}, Y^{(2)}, \ldots \) converges in distribution to a random vector \(Z \), denoted \(Y^{(n)} \xrightarrow{d} Z \) if\(^2\)
\[
\lim_{n \to \infty} P(Y^{(n)} \in A) = P(Z \in A)
\]

Theorem 4 (Central Limit Theorem). Let \(X^{(1)}, X^{(2)}, \ldots \) be a sequence of iid \(d \)-dimensional random vectors RVs with finite expectation vector \(\mu \) and covariance matrix \(\Sigma \). Then \(Y^{(n)} = \sqrt{n}(\bar{X} - \mu) \xrightarrow{d} N(0, \Sigma) \) i.e.,
\[
\lim_{n \to \infty} P(\sqrt{n}(\bar{X} - \mu) \in A) = P(Z \in A), \quad Z \sim N(0, \Sigma).
\]

The 1-dimensional analog (\(d = 1 \) above) is
\[
\lim_{n \to \infty} P(\sqrt{n}(\bar{X} - \mu) \in A) = P(Z \in A) = \int_{A} \frac{1}{\sqrt{2\pi} \sigma} e^{-z^{2}/(2\sigma^{2})} dz.
\]

For large\(^3\) \(n \) we can say that the approximation in the CLT above holds with high precision. Since if \(\sqrt{n}(\bar{X} - \mu) \sim N(0, \Sigma) \) we have \(\bar{X} - \mu \sim N(0, \Sigma/n) \) and \(\bar{X} \sim N(\mu, \Sigma/n) \) (why?) we can say that intuitively \(\bar{X} \) has a distribution that is approximately \(N(\mu, \Sigma/n) \). Similarly, intuitively, the distribution of \(\sum_{i=1}^{n} X^{(i)} \) is approximately \(N(n\mu, n^{2}\Sigma/n) = N(n\mu, n\Sigma) \).

The CLT is very useful and surprising. It states that if we are looking for a distribution of a RV \(Y \) that is a sum of many other iid RVs \(Y^{(n)} = X^{(1)} + \cdots + X^{(n)} \) we are guaranteed that its distribution will be close to normal (for large \(n \)) regardless of the distribution of the original \(X^{(i)} \).

Example: In a restaurant orders \(X^{(1)}, X^{(2)}, \ldots \) are received in an iid fashion with expectation $8 and variance $4 (note that the distribution of the orders is unknown). The owner is interested in computing the probability that sum of the first 100 orders are greater or equal to 840 \(P(\sum_{i=1}^{100} X^{(i)} \geq 840) \). To approximate that quantity using the CLT we need to transform it to a form that enable us to invoke the CLT:
\[
P\left(\sum_{i=1}^{100} X^{(i)} \geq 840\right) = P\left(\frac{\sum_{i=1}^{100} X^{(i)} - 8 \cdot 100}{2 \cdot 10} \geq \frac{840 - 8 \cdot 100}{2 \cdot 10}\right) \approx P(Z \geq 2) = \int_{2}^{\infty} \frac{1}{\sqrt{2\pi} \sigma} e^{-z^{2}/(2\sigma^{2})} dz
\]

where the last expression is commonly found in tables or by numerical integration.

\(^2\)This definition is slightly simplified in order to avoid measure theory. It should be sufficient for almost all practical cases.

\(^3\)Statisticians generally agree that the approximation in the CLT is accurate when \(n > 30 \) in most cases. However, the CLT approximation can also be used effectively in many cases where \(n < 30 \).