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Abstract

Recently, several external memory techniques have been developed for a wide variety of
graphics and visualization problems, including surface simplification, volume rendering, iso-
surface generation, ray tracing, surface reconstruction, and so on. This work has had significant
impact given that in recent years there has been a rapid increase in the raw size of datasets. Sev-
eral technological trends are contributing to this, such as the development of high-resolution
3D scanners, and the need to visualize ASCI-size (Accelerated Strategic Computing Initiative)
datasets. Another important push for this kind of technology is the growing speed gap be-
tween main memory and caches, such a gap penalizes algorithms which do not optimize for
coherence of access. Because of these reasons, much research in computer graphics focuses
on developing out-of-core (and often cache-friendly) techniques.

This paper surveys fundamental issues, current problems, and unresolved solutions, and
aims to provide students and graphics researchers and professionals with an effective knowl-
edge of current techniques, as well as the foundation to develop novel techniques on their
own.

Keywords: Out-of-core algorithms, scientific visualization, computer graphics, interactive ren-
dering, volume rendering, surface simplification.

1 INTRODUCTION

Input/Output (I/O) communication between fast internal memory and slower external memory is a
major bottleneck in many large-scale applications. Algorithms specifically designed to reduce the
I/O bottleneck are calledexternal-memoryalgorithms.
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This paper focusses on describing techniques for handling datasets larger than main memory
in scientific visualization and computer graphics. Recently, several external memory techniques
have been developed for a wide variety of graphics and visualization problems, including surface
simplification, volume rendering, isosurface generation, ray tracing, surface reconstruction, and
so on. This work has had significant impact given that in recent years there has been a rapid
increase in the raw size of datasets. Several technological trends are contributing to this, such as
the development of high-resolution 3D scanners, and the need to visualize ASCI-size (Accelerated
Strategic Computing Initiative) datasets. Another important push for this kind of technology is
the growing speed gap between main memory and caches, such a gap penalizes algorithms which
do not optimize for coherence of access. Because of these reasons, much research in computer
graphics focuses on developing out-of-core (and often cache-friendly) techniques.

The paper reviews fundamental issues, current problems, and unresolved solutions, and presents
an in-depth study of external memory algorithms developed in recent years. Its goal is to provide
students and graphics professionals with an effective knowledge of current techniques, as well as
the foundation to develop novel techniques on their own.

It starts with the basics of external memory algorithms in Section 2. Then in the remaining
sections, it reviews the current literature in other areas. Section 4 covers surface simplification
algorithms. Section 3 covers work in scientific visualization, including isosurface computation,
volume rendering, and streamline computation. Section 5 discusses rendering approaches for large
datasets. Finally, Section 6 talks about computing high-quality images by using global illumination
techniques.

2 EXTERNAL MEMORY ALGORITHMS

The field ofexternal-memory algorithmsstarted quite early in the computer algorithms community,
essentially by the paper of Aggarwal and Vitter [3] in 1988, which proposed the external-memory
computational model (see below) that has been extensively used today. (External sorting algo-
rithms were developed even earlier—though not explicitly described and analyzed under the model
of [3]; see the classic book of Knuth [56] in 1973.) Early work on external-memory algorithms,
including Aggarwal and Vitter [3] and other follow-up results, concentrated largely on problems
such as sorting, matrix multiplication, and FFT. Later, Goodrich et al. [46] developed I/O-efficient
algorithms for a collection of problems in computational geometry, and Chiang et al. [17] gave I/O-
efficient techniques for a wide range of computational graph problems. These papers also proposed
some fundamental paradigms for external-memory geometric and graph algorithms. Since then,
developing external-memory algorithms has been an intensive focus of research, and considerable
results have been obtained in computational geometry, graph problems, text string processing, and
so on. We refer to Vitter [83] for an extensive and excellent survey on these results. Also, the
volume [1] is entirely devoted to external-memory algorithms and visualization.

Here, we review some fundamental and general external-memory techniques that have been
demonstrated to be very useful in scientific visualization and computer graphics. We begin with the
computational model of Aggarwal and Vitter [3], followed by two major computational paradigms:

(1) Batched computations, in which no preprocessing is done and the entire data items must be
processed. A common theme is to stream the data through main memory in one or more



passes, while only keeping a relatively small portion of the data related to the current com-
putation in main memory at any time.

(2) On-line computations, in which computation is performed for a series of query operations. A
common technique is to perform a preprocessing step in advance to organize the data into a
data structurestored in diskthat is indexed to facilitate efficient searches, so that each query
can be performed by searching in the data structure that examines only a very small portion
of the data. Typically an even smaller portion of the data needs to be kept in main memory
at any time during each query. This is in a similar spirit of performing queries in database.

We remark that the preprocessing step mentioned in (2) is actually a batched computation.
Other general techniques such ascachingandprefetchingmay be combined with the above com-
putational paradigms to obtain further speed-ups (e.g., by reducing the necessary I/O’s for blocks
already in main memory and/or by overlapping I/O operations with main-memory computations),
again via exploiting the particular computational properties of each individual problem as part of
the algorithm design.

In Sec. 2.1, we present the computational model of [3]. In Sec. 2.2, we review three tech-
niques in batched computations that are fundamental for out-of-core scientific visualization and
graphics: external merge sort [3], out-of-core pointer de-referencing [14,17,18], and the meta-cell
technique [20]. In Sec. 2.3, we review some important data structures for on-line computations,
namely the B-tree [9,26] and B-tree-like data structures, and show a general method of converting
a main-memory, binary-tree structure into a B-tree-like data structure. In particular, we review the
BBIO tree [19, 20], which is an external-memory version of the main-memory interval tree [32]
and is essential for isosurface extraction, as a non-trivial example.

2.1 Computational Model

In contrast to random-access main memory, disks have extremely long access times. In order to
amortize this access time over a large amount of data, a typical disk reads or writes a large block of
contiguous data at once. To model the behavior of I/O systems, Aggarwal and Vitter [3] proposed
the following parameters:

N = # of items in the problem instance

M = # of items that can fit into main memory

B = # of items per disk block

whereM < N and1 � B ≤ M/21. Each I/O operation reads or writes one disk block, i.e.,
B items of data. Since I/O operations are much slower (typically two to three orders of magni-
tude) than main-memory accesses or CPU computations, the measure of performance for external-
memory algorithms is the number of I/O operations performed; this is the standard notion ofI/O
complexity[3]. For example, reading all of the input data requiresN/B I/O’s. Depending on the
size of the data items, typical values for workstations and file servers in production today are on

1An additional parameter,D, denoting the number of disks, was also introduced in [3] to model parallel disks.
Here we consider the standard single disk model, i.e.,D = 1, and ignore the parameterD. It is common to do so in
the literature of external-memory algorithms.



the order ofM = 106 to M = 108 andB = 102 to B = 103. Large-scale problem instances can
be in the rangeN = 1010 to N = 1012.

We remark that sequentially scanning through the entire data takesΘ(N
B

) I/O’s, which is con-
sidered as thelinear bound, and external sorting takesΘ(N

B
logM

B

N
B

) I/O’s [3] (see also Sec. 2.2.1),
which is considered as thesortingbound. It is very important to observe that randomly accessing
the entire data, one item at a time, takesΘ(N) I/O’s in the worst case and is much more inefficient
than an external sorting in practice. To see this, consider the sorting bound: sinceM/B is large,
the termlogM

B

N
B

is much smaller than the termB, and hence the sorting bound is much smaller
thanΘ(N) in practice. In Sec. 2.2.2, we review a technique for a problem that greatly improves
the I/O bound fromΩ(N) to the sorting bound.

2.2 Batched Computations

2.2.1 External Merge Sort

Sorting is a fundamental procedure that is necessary for a wide range of computational tasks. Here
we review the external merge sort [3] under the computational model [3] presented in Sec. 2.1.

The external merge sort is ak-way merge sort, wherek is chosen to beM/B, the maximum
number of disk blocks that can fit in main memory. It will be clear later for this choice. The input
is a list ofN items stored in contiguous places in disk, and the output will be a sorted list ofN
items, again in contiguous places in disk.

The algorithm is a recursive procedure as follows. In each recursion, if the current listL of
items is small enough to fit in main memory, then we read this entire list into main memory, sort
it, and write it back to disk in contiguous places. If the listL is too large to fit in main memory,
then we splitL into k sub-lists of equal size, sort each sub-list recursively, and then merge all
sorted sub-lists into a single sorted list. The major portion of the algorithm is how to merge the
k sorted sub-lists in an I/O-optimal way. Notice that each sub-list may also be too large to fit in
main memory. Rather than reading one item from each sub-list for merging, we readone blockof
items from each sub-list into main memory each time. We usek blocks of main memory, each as
a1-block bufferfor a sub-list, to hold each block read from the sub-lists. Initially the first block of
each sub-list is read into its buffer. We then perform merging on items in thek buffers, where each
buffer is already sorted, and output sorted items, as results of merging, to disk, written in units
of blocks. When some buffer is exhausted, the next block of the corresponding sub-list is read
into main memory to fill up that buffer. This process continues until allk sub-lists are completely
merged. It is easy to see that mergingk sub-lists of total size|L| takesO(|L|/B) I/O’s, which is
optimal—the same I/O bound as reading and writing all sub-lists once.

To analyze the overall I/O complexity, we note that the recursive procedure corresponds to a
k-ary tree (rather than a binary tree as in the two-way merge sort). In each level of recursion,
the total size of list(s) involved isN items, and hence the total number of I/O’s used per level is
O(N/B). Moreover, there areO(logk

N
B

) levels, since the initial list hasN/B blocks and going
down each level reduces the (sub-)list size by a factor of1/k. Therefore, the overall complexity
is O(N

B
logk

N
B

) I/O’s. We want to maximizek to optimize the I/O bound, and the maximum
number of 1-block buffers in main memory isM/B. By takingk = M/B, we get the bound of



O(N
B

logM
B

N
B

) I/O’s, which is optimal2 [3].
Note the technique of using a 1-block buffer in main memory for each sub-list that is larger

than main memory in the above merging step. This has lead to thedistribution sweepalgorithm
developed in Goodrich et al. [46] and implemented and experimented in Chiang [15] for the 2D
orthogonal segment intersection problem, as well as the generalscan and distributeparadigm
developed by Chiang and Silva [18] and Chiang et al. [20] to build theI/O interval tree[6] used
in [18] and thebinary-blocked I/O interval tree(the BBIO tree for short) developed and used
in [20], for out-of-core isosurface extraction. This scan and distribute paradigm enables them to
perform preprocessing to build these trees (as well as themetablock tree[53]) in an I/O-optimal
way; see Chiang and Silva [19] for a complete review of these data structures and techniques.

2.2.2 Out-of-Core Pointer De-Referencing

Typical input datasets in scientific visualization and computer graphics are given in compactin-
dexedforms. For example, scalar-field irregular-grid volume datasets are usually represented as
tetrahedra meshes. The input has a list of vertices, where each vertex appears exactly once and
each vertex entry contains itsx-, y-, z- and scalar values, and a list of tetrahedral cells, where each
cell entry contains pointers/indices to its vertices in the vertex list. We refer to this as theindex cell
set (ICS)format. Similarly, in anindexed triangle mesh, the input has a list of vertices containing
the vertex coordinates and a list of triangles containing pointers/indices to the corresponding vertex
entries in the vertex list.

The very basic operation in many tasks of processing the datasets is to be able to traverse all the
tetrahedral or triangular cells and obtain the vertex information of each cell. While this is trivial
if the entire vertex list fits in main memory—we can just follow the vertex pointers and perform
pointer de-referencing, it is far from straightforward to carry out the task efficiently in the out-
of-core setting where the vertex list or both lists do not fit. Observe that following the pointers
results in random accesses in disk, which is very inefficient: since each I/O operation reads/writes
an entire disk block, we have to read an entire disk block ofB items into main memory in order
to just access a single item in that block, whereB is usually in the order of hundreds. Suppose the
vertex and cell lists haveN items in total, then this would requireΩ(N) I/O’s in the worst case,
which is highly inefficient.

An I/O-efficient technique to perform pointer de-referencing is to replace (or augment) each
vertex pointer/index of each cell with the corresponding direct vertex information (coordinates,
plus the scalar value in case of volumetric data); this is thenormalizationprocess developed in
Chiang and Silva [18], carried out I/O-efficiently in [18] by applying the technique of Chiang [14,
Chapter 4] and Chiang et al. [17] as follows. In the first pass, we externally sort the cells in the
cell list, using as the key for each cell the index (pointer) to the first vertex of the cell, so that the
cells whose first vertices are the same are grouped together, with the first group having vertex 1 as
the first vertex, the second group having vertex 2 as the first vertex, and so on. Then by scanning
through the vertex list (already in the order of vertex 1, vertex 2, etc. from input) and the cell list
simultaneously, we can easily fill in the direct information of the first vertex of each cell in the cell
list in a sequential manner. In the second pass, we sort the cell list by the indices to the second
vertices, and fill in the direct information of the second vertex of each cell in the same way. By

2A matching lower bound is shown in [3].



repeating the process for each vertex of the cells, we obtain the direct vertex information for all
vertices of each cell. Actually, each pass is ajoint operation (commonly used in database), using
the vertex ID’s (the vertex indices) as the key on both the cell list and the vertex list. In each
pass, we useO(N

B
logM

B

N
B

) I/O’s for sorting plusO(N/B) I/O’s for scanning and filling in the
information, and we perform three or four passes depending on the number of vertices per cell (a
triangle or tetrahedron). The overall I/O complexity isO(N

B
logM

B

N
B

), which is far more efficient
thanΩ(N) I/O’s.

The above out-of-core pointer de-referencing has been used in [18, 20] in the context of out-
of-core isosurface extraction, as well as in [33, 61] in the context of out-of-core simplification of
polygonal models. We believe that this is a very fundamental and powerful technique that will be
essential for many other problems in out-of-core scientific visualization and computer graphics.

2.2.3 The Meta-Cell Technique

While the abovenormalizationprocess (replacing vertex indices with direct vertex information)
enables us to process indexed input format I/O-efficiently, it is most suitable forintermediate
computations, and not for afinal databaseor final data representationstored in disk for on-line
computations, since the disk space overhead is large—the direct vertex information is duplicated
many times, once per cell sharing the vertex.

Aiming at optimizing both disk-access cost and disk-space requirement, Chiang et al. [20] de-
veloped themeta-celltechnique, which is essentially an I/O-efficient partition scheme for irregular-
grid volume datasets (partitioning regular grids is a much simpler task, and can be easily carried out
by a greatly simplified version of the meta-cell technique). The resulting partition is similar to the
one induced by ak-d-tree [10], but there is no need to compute the multiple levels. The meta-cell
technique has been used in Chiang et al. [20] for out-of-core isosurface extraction, in Farias and
Silva [39] for out-of-core volume rendering, and in Chiang et al. [16] for a unified infrastructure
for parallel out-of-core isosurface extraction and volume rendering of unstructured grids.

Now we review the meta-cell technique. Assume the input dataset is a tetrahedral mesh given
in theindex cell set (ICS)format consisting of a vertex list and a cell list as described in Sec. 2.2.2.
We cluster spatially neighboring cells together to form a meta-cell. Each meta-cell is roughly of the
same storage size, usually in a multiple of disk blocks and always able to fit in main memory. Each
meta-cell hasself-containedinformation and is always read as a whole from disk to main memory.
Therefore, we can use the compact ICS representation for each meta-cell, namely a local vertex
list and a local cell list which contains pointers to the local vertex list. In this way, a vertex shared
by many cells in the same meta-cell is stored justoncein that meta-cell. The only duplications of
vertex information occur when a vertex belongs to two cells in different meta-cells; in this case we
let both meta-cells include that vertex in their vertex lists to make each meta-cell self-contained.

The meta-cells are constructed as follows. First, we use an external sorting to sort all vertices
by their x-values, and partition them evenly intok chunks, wherek is a parameter that can be
adjusted. Then, for each of thek chunks, we externally sort the vertices by they-values and again
partition them evenly intok chunks. Finally, we repeat for thez-values. We now havek3 chunks,
each having about the same number of vertices. Each final chunk corresponds to a meta-cell,
whose vertices are the vertices of the chunk (plus some additional vertices duplicated from other
chunks; see below). A cell with all vertices in the same meta-cell is assigned to that meta-cell;



if the vertices of a cell belong to different meta-cells, then a voting scheme is used to assign the
cell to a single meta-cell, and the missing vertices are duplicated into the meta-cell that owns this
cell. We then construct the local vertex list and the local cell list for each meta-cell. Recall that
k is a parameter and we havek3 meta-cells in the end. Whenk is larger, we have more meta-cell
boundaries and the number of duplicated vertices is larger (due to more cells crossing the meta-
cell boundaries). On the other hand, having a largerk means each meta-cell is more refined and
contains less information, and thus disk read of a meta-cell is faster (fewer number of disk blocks
to read). Therefore, the meta-cell technique usually leads to a trade-off between query time and
disk space.

The out-of-core pointer de-referencing technique (or thejoint operation) described in Sec. 2.2.2
is essential in various steps of the meta-cell technique. For example, to perform the voting scheme
to assign cells to meta-cells, we need to know, for each cell, the destination meta-cells of its
vertices. Recall that in the input cell list, each cell only has the indices (vertex ID’s) to the vertex
list. When we obtaink3 chunks of vertices, we assign the vertices to thesek3 meta-cells by
generating a list of tuples(vid,mid), meaning that vertexvid is assigned to meta-cellmid. Then
a joint operation using vertex ID’s as the key on this list and the cell list completes the task by
replacing each vertex ID in each cell with the destination meta-cell ID of the vertex. There are
other steps involving thejoint operation; we refer to [20] for a complete description of the meta-
cell technique. Overall, meta-cells can be constructed by performing a few external sortings and a
few joint operations, and hence the total I/O complexity isO(N

B
logM

B

N
B

) I/O’s.

2.3 On-Line Computations: B-Trees and B-Tree-Like Data Structures

Tree-based data structures arise naturally in the on-line setting, since data items are stored sorted
and queries can typically be performed by efficient searches on the trees. The well-known balanced
multiwayB-tree[9,26] (see also [27, Chapter 18]) is the most widely used data structure in external
memory. Each tree node corresponds to one disk block, capable of holding up toB items. The
branching factor, Bf, defined as the number of children of each internal node, isΘ(B) (except
for the root); this guarantees that the height of a B-tree storingN items isO(logB N) and hence
searching an item takes optimalO(logB N) I/O’s. Other dynamic dictionary operations, such as
insertion and deletion of an item, can be performed in optimalO(logB N) I/O’s each, and the space
requirement is optimalO(N/B) disk blocks.

Typical trees in main memory have branching factor 2 (binary tree) or some small constant
(e.g., 8 for an octree), and each node stores a small constant number of data items. If we directly
map such a tree to external memory, then we get asub-optimaldisk layout for the tree: accessing
each tree node takes one I/O, in which we read an entire block ofB items just to access a constant
number of items of the node in the block. Therefore, it is desirable toexternalizethe data structure,
converting the tree into aB-tree-likedata structure, namely, to increase the branching factor from
2 (or a small constant) toΘ(B) so that the height of a balanced tree is reduced fromO(log N) to
O(logB N), and also to increase the number of items stored in each node fromO(1) to Θ(B).

A simple and general method to externalize a tree of constant branching factor is as follows.
We block a subtree ofΘ(log B) levels of the original tree intoone nodeof the new tree (see Fig. 1
on page 9), so that the branching factor is increased toΘ(B) and each new tree node storesΘ(B)
items, where each new tree node corresponds to one disk block. This is the basic idea of the BBIO



tree of Chiang et al. [19, 20] to externalize the interval tree [32] for out-of-core isosurface extrac-
tion, and of themeta-block treeof El-Sana and Chiang [33] to externalize the view-dependence
tree [36] for external memory view-dependent simplification and rendering. We believe that this
externalization method is general and powerful enough to be applicable to a wide range of other
problems in out-of-core scientific visualization and graphics.

We remark that the interval tree [32] is more difficult to externalize than the view-dependence
tree [36]. When we visit a node of the view-dependence tree, we access all information stored in
that node. In contrast, each internal node in the interval tree hassecondary listsas secondary search
structures, and the optimal query performance relies on the fact that searching on the secondary
lists can be performed in anoutput-sensitiveway—the secondary lists should not be visited entirely
if not all items are reported as answers to the query. In the rest of this section, we review the BBIO
tree as a non-trivial example of the externalization method.

2.3.1 The Binary-Blocked I/O Interval Tree (BBIO Tree)

Thebinary-blocked I/O interval tree(BBIO tree) of Chiang et al. [19, 20] is an external-memory
extension of the (main-memory) binary interval tree [32]. As will be seen in Sec. 3, the process
of finding active cellsin isosurface extraction can be reduced to the following problem ofinterval
stabbing queries[22]: given a set ofN intervals in 1D, build a data structure so that for a given
query pointq we can efficiently report all intervals containingq. Such interval stabbing queries can
be optimally solved in main memory using the interval tree [32], withO(N) space,O(N log N)
preprocessing time (the same bound as sorting) andO(log N + K) query time, whereK is the
number of intervals reported; all bounds are optimal in terms of main-memory computation. The
BBIO tree achieves the optimal performance in external-memory computation:O(N/B) blocks
of disk space,O(logB N + K

B
) I/O’s for each query, andO(N

B
logM

B

N
B

) I/O’s (the same bound as
external sorting) for preprocessing. In addition, insertion and deletion of intervals can be supported
in O(logB N) I/O’s each. All these bounds are I/O-optimal.

We remark that theI/O interval treeof Arge and Vitter [6] is the first external-memory version
of the main-memory interval tree [32] achieving the above optimal I/O-bounds, and is used in
Chiang and Silva [18] for the first work on out-of-core isosurface extraction. Comparing the BBIO
tree with the I/O interval tree, the BBIO tree has only two kinds of secondary lists (the same as the
original interval tree [32]) rather than three kinds, and hence the disk space is reduced by a factor
of 2/3 in practice. Also, the branching factor isΘ(B) rather thanΘ(

√
B) and hence the tree height

is halved. The tree structure is simpler; it is easier to implement, also for handling degenerate
cases.

Here we only review the data structure and the query algorithm of the BBIO tree; the prepro-
cessing is performed by thescan and distributeparadigm mentioned at the end of Sec. 2.2.1 and is
described in [19,20]. The algorithms for insertions and deletions of intervals are detailed in [19].

2.3.1.1 Review: the Binary Interval Tree
We first review the main-memory binary interval tree [32]. Given a set ofN intervals, such interval
treeT is defined recursively as follows. If there is only one interval, then the current noder is a leaf
containing that interval. Otherwise,r stores as a key the median valuem that partitions the interval
endpoints into two slabs, each having the same number of endpoints that are smaller (resp. larger)



Figure 1: Intuition of a binary-blocked I/O interval tree (BBIO tree)T : each circle is a node in the
binary interval treeT , and each rectangle, which blocks a subtree ofT , is a node ofT .

thanm. The intervals that containm are assigned to the noder. The intervals with both endpoints
smaller thanm are assigned to the left slab; similarly, the intervals with both endpoints larger than
m are assigned to the right slab. The left and right subtrees ofr are recursively defined as the
interval trees on the intervals in the left and right slabs, respectively. In addition, each internal
nodeu of T has two secondary lists: theleft list, which stores the intervals assigned tou, sorted
in increasing left endpoint values, and theright list, which stores the same set of intervals, sorted
in decreasing right endpoint values. It is easy to see that the tree height isO(log2 N). Also, each
interval is assigned to exactly one node, and is stored either twice (when assigned to an internal
node) or once (when assigned to a leaf), and thus the overall space isO(N).

To perform a query for a query pointq, we apply the following recursive process starting from
the root ofT . For the current nodeu, if q lies in the left slab ofu, we check the left list of
u, reporting the intervals sequentially from the list until the first interval is reached whose left
endpoint value is larger thanq. At this point we stop checking the left list since the remaining
intervals are all to the right ofq and cannot containq. We then visit the left child ofu and perform
the same process recursively. Ifq lies in the right slab ofu then we check the right list in a similar
way and then visit the right child ofu recursively. It is easy to see that the query time is optimal
O(log2 N + K), whereK is the number of intervals reported.

2.3.1.2 Data Structure
Now we review the BBIO tree, denoted byT , and recall that the binary interval tree is denoted
by T . Each node inT is one disk block, capable of holdingB items. We want to increase the
branching factorBf so that the tree height isO(logB N). The intuition is very simple—weblock
a subtree of the binary interval treeT into one node ofT (see Fig. 1), as described in the general
externalization method presented in the beginning of Sec. 2.3. In the following, we refer to the
nodes ofT assmall nodes. We take the branching factorBf to beΘ(B). In an internal node ofT ,
there areBf − 1 small nodes, each having a key, a pointer to its left list and a pointer to its right
list, where all left and right lists are stored in disk.

Now we give a more formal definition of the treeT . First, we sort allleft endpoints of theN
intervals in increasing order from left to right, into a setE. We use interval ID’s to break ties. The
setE is used to define the keys in small nodes. The BBIO treeT is recursively defined as follows.
If there are no more thanB intervals, then the current nodeu is a leaf node storing all intervals.
Otherwise,u is an internal node. We takeBf − 1 median values fromE, which partitionE into
Bf slabs, each with the same number of endpoints. We store sorted, in non-decreasing order, these
Bf − 1 median values in the nodeu, which serve as the keys of theBf − 1 small nodes inu. We



implicitly build a subtree ofT on theseBf− 1 small nodes, by abinary-search schemeas follows.
The root key is the median of theBf − 1 sorted keys, the key of the left child of the root is the
median of the lower half keys, and the right-child key is the median of the upper half keys, and so
on. Now consider the intervals. The intervals that contain one or more keys ofu are assigned tou.
In fact, each such intervalI is assigned to thehighestsmall node (in the subtree ofT in u) whose
key is contained inI; we storeI in the corresponding left and right lists of that small node inu.
For the remaining intervals that are not assigned tou, each has both endpoints in the same slab and
is assigned to that slab; recall that there areBf slabs induced by theBf − 1 keys stored inu. We
recursively define theBf subtrees of the nodeu as the BBIO trees on the intervals in theBf slabs.
Notice that with the above binary-search scheme for implicitly building a (sub)tree of small nodes
on the keys stored in an internal nodeu of T , Bf does not need to be a power of 2—we can make
Bf as large as possible, as long as theBf− 1 keys, the2(Bf− 1) pointers to the left and right lists,
and theBf pointers to the children, etc., can all fit into one disk block.

It is easy to see thatT has heightO(logB N): T is defined on the setE with N left endpoints,
and is perfectly balanced withBf = Θ(B). To analyze the space complexity, observe that there
are no more thanN/B leaves and thusO(N/B) disk blocks for the tree nodes ofT . For the
secondary lists, as in the binary interval treeT , each interval is stored either once or twice. The
only issue is that a left (right) list may have very few (<< B) intervals but still needs one disk
block for storage. We observe that an internal nodeu has2(Bf− 1) left plus right lists,i.e., at most
O(Bf) suchunderfullblocks. Butu also hasBf children, and thus the number of underfull blocks
is no more than a constant factor of the number of child blocks—counting only the number of tree
nodes suffices to take into account also the number of underfull blocks, up to some constant factor.
Therefore the overall space complexity is optimalO(N/B) disk blocks.

As we shall see in Sec. 2.3.1.3, the above data structure supports queries in non-optimal
O(log2

N
B

+ K/B) I/O’s (whereK is the number of intervals reported), and we can use thecorner
structures[53] to achieve optimalO(logB N + K/B) I/O’s while keeping the space complexity
optimal.

2.3.1.3 Query Algorithm
The query algorithm for the BBIO treeT is very simple and mimics the query algorithm for the
binary interval treeT . Given a query pointq, we perform the following recursive process starting
from the root ofT . For the current nodeu, we readu from disk. Now consider the subtreeTu

implicitly built on the small nodes inu by the binary-search scheme. Using the same binary-search
scheme, we follow a root-to-leaf path inTu. Let r be the current small node ofTu being visited,
with key valuem. If q = m, then we report all intervals in the left (or equivalently, right) list of
r and stop. (We can stop here for the following reasons. (1) Even some descendent ofr has the
same key valuem, such descendent must have empty left and right lists, since if there are intervals
containingm, they must be assigned tor (or some small node higher thanr) before being assigned
to that descendent. (2) For any non-empty descendent ofr, the stored intervals are either entirely
to the left or entirely to the right ofm = q, and thus cannot containq.) If q < m, we scan and
report the intervals in the left list ofr, until the first interval with the left endpoint larger thanq is
encountered. Recall that the left lists are sorted by increasing left endpoint values. After that, we
proceed to the left child ofr in Tu. Similarly, if q > m, we scan and report the intervals in the
right list of r, until the first interval with the right endpoint smaller thanq is encountered. Then



we proceed to the right child ofr in Tu. At the end, ifq is not equal to any key inTu, the binary
search on theBf− 1 keys locatesq in one of theBf slabs. We then visit the child node ofu in T
which corresponds to that slab, and apply the same process recursively. Finally, when we reach a
leaf node ofT , we check theO(B) intervals stored to report those that containq, and stop.

Since the height of the treeT is O(logB N), we only visitO(logB N) nodes ofT . We also
visit the left and right lists for reporting intervals. Since we always report the intervals in an
output-sensitiveway, this reporting cost is roughlyO(K/B), whereK is the number of intervals
reported. However, it is possible that we spend one I/O to read the first block of a left/right list
but only very few (<< B) intervals are reported. In the worst case, all left/right lists visited result
in suchunderfull reported blocksand this I/O cost isO(log2

N
B

), because we visit one left or right
list per small node and the total number of small nodes visited isO(log2

N
B

) (this is the height of
the balanced binary interval treeT obtained by “concatenating” the small-node subtreesTu’s in all
internal nodesu’s of T ). Therefore the overall worst-case I/O cost isO(log2

N
B

+ K/B).
We can improve the worst-case I/O query bound. The idea is to check a left/right list of a

small node from diskonly whenit is guaranteed that at leastone full blockis reported from that
list; the underfull reported blocks of a nodeu of T are collectively taken care of by an additional
corner structure[53] associated withu. A corner structure can storet intervals in optimal space of
O(t/B) disk blocks, wheret is restricted to be at mostO(B2), so that an interval stabbing query
can be answered in optimalO(k/B+1) I/O’s, wherek is the number of intervals reported from the
corner structure. Assuming allt intervals can fit in main memory during preprocessing, a corner
structure can be built in optimalO(t/B) I/O’s. We refer to [53] for a complete description of the
corner structure.

We incorporate the corner structure into the BBIO treeT as follows. For each internal nodeu
of T , we remove the first block from each left and right lists of each small node inu, and collect
all these removed intervals (with duplications eliminated) into a single corner structure associated
with u; if a left/right list has no more thanB intervals then the list becomes empty. We also store
in u a “guarding value” for each left/right list ofu. For a left list, this guarding value is the smallest
left endpoint value among theremaining intervals still kept in the left list (i.e., the (B + 1)-st
smallest left endpoint value in theoriginal left list); for a right list, this value is the largest right
endpoint value among the remaining intervals kept (i.e., the(B + 1)-st largest right endpoint value
in theoriginal right list). Recall that each left list is sorted by increasing left endpoint values and
symmetrically for each right list. Observe thatu has2(Bf− 1) left and right lists andBf = Θ(B),
so there areΘ(B) lists in total, each contributing at most a block ofB intervals to the corner
structure ofu. Therefore, the corner structure ofu hasO(B2) intervals, satisfying the restriction
of the corner structure. Also, the overall space needed is still optimalO(N/B) disk blocks.

The query algorithm is basically the same as before, with the following modification. If the
current nodeu of T is an internal node, then we first query the corner structure ofu. A left list of
u is checked from disk only when the query value q is larger than or equal to the guarding value
of that list; similarly for the right list. In this way, although a left/right list might be checked using
one I/O to report very few (<< B) intervals, it is ensured that in this case theoriginal first blockof
that list is also reported, from the corner structure ofu. Therefore we can charge this one underfull
I/O cost to the one I/O cost needed to report such first full block (i.e., reporting the first full block
needs one I/O; we can multiply this one I/O cost by 2, so that the additional one I/O can be used to
pay for the one I/O cost of the underfull block). This means that the overall underfull I/O cost can



be charged to theK/B term of the reporting cost (with some constant factor), so that the overall
query cost is optimalO(logB N + K/B) I/O’s.

3 SCIENTIFIC VISUALIZATION

Here, we review out-of-core work done in the area of scientific visualization. In particular, we
cover recent work in I/O-efficient volume rendering, isosurface computation, and streamline com-
putation. Since 1997, this area of research has advanced considerably, although it is still an active
research area. The techniques described below make it possible to perform basic visualization
techniques on large datasets. Unfortunately, some of the techniques have substantial disk and time
overhead. Also, often the original format of the data is not suited for visualization tasks, leading
to expensive pre-processing steps, which often require some form of data replication. Few of the
techniques described below are suited for interactive use, and the development of multi-resolution
approaches that would allow for scalable visualization techniques is still an elusive goal.

Cox and Ellsworth [29] propose a framework for out-of-core scientific visualization systems
based on application-controlled demand paging. The paper builds on the fact that many impor-
tant visualization tasks (including computing streamlines, streaklines, particle traces, and cutting
planes) only need touch a small portion of large datasets at a time. Thus, the authors realize that
it should be possible topage inthe necessary data on demand. Unfortunately, as the paper shows,
the operating system paging sub-system is not effective for such visualization tasks, and leads to
inferior performance. Based on these premises and observations, the authors propose a set of I/O
optimizations that lead to substantial improvements in computation times. The authors modified
the I/O subsystem of the visualization applications to explicitly take into account the read and
caching operations. Cox and Ellsworth report on several effective optimizations. First, they show
that controlling the page size, in particular using page sizes smaller than those used by the oper-
ating system, leads to improved performance since using larger page sizes leads to wasted space
in main memory. The second main optimization is to load data in alternative storage format (i.e.,
3-dimensional data stored in sub-cubes), which more naturally captures the natural shape of under-
lying scientific data. Furthermore, their experiments show that the same techniques are effective
for remote visualization, since less data needs to be transmitted over the network and cached at the
client machine.

Ueng et al. [81] present a related approach. In their work Ueng et al. focussed on computing
streamlines of large unstructured grids, and they use an approach somewhat similar to Cox and
Ellsworth in that the idea is to perform on-demand loading of the data necessary to compute a
given streamline. Instead of changing the way the operating system handles the I/O, these authors
decide to modify the organization of the actual data on disk, and to come up with optimized code
for the task at hand. They use an octree partition to restructure unstructured grids to optimize the
computation of streamlines. Their approach involves a preprocessing step, which builds an octree
that is used to partition the unstructured cells in disk, and an interactive step, which computes the
streamlines by loading the octree cells on demand. In their work, they propose a top-down out-
of-core preprocessing algorithm for building the octree. Their algorithm is based on propagating
the cell (tetrahedra) insertions on the octree from the root to the leaves in phases. In each phase
(recursively), octree nodes that need to be subdivided create their children and distribute the cells



among them based on the fact that cells are contained inside the octree node. Each cell is replicated
on the octree nodes that it would potentially intersect. For the actual streamline computation, their
system allows for the concurrent computation of mutliple streamlines at the same time based on
user input. It uses a multi-threaded architecture with a set of streamline objects, three scheduling
queue (wait, ready, and finished), free memory pool and a table of loaded octants.

Leutenegger and Ma [58] propose to use R-trees [47] to optimize searching operations on large
unstructured datasets. They arge that octrees (such as those used by Ueng et al. [81]) are not suited
for storing unstructured data because of imbalance in the structure of such data making it hard to
efficiently pack the octree in disk. Furthermore, they also argue that the low fan-out of octrees leads
to a large number of internal nodes, which force applications into many unnecessary I/O fetches.
Leutenegger and Ma use an R-tree for storing tetrahedral data, and present experiemntal results of
their method on the implementation of a multi-resolution splatting-based volume renderer.

Pascucci and Frank [66] describe a scheme for defining hierarchical indices over very large
regular grids that leads to efficient disk data layout. Their approach is based on the use of a space-
filling curve for defining the data layout and indexing. In particular, they propose an indexing
scheme for the Lebesgue Curve which can be simply and efficient computed by using bit masking,
shifting, and addition. They show the usefulness of their approach in a progresive (real-time)
slicing application which exploits their indexing framework for the multi-resolution computation
of arbitrary slices of very large datasets (one example in the paper has approximately one half tera
nodes).

Bruckschen et al. [13] describes a technique for real-time particle traces of large time-varying
datasets. They argue that it is not possible to perform this computation in real-time on demand, and
propose a solution where the basic idea is to pre-compute the traces from fixed positions located
on a regular grid, and to save the results for efficient disk access in a way similar to Pascucci and
Frank [66]. Their system has two main components, a particle tracer and encoder, which runs as
a preprocessing step, and a renderer, which interactively reads the precomputed particle traces.
Their particle tracer computes traces for a whole sequence of time steps by considering the data in
blocks. It works by injectign particles at grid locations and computing their new positions until the
particles have left the currrent block.

Chiang and Silva [18, 20] proposed algorithms for out-of-core isosurface generation of un-
structured grids. Isosurface generation can be seen as an interval stabbing problem [22] as follows:
first, for each cell, produce an intervalI = [min, max] wheremin andmax are the minimum and
maximum among the scalar values of the vertices of the cell. Then a cell is active if and only
if its interval contains the isovalueq. This reduces the active-cell searching problem to that of
interval search: given a set of intervals in 1D, build a data structure to efficiently report all in-
tervals containing a query pointq. Secondly, the interval search problem is solved optimally by
using the main-memory interval tree [32]. The firstout-of-coreisosurface technique was given
by Chiang and Silva [18]. They follow the ideas of Cignoni et al. [22], but use the I/O-optimal
interval tree [6] to solve the interval search problem. An interesting aspect of the work is that even
the preprocessing is assumed to be performed completely on a machine with limited main mem-
ory. With this technique, datasets much larger than main memory can be visualized efficiently.
Though this technique is quite fast in terms of actually computing the isosurfaces, the associated
disk and preprocessing overhead is substantial. Later, Chiang et al. [20] further improved (i.e.,
reduced) the disk space overhead and the preprocessing time of Chiang and Silva [18], at the cost



of slightly increasing the isosurface query time, by developing atwo-levelindexing scheme, the
meta-celltechnique, and theBBIO tree which is used to index the meta-cells. A meta-cell is simply
a collection of contiguous cells, which is saved together for fast disk access.

Along the same lines, Sulatycke and Ghose [76] describe an extension of Cignoni et al. [22] for
out-of-core isosurface extraction. Their work does not propose an optimal extension, but instead
proposes a scheme that simply adapts the in-core data structure to an out-of-core setting. The
authors also describe a multi-threaded implementation that aims to hide the disk I/O overhead by
overlapping computation with I/O. Basically, the authors have an I/O thread that reads the active
cells from disk, and several isosurface computation threads. Experimental results on relatively
small regular grids are given in the paper.

Bajaj et al. [8] also proposes a technique for out-of-core isosurface extraction. Their technique
is an extension of theirseed-based technique for efficient isosurface extraction [7]. The seed-based
approach works by saving a small set of seed cells, which can be used as starting points for an
arbitrary isosurface by simple contour propagation. In the out-of-core adaptation, the basic idea
is to separate the cells along the functional value, storing ranges of contiguous ranges together
in disk. In their paper, the authors also describe how to parallelize their algorithm, and show the
performance of their techniques using large regular grids.

Sutton and Hansen [77] propose the T-BON (Temporal Branch-On-Need Octree) technique for
fast extraction of isosurfaces of time-varying datasets. The preprocessing phase of their technique
builds a branch-on-need octree [86] for each time step and stores it to disk in two parts. One part
contains the structure of the octree and does not depend at all on the specific time step. Time-
step specific data is saved separately (including the extreme values). During querying, the tree
is recursively traversed, taking into account the query timestep and isovalue, and brought into
memory until all the information (including all the cell data) has been read. Then, a second pass
is performed to actually compute the isosurface. Their technique also uses meta-cells (or data
bricking) [20] to optimize the I/O transfers.

Shen et al. [74] proposes a different encoding for time-varying datasets. Their TSP (Time-
Space Partioning) tree encodes in a single data structure the changes from one time-step to another.
Each node of the octree has not only a spatial extend, but also a time interval. If the data changes
in time, a node is refined by its children, which refine the changes on the data, and is annotated
with its valid time range. They use the TSP tree to perform out-of-core volume rendering of large
volumes. One of the nice properties is that because of its encoding, it is possible to very efficiently
page the data in from disk when rendering time sequences.

Farias and Silva [39] presents a set of techniques for the direct volume rendering of arbitrarily
large unstructured grids on machines with limited memory. One of the techniques described in
the paper is a memory-insensitive approach which works by traversing each cell in the dataset,
one at a time, sampling its ray span (in general a ray would intersect a convex cell twice) and
saving twofragmententries per cell and pixel covered. The algorithm then performs an external
sort using the pixel as the primary key, and the depth of the fragment as the secondary key, which
leads to the correct ray stabbing order that exactly captures the information necessary to perform
the rendering. The other technique described is more involved (but more efficient) and involves
extending the ZWEEP algorithm [38] to an out-of-core setting.

The main idea of the (in-core) ZSWEEP algorithm is to sweep the data with a plane parallel to
the viewing plane in order of increasingz, projectingthe faces of cells that are incident to vertices



as they are encountered by the sweep plane. ZSWEEP’s face projection consists of computing
the intersection of the ray emanating from each pixel, and store theirz-value, and other auxiliary
information, insortedorder in a list of intersections for the given pixel. The actual lighting calcu-
lations are deferred to a later phase. Compositing is performed as the “target Z” plane is reached.
This algorithm exploits the implicit (approximate) global ordering that thez-ordering of the ver-
tices induces on the cells that are incident on them, thus leading to only a very small number of
ray intersection are done out of order; and the use of early compositing which makes the memory
footprint of the algorithm quite small. There are two sources of main memory usage in ZSWEEP:
the pixel intersection lists, and the actual dataset. The basic idea in the out-of-core technique is
to break the dataset into chunks of fixed size (using ideas of the meta-cell work described in Chi-
ang et al. [20]), which can be rendered independently without using more than a constant amount of
memory. To further limit the amount of memory necessary, their algorithm subdivides the screen
into tiles, and for each tile, which are rendered in chunks that project into it in a front-to-back
order, thus enabling the exact same optimizations which can be used with the in-core ZSWEEP
algorithm.

4 SURFACE SIMPLIFICATION

In this section we review recent work on out-of-core simplification. In particular, we will focus
on methods for simplifying largetriangle meshes, as these are the most common surface rep-
resentation for computer graphics. As data sets have grown rapidly in recent years, out-of-core
simplification has become an increasingly important tool for dealing with large data. Indeed, many
conventional in-core algorithms for visualization, data analysis, geometric processing, etc., cannot
operate on today’s massive data sets, and are furthermore difficult to extend to work out of core.
Thus, simplification is needed to reduce the (often oversampled) data set so that it fits in main
memory. As we have already seen in previous sections, even though some methods have been
developed for out-of-core visualization and processing, handling billion-triangle meshes, such as
those produced by high resolution range scanning [59] and scientific simulations [65], is still chal-
lenging. Therefore many methods benefit from having either a reduced (albeit still large and ac-
curate) version of a surface, or having a multiresolution representation produced using out-of-core
simplification.

It is somewhat ironic that, whereas simplification has for a long time been relied upon for deal-
ing with complex meshes, for large enough data sets simplification itself becomes impractical, if
not impossible. Typical in-core simplification techniques, which require storing the entire full-
resolution mesh in main memory, can handle meshes on the order of a few million triangles on
current workstations; two to three orders of magnitude smaller than many data sets available to-
day. To address this problem, several techniques for out-of-core simplification have been proposed
recently, and we will here cover most of the methods published to date.

One reason why few algorithms exist for out-of-core simplification is that the majority of pre-
vious methods for in-core simplification are ill-suited to work in the out-of-core setting. The
prevailing approach to in-core simplification is to iteratively perform a sequence of local mesh
coarsening operations, e.g., edge collapse, vertex removal, face clustering, etc., that locally sim-
plify the mesh, e.g., by removing a single vertex. The order of operations performed is typically



atomic vertex clustering

iterative vertex pair contraction

Figure 2: Vertex clustering on a 2D uniform grid as a single atomic operation (top) and as multiple
pair contractions (bottom). The dashed lines represent the space-partitioning grid, while vertex
pairs are indicated using dotted lines. Note that spatial clustering can lead to significant topological
simplification.

determined by their impact on the quality of the mesh, as measured using some error metric, and
simplification then proceeds in a greedy fashion by always performing the operation that incurs the
lowest error. Typical error metrics are based on quantities such as mesh-to-mesh distance, local
curvature, triangle shape, valence, an so on. In order to evaluate (and re-evaluate) the metric and to
keep track of which simplices (i.e., vertices, edges, and triangles) to eliminate in each coarsening
operation, virtually all in-core simplification methods rely on direct access to information about the
connectivity (i.e., adjacency information) and geometry in a neighborhood around each simplex.
As a result, these methods require explicit data structures for maintaining connectivity, as well as a
priority queue of coarsening operations, which amounts toO(n) in-core storage for a mesh of size
n. Clearly this limits the size of models that can be simplified in core. Simply offloading the mesh
to disk and using virtual memory techniques for transparent access is seldom a realistic option, as
the poor locality of greedy simplification results in scattered accesses to the mesh and excessive
thrashing. For out-of-core simplification to be viable, such random accesses must be avoided at
all costs. As a result, many out-of-core methods make use of atriangle soupmesh representation,
where each triangle is represented independently as a triplet of vertex coordinates. In contrast,
most in-core methods use some form ofindexed meshrepresentation, where triangles are specified
as indices into a non-redundant list of vertices.

There are many different ways to simplify surfaces. Popular coarsening operations for tri-
angle meshes include vertex removal [72], edge collapse [52], half-edge collapse [57], triangle
collapse [48], vertex pair contraction [43], and vertex clustering [70]. While these operations vary



in complexity and generality, they all have one thing in common in that they partition the set of
vertices from the input mesh by grouping them into clusters (Figure 2).3 The simplified mesh
is formed by choosing a single vertex to represent each cluster (either by selecting one from the
input mesh or by computing a new, optimal position). For example, the edge collapse algorithm
conceptually forms a forest of binary trees (the clusters) in which each edge collapse corresponds
to merging two children into a single parent. Here the cluster representatives are the roots of the
binary trees. In the end, it matters little what coarsening operation is used since the set partition
uniquely defines the resulting connectivity, i.e., only those triangles whose vertices belong to three
different clusters “survive” the simplification. In this sense, mesh simplification can be reduced
to a set partioning problem, together with rules for choosing the position of each cluster’s repre-
sentative vertex, and we will examine how different out-of-core methods perform this partitioning.
Ideally the partitioning is done so as to minimize the given error measure, although because of
the complexity of this optimization problem heuristics are often used. There are currently two
distinct approaches to out-of-core simplification, based onspatial clusteringandsurface segmen-
tation. Within these two general categories, we will also distinguish betweenuniformandadaptive
partitioning. We describe different methods within these frameworks below, and conclude with a
comparison of these general techniques.

4.1 Spatial Clustering

Clustering decisions can be based on either the connectivity or the geometry of the mesh, or both.
Because computing and maintaining the connectivity of a large mesh out of core can often be a
difficult task in and of itself, perhaps the simplest approach to clustering vertices is based solely on
spatial partitioning. The main idea behind this technique is to partition the space that the surface
is embedded in, i.e.,R3, into simple convex 3D regions, and to merge the vertices of the input
mesh that fall in the same region. Because the mesh geometry is often specified in a Cartesian
coordinate system, the most straightforward space partitioning is given by a rectilinear grid (Fig-
ure 2). Rossignac and Borrel [70] used such a grid to cluster vertices in an in-core algorithm.
However, the metrics used in their algorithm rely on full connectivity information. In addition, a
ranking phase is needed in which the most “important” vertex in each cluster is identified, and their
method, as stated, is therefore not well suited for the out-of-core setting. Nevertheless, Rossignac
and Borrel’s original clustering algorithm is the basis for many of the out-of-core methods dis-
cussed below. We note that their algorithm makes use of a uniform grid to partition space, and we
will discuss out-of-core methods for uniform clustering first.

4.1.1 Uniform Spatial Clustering

To extend the clustering algorithm in [70] to the out-of-core setting, Lindstrom [60] proposed using
Garland and Heckbert’squadric error metric[43] to measure error. Lindstrom’s method, called
OoCS, works by scanning a triangle soup representation of the mesh, one triangle at a time, and
computing a quadric matrixQt for each trianglet. Using an in-core sparse grid representation (e.g.,
a dynamic hash table), the three vertices of a triangle are quickly mapped to their respective grid

3Technically vertex removal is a generalization of half-edge collapse with optional edge flipping. Due to its ability
to arbitrarily modify the connectivity, vertex removal does not produce a canonical partition of the set of vertices.



cells, andQt is then distributed to these cells. This depositing of quadric matrices is done for each
of the triangle’s vertices whether they belong to one, two, or three different clusters. However, as
mentioned earlier, only those triangles that span three different clusters survive the simplification,
and the remaining degenerate ones are not output. After each input triangle has been read, what
remains is a list of simplified triangles (specified as vertex indices) and a list of quadric matrices
for the occupied grid cells. For each quadric matrix, an optimal vertex position is computed that
minimizes the quadric error [43], and the resulting indexed mesh is then output.

Lindstrom’s algorithm runs in linear time in the size of the input and expected linear time in the
output. As such, the method is efficient both in theory and practice, and is able to process on the
order of a quarter million triangles per second on a typical PC. While the algorithm can simplify
arbitrarily large meshes, it requires enough core memory to store the simplified mesh, which limits
the accuracy of the output mesh. To overcome this limitation, Lindstrom and Silva [61] proposed
an extension of OoCS that performs all computations on disk, and that requires only a constant,
small amount of memory. Their approach is to replace all in-core random accesses to grid cells
(i.e., hash lookups and matrix updates) with coherent sequential disk accesses, by storing all infor-
mation associated with a grid cell together on disk. This is accomplished by first mapping vertices
to grid cells (as before) and writing partial per-cluster quadric information in the form of plane
equations to disk. This step is followed by a fast external sort (Section 2.2.1) on grid cell ID of
the quadric information, after which the sorted file is traversed sequentially and quadric matrices
are accumulated and converted to optimal vertex coordinates. Finally, three sequential scan-and-
replace steps, each involving an external sort, are performed on the list of output triangles, in which
cluster IDs are replaced with indices into the list of vertices.

Because of the use of spatial partitioning and quadric errors, no explicit connectivity informa-
tion is needed in [60,61]. In spite of this, the end result is identical to what Garland and Heckbert’s
edge collapse algorithm [43] would produce if the same vertex set partitioning were used. On
the downside, however, is that topological features such as surface boundaries and nonmanifold
edges, as well as geometric features such as sharp edges are not accounted for. To address this,
Lindstrom and Silva [61] suggested computing tangential errors in addition to errors normal to the
surface. These tangential errors cancel out for manifold edges in flat areas, but penalize devia-
tion from sharp edges and boundaries. As a result, boundary, nonmanifold, and sharp edges can
be accounted for without requiring explicit connectivity information. Another potential drawback
of connectivity oblivious simplification—and most non-iterative vertex clustering algorithms in
general—is that the topology of the surface is not necessarily preserved, and nonmanifold sim-
plices may even be introduced. On the other hand, for very large and complex surfaces, modest
topology simplification may be desirable or even necessary to remove noise and unimportant fea-
tures that would otherwise consume precious triangles.

4.1.2 Adaptive Spatial Clustering

The general spatial clustering algorithm discussed above does not require a rectilinear partitioning
of space. In fact, the 3D space-partitioning mesh does not even have to be conforming (i.e., without
cracks or T-junctions), nor do the cells themselves have to be convex or even connected (although
that may be preferable). Because the amount of detail often varies over a surface, it may be
desirable to adapt the grid cells to the surface shape, such that a larger number of smaller cells are



(a) Original (b) Edge collapse [62] (c) Uniform clustering [60]

Figure 3: Base of Happy Buddha model, simplified from 1.1 million to 16 thousand triangles.
Notice the jagged edges and notches in (c) caused by aliasing from using a coarse uniform grid.
Most of these artifacts are due to the geometry and connectivity “filtering” being decoupled, and
can be remedied by flipping edges.

used to partition detailed regions of the surface, while relatively larger cells can be used to cluster
vertices in flat regions.

The advantage of producing anadaptive partitionwas first demonstrated by Shaffer and Gar-
land in [73]. Their method makes two passes instead of one over the input mesh. The first pass is
similar to the OoCS algorithm [60], but in which a uniform grid is used to accumulate both primal
(distance-to-face) and dual (distance-to-vertex) quadric information. Based on this quadric infor-
mation, a principal component analysis (PCA) is performed that introduces split planes that better
partition the vertex clusters than the uniform grid. These split planes, which are organized hierar-
chically in a binary space partitioning (BSP) tree, are then used to cluster vertices in a second pass
over the input data. In addition to superior qualitative results over [60], Shaffer and Garland report
a 20% average reduction in error. These improvements come at the expense of higher memory
requirements and slower simplification speed.

In addition to storing the BSP-tree, a priority queue, and both primal and dual quadrics, Shaffer
and Garland’s method also requires a denser uniform grid (than [60]) in order to capture detailed
enough information to construct good split planes. This memory overhead can largely be avoided
by refining the grid adaptively via multiple passes over the input, as suggested by Fei et al. [40].
They propose uniform clustering as a first step, after which the resulting quadric matrices are ana-
lyzed to determine the locations of sharp creases and other surface details. This step is similar to
the PCA step in [73]. In each cell where higher resolution is needed, an additional split plane is
inserted, and another pass over the input is made (processing only triangles in refined cells). Fi-
nally, an edge collapse pass is made to further coarsen smooth regions by making use of the already
computed quadric matrices. A similar two-phase hybrid clustering and edge collapse method has
recently been proposed by Garland and Shaffer [44].

The uniform grid partitioning scheme is somewhat sensitive to translation and rotation of the
grid, and for coarse grids aliasing artifacts are common (see Figure 3). Inspired by work in image
and digital signal processing, Fei et al. [41] propose using two interleaved grids, offset by half a
grid cell in each direction, to combat such aliasing. They point out that detailed surface regions are
relatively more sensitive to grid translation, and by clustering the input on both grids and measuring
the local similarity of the two resulting meshes (again using quadric errors) they estimate the



amount of detail in each cell. Where there is a large amount of detail, simplified parts from both
meshes are merged in a retriangulation step. Contrary to [40,44,73], this semi-adaptive technique
requires only a single pass over the input.

4.2 Surface Segmentation

Spatial clustering fundamentally works by finely partitioning the space that the surface lies in. The
method ofsurface segmentation, on the other hand, partitions thesurfaceitself into pieces small
enough that they can be further processed independently in core. Each surface patch can thus be
simplified in core to a given level of error using a high quality simplification technique, such as
edge collapse, and the coarsened patches are then “stitched” back together. From a vertex set par-
tition standpoint, surface segmentation provides a coarse division of the vertices into smaller sets,
which are then further refined in core and ultimately collapsed. As in spatial clustering, surface
segmentation can be uniform, e.g., by partitioning the surface over a uniform grid, or adaptive,
e.g., by cutting the surface along feature lines. We begin by discussing uniform segmentation
techniques.

4.2.1 Uniform Surface Segmentation

Hoppe [51] described one of the first out-of-core simplification techniques based on surface seg-
mentation for the special case of height fields. His method performs a 2D spatial division of a
regularly gridded terrain into several rectangular blocks, which are simplified in core one at a time
using edge collapse until a given error tolerance is exceeded. By disallowing any modifications
to block boundaries, adjacent blocks can then be quickly stitched together in a hierarchical fash-
ion to form larger blocks, which are then considered for further simplification. This allows seams
between sibling blocks to be coarsened higher up in in the hierarchy, and by increasing the error
tolerance on subsequent levels a progressively coarser approximation is obtained (see Figure 4).
Hoppe’s method was later extended to general triangle meshes by Prince [68], who uses a 3D uni-
form grid to partition space and segment the surface. Both of these methods have the advantage
of producing not a single static approximation but a multiresolution representation of the mesh—a
progressive mesh[49]—which supports adaptive refinement, e.g., for view-dependent rendering.
While being significantly slower (by about two orders of magnitude) and requiring more (although
possibly controllable) memory than most spatial clustering techniques, the improvement in quality
afforded by error-driven edge collapse can be substantial.

Bernardini et al. [11] developed a strategy similar to [51, 68]. Rather than constructing a mul-
tiresolution hierarchy, however, a single level of detail is produced. Seams between patches are
coarsened by shifting the single-resolution grid (somewhat akin to the approach in [41]) after all
patches in the current grid have been simplified. In between the fine granularity provided by a pro-
gressive mesh [68] and the single-resolution meshes created in [11], Erikson et al. [37] proposed
using a static, discrete level of detail for each node in the spatial hierarchy. As in [11, 51, 68], a
rectilinear grid is used for segmentation in Erikson’s method.

One of the downsides of the surface segmentation techniques described above is the require-
ment that patch boundaries be left intact, which necessitates additional passes to coarsen the
patch seams. This requirement can be avoided using theOEMM mesh data structure proposed
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Figure 4: Height field simplification based on hierarchical, uniform surface segmentation and edge
collapse (figure courtesy of Hugues Hoppe).

by Cignoni et al. [23]. As in [68], an octree subdivision of space is made. However, when process-
ing the surface patch for a node in this tree, adjacent nodes are loaded as well, allowing edges to
be collapsed across node boundaries. Some extra bookkeeping is done to determine which vertices
are available for consideration of an edge collapse, as well as which vertices can be modified or
removed. This general data structure supports not only out-of-core simplification but also editing,
visualization, and other types of processing. Other improvements over [68] include the ability to
adapt the octree hierarchy, such that child nodes are collapsed only when the parent cell contains a
sufficiently small number of triangles.

4.2.2 Adaptive Surface Segmentation

Some of the surface segmentation methods discussed so far already support adapting the vertex
set partition to the shape of the surface (recall that this partitioning is the goal of triangle mesh
simplification). For example, simplificationwithin a patch is generally adaptive, and in [23] the
octree space partition adapts to the local complexity of the surface. Still, using the methods above,
the surface is always segmented by a small set of predefined cut planes, typically defined by an
axis-aligned rectilinear grid. In contrast, the out-of-core algorithm described by El-Sana and Chi-
ang [33] segments the surface solely based on its shape. Their technique is a true out-of-core
implementation of the general error-driven edge collapse algorithm. Like in other methods based
on surface segmentation, edge collapses are done in batches by coarsening patches, calledsub-
meshes, up to a specified error tolerance, while making sure patch boundaries are left intact. In
contrast to previous methods, however, the patch boundaries are not defined via spatial partitioning,
but by a set of edges whose collapse costs exceed a given error threshold. Thus patch boundaries
are not artificially constrained from being coarsened, but rather delineate important features in the
mesh that are to be preserved. Rather than finding such boundaries explicitly, El-Sana and Chiang
sort all edges by error and load as many of the lowest-cost edges, calledspanning edges, and their
incident triangles as can fit in main memory. The highest-cost spanning edge then sets the error
threshold for the current iteration of in-core simplification. In this process, patches of triangles
around spanning edges are loaded and merged whenever possible, creating sub-meshes that can



Figure 5: Submesh for a set of spanning edges (shown as thick lines) used in El-Sana and Chiang’s
simplification method.

be simplified independently by collapsing their spanning edges. When the sub-meshes have been
simplified, their edges are re-inserted into the priority queue, and another iteration of sub-mesh
construction and simplification is performed. As in [68], the final output of the algorithm is a
multiresolution mesh.

To support incidence queries and an on-disk priority queue, El-Sana and Chiang make use of
efficient search data structures such as B-trees (see also Section 2). Their method is surprisingly
fast and works well when sufficient memory is available to keep I/O traffic to a minimum and
enough disk space exists for storing connectivity information and an edge collapse queue for the
entire input mesh.

Iterative simplification of extremely large meshes can be a time consuming task, especially
when the desired approximation is very coarse. This is because the number of coarsening op-
erations required is roughly proportional to the size of theinput. In such situations, it may be
preferable to perform the inverse of simplification,refinement, by starting from a coarse represen-
tation and adding only a modest amount detail, in which case the number of refinement operations
is determined by the size of theoutput. Choudhury and Watson [21] describe an out-of-core ver-
sion of theRSimprefinement method [12] that they callVMRSimp(for Virtual Memory RSimp).
Rather than using sophisticated out-of-core data structures, VMRSimp relies on the virtual memory
mechanism of the operating system to handle data paging. As in the original method, VMRSimp
works by incrementally refining a partition of the set of input triangles. These triangle sets are con-
nected and constitute an adaptive segmentation of the surface. The choice of which triangle patch
to refine is based on the amount of normal variation within it (essentially a measure of curvature
defined over a region of the surface). VMRSimp improves upon RSimp by storing the vertices and
triangles in each patch contiguously in virtual memory. When a patch is split in two, its constituent
primitives are reorganized to preserve this locality. As patches are refined and become smaller,
the locality of reference is effectively increased, which makes the virtual memory approach viable.
Finally, when the desired level of complexity is reached, a representative vertex is computed for
each patch by minimizing a quadric error function. Even though the simplification happens in “re-
verse,” this method, like all others discussed here, is yet another instance of vertex set partitioning
and collapse.



4.3 Summary of Simplification Techniques

In this section we have seen a variety of different out-of-core surface simplification techniques,
and we discussed how these methods partition and later collapse the set of mesh vertices. All of
these methods have shown to be effective for simplifying surfaces that are too large to fit in main
memory. The methods do have their own strengths and weaknesses, however, and we would like
to conclude with some suggestions for when to a certain technique may be preferable over another.

Whereas spatial clustering is generally the fastest method for simplification, it often produces
lower quality approximations than the methods based on surface segmentation. This is because sur-
face segmentation allows partitioning the vertex set based directly on error (except possibly along
seams) using an iterative selection of fine-grained coarsening operations. Spatial clustering, on the
other hand, typically groups a large number of vertices, based on little or no error information, in a
single atomic operation. The incremental nature of surface segmentation also allows constructing
a multiresolution representation of the mesh that supports fine-grained adaptive refinement, which
is important for view-dependent rendering. Indeed, several of the surface segmentation methods
discussed above, including [23,33,37,51,68], were designed explicitly for view-dependent render-
ing. Finally, because surface segmentation methods generally maintain connectivity, they support
topology-preserving simplification.

Based on the observations above, it may seem that surface segmentation is always to be favored
over spatial clustering. However, the price to pay for higher quality and flexibility is longer simpli-
fication times, often higher resource requirements, and less straightforward implementations. To
get a better idea of the resource usage (RAM, disk, CPU) for the various methods, we have com-
piled a table (Table 1) based on numerical data from the authors’ own published results. Note that
the purpose of this table is not to allow accurate quantitative comparisons between the methods;
clearly factors such as quality of implementation, hardware characteristics, amount of resource
contention, assumptions made, data sets used, and, most important, what precisely is being mea-
sured have a large impact on the results. However, with this in mind, the table gives at least a rough
idea of how the methods compare. For example, Table 1 indicates that the spatial clustering meth-
ods are on average one to two orders of magnitude faster than the surface segmentation methods.
Using the 372-million-triangle St. Matthew model from the Digital Michelangelo Project [59] as
a running example, the table suggests a difference between a simplification time of half an hour
using [60] and about a week using [68]. For semi-interactive tasks that require periodic user feed-
back, such as large-isosurface visualization where on-demand surface extraction and simplification
are needed, a week’s worth of simplification time clearly isn’t practical.

In terms of resource usage, most surface segmentation methods make use of as much RAM
as possible, while requiring a large amount of disk space for storing the partially simplified mesh,
possibly including full connectivity information and a priority queue. For example, all surface
segmentation methods discussed above have input-sensitive disk requirements. Finally, certain
types of data sets, such as isosurfaces from scientific simulations [65] and medical data [2], can
have a very complicated topological structure, resulting either from noise or intrinsic fine-scale
features in the data. In such cases, simplification of the topology is not only desirable but is
necessary in order to reduce the complexity of the data set to an acceptable level. By their very
nature, spatial clustering based methods are ideally suited for removing such small features and
joining spatially close pieces of a surface.



category method
peak mem. usage (MB)peak disk usage (GB) speed
theoretical example theoretical example (Ktri/s)

spatial clustering

[60] 144Vout 257 0 0 100–250a

[40] ' 200Vout ' 356 0 0 65–150
[73] ≥ 464Vout ≥ 827 0 0 45–90
[61] O(1) 8 120–370Vin 21–64 30–70

surface segmentation

[23] O(1) 80 ' 68Vin 12 6–13b

[33] O(1) 128 Ω(Vin) ? 5–7
[21] O(1)c 1024 ≥ 86Vin ≥ 15 4–5
[68] O(1) 512 Ω(Vin) ? 0.8–1

aSpeed of author’s current implementation on an 800 MHz Pentium III.
bWhen the one-time OEMM construction step is included in the simplification time, the effective speed drops to

4–6 Ktri/s.
cThis method is based on virtual memory. Thus all available memory is generally used during simplification.

Table 1: Simplification results for various methods. These results were obtained or estimated
from the original publications, and are only approximate. When estimating memory usage, here
expressed in number of input (Vin) and output (Vout) vertices, we assume that the meshes have twice
as many triangles as vertices. The results in the “example” columns correspond to simplifying
the St. Matthew data set [59], consisting of 186,810,938 vertices, to 1% of its original size. For
methods with constant (O(1)) memory usage, we list the memory configuation from the original
publication. The disk usage corresponds to the amount oftemporaryspace used, and does not
include the space needed for the input and output mesh. For the clustering techniques, the speed
is measured as the size of the input over the simplification time. Because the surface segmentation
methods work incrementally, the size of the output greatly affects the speed. Thus, for these
methods the speed is measured in terms of the change in triangle count.

To conclude, we suggest using spatial clustering for very large surfaces when time and space
are at a premium. If quality is the prime concern, surface segmentation methods perform favorably,
and should be chosen if the goal is to produce a multiresolution or topology-equivalent mesh. For
the best of both worlds, we envision that hybrid techniques, such as [40, 44], that combine fast
spatial clustering with high-quality iterative simplification, will play an increasingly important
role for practical out-of-core simplification.

5 INTERACTIVE RENDERING

The advances in the tools for 3D modeling, simulation, and shape acquisition have led to the gener-
ation of very large 3D models. Rendering these models at interactive frame rates has applications
in many areas, including entertainment, computer-aided design (CAD), training, simulation, and
urban planning.

In this section, we review the out-of-core techniques to render large models at interactive frame
rates using machines with small memory. The basic idea is to keep the model on disk, load on
demand the parts of the model that the user sees, an display each visible part at a level of detail



proportional to its contribution to the image being rendered. The following subsections describe
the algorithms to efficiently implement this idea.

5.1 General Issues

Building an Out-Of-Core Representation for a Model At preprocessing time, an out-of-core
rendering system builds a representation for the model on disk. The most common representations
are bounding volume hierarchies (such as bounding spheres [71]) and space partitioning hierarchies
(such as andk-D trees [42,79], BSP trees [84], and octrees [4,23,28,81,82]).

Some approaches assume that this preprocessing step is performed on a machine with enough
memory to hold the entire model [42, 82]. Others make sure that the preprocessing step can be
performed on a machine with small memory [23,28,84].

Precomputing Visibility Information One of the key computations at runtime is determining
the visible set — the parts of the model the user sees. Some systems precompute from-region
visibility, i.e., they split the model into cells, and for each cell they precompute what the user
would see from any point within the cell [4, 42, 79]. This approach allows the system to reuse the
same visible set for several viewpoints, but it requires long preprocessing times, and may cause
bursts of disk activity when the user crosses cell boundaries.

Other systems use from-point visibility, i.e., they determine on-the-fly what the user sees from
the current viewpoint [28, 84]. Typically, the only preprocessing required by this approach is the
construction of a hierarchical spatial decomposition for the model. Although this approach needs
to compute the visible set for every frame, it requires very little preprocessing time, and reduces
the risk of bursts of disk activity, because the changes in visibility from viewpoint to viewpoint
tend to be much smaller than the changes in visibility from cell to cell.

View-Frustum Culling Since the user typically has a limited field of view, a very simple tech-
nique, that perhaps all rendering systems use, is to cull away the parts of the model outside the
user’s view frustum. If a hierarchical spatial decomposition or a hierarchy of bounding volumes
is available, view-frustum culling can be optimized by recursively traversing the hierarchy from
the root down to the leaves, and culling away entire subtrees that are outside the user’s view frus-
tum [24].

Occlusion Culling Another technique to minimize the geometry that needs to be loaded from
disk and sent to the graphics hardware is to cull away geometry that is occluded by other geometry.
This is a hard problem to solve exactly [55,79,84], but fast and accurate approximations exist [34,
54].

Level-of-Detail Management (or Contribution Culling) The amount of geometry that fits in
main memory typically exceeds the interactive rendering capability of the graphics hardware. One
approach to alleviate this problem is to reduce the complexity of the geometry sent to the graphics
hardware. The idea is to display a certain part of the model using a level of detail (LOD) that is



proportional to the part’s contribution to the image being rendered. Thus, LOD management is
sometimes referred to as contribution culling.

Several level of detail approaches have been used in the various walkthrough systems. Some
systems use several static levels of detail, usually 3-10, which are constructed off-line using vari-
ous simplification techniques [25,35,43,69,80]. Then at real-time, an appropriate level of detail is
selected based on various criteria such as distance from the user’s viewpoint and screen space pro-
jection. Other systems use a multi-resolution hierarchy, which encodes all the levels of detail, and
is constructed off-line [31,36,49,50,63,88]. Then at real-time, the mesh adapts to the appropriate
level of detail in a continuous, coherent manner.

Overlapping Concurrent Tasks Another technique to improve the frame rates at runtime is to
perform independent operations in parallel. Many systems use multi-processor machines to overlap
visibility computation, rendering, and disk operations [4,42,45,82,87]. Corrêa et al. [28] show that
these operations can also be performed in parallel on single-processor machines by using multiple
threads.

Geometry Caching The viewing parameters tend to change smoothly from frame to frame, spe-
cially in walkthrough applications. Thus, the changes in the visible set from frame to frame tend
to be small. To exploit this coherence, most systems keep in main memory a geometry cache, and
update the cache as the viewing parameters change [4,28,42,82,84]. Typically these systems use
a least recently used (LRU) replacement policy, keeping in memory the parts of the model most
recently seen.

Speculative Prefetching Although changes in the visible set from frame to frame tend to be
small, they are occasionally large, because even small changes in the viewing parameters can cause
large visibility changes. Thus, although most frames require to perform few or no disk operations,
a common behavior of out-of-core rendering systems is that some frames require to perform more
disk operations that can be done during the time to render a frame. The technique to alleviate these
bursts of disk activity is to predict (or speculate) what parts of the model are likely to become
visible in the next few frames and prefetch them from disk ahead of time. Prefetching amortizes
the cost of the bursts of disk operations over the frames that require few or no disk operations,
and produces much smoother frame rates [4, 28, 42, 82]. Traditionally, prefetching strategies have
relied on from-region visibility algorithms. Recently, Corrêa et al. [28] showed that prefetching
can be based on from-point visibility algorithms.

Replacing Geometry with Imagery Image-based rendering techniques such as texture-mapped
impostors can be used to accelerate the rendering process [5, 30, 64, 75]. These texture-mapped
impostors are generated either in a preprocessing step or at runtime (but not every frame). These
techniques are suitable for outdoor models. Textured depth meshes [4, 30, 75] can also be used to
replace far geometry. Textured depth meshes are an improvement over texture-mapped impostors,
because textured depth meshes provide perspective correction.



5.2 Detailed Discussions

Funkhouser [42] has developed an interactive display system that allows interactive walkthrough
large buildings. In an off-line stage a display database is constructed for the given architectural
model. The display database stores the building model as a set of objects which are represented
at multiple level of detail. It is include a space partition constructed by subdividing the space
into cells along the major axis-aligned polygons of the building model. The display database also
stores visibility information for each cell. The precomputed visibility determines the set of cells
(cell-to-cell visibility) and objects (cell-to-object) which are visible form any cell. The visibility
computation is based on the algorithm of Teller and Sequin [79].

In real time the system relies on the precomputed display database to allow interactive walk-
through large building models. For each change in the viewpoint or view direction system performs
the following steps.

• It computes the set of potentially visible objects to render. Such set is always a proper subset
of the cell-to-object set.

• For each potentially visible object it selects the appropriate level-detail representation for
rendering. The screen space projection is used to select the LOD range, and then an opti-
mization algorithm is used to reduce the LOD range to maintain bounded frame rates.

• The potentially visible objects, each in its appropriate level of detail, are sent to the graphics
hardware for rendering.

To support the above rendering scheme for large building models, the system manages the
display database in an out-of-core manner. The system uses prediction to estimate the observer
viewpoint to pre-fetch objects which are likely to become visible in the upcoming future. The
system uses the observer viewpoint, movement, and rotation to determine the observer rang that
includes the observer viewpoints possible in the nextn frames. The observer range is weighted
based on the direction of travel and the solid behavior of the walls.

The cell-to-cell and cell-to-object are used to predict a superset of the objects potentially visible
from the observer range. For each frame they computer the set of range cells that include the
observer range by performing shortest path search of the cell adjacency graph. Then they add
the objects in the cell-to-object visibly of each newly discovered cell to the lookahead set. After
adding an object to the lookahead set the system claims all its LODs. The rendering process select
the appropriate static level of detail for each object based on precomputed information and the
observer position.

Aliaga et al. [4] have presented a system, which renders large complex model at interactive
rates. As preprocessing, the input models space is portioned into virtual cells that do not need to
coincide with wall or other large occluders. A cull box is placed around each virtual cell. The cull
box partitions the space into near (inside the box) and far (outside the box) geometry. Instead of
rendering the far geometry, the system generates textured depth mesh for the inside faces of the
cell. Then the outside of the box as viewed from the cell center-point. For the near geometry, they
compute four level of detail for each object, and select potential occluders in the preprocess stage.
At run time, they cull to the view frustum, cull back facing, and select the appropriate level of
detail for the potentially visible objects. To balance the quality of the near and far geometry they



have used a pair of error metrics for each cell-a cull box size and the LOD error threshold. The
system stores the model in a scene graph hierarchy. They use the model’s grouping as the upper
layer, and below that they maintain an octree-like bounding volumes. They store the geometry in
the leaf nodes in a triangle strips form. Since large fraction of the model database is stored in an
external media. The prefetch performed based on the potentially visible near geometry for each
cell, which is computed in the preprocessing. At run time, the system maintains a list of cell the
user may visit. The prediction algorithm takes into account the user’s motion speed, velocity, and
view direction.

Correa et al. [28] have developed the iWalk, which allows users to walkthrough large models at
interactive rates using typical PC. iWalk has presented a complete out-of-core process that include
an out-of-core preprocessing and out-of-core real-time multi-threaded rendering approach. The
out-of-core preprocessing algorithm creates a disk hierarchy representation of the input model.
The algorithm first breaks the model into sections that fit in main memory, and then incrementally
builds the octree on disk. The preprocessing algorithm also generates hierarchical structure file
that include information concern the spatial relationship of the nodes in the hierarchy. Hierarchical
structure is a small footprint of the models and for that reason they have assumed that it fits in
local memory. At run time the algorithm utilizes the created hierarchy in an out-of-core manner
for multi-threaded rendering. It uses PLP [54] to determine the set of nodes which are visible
form user’s viewpoint. For each newly discovered node the system sends a fetch request, which is
processed by the fetch thread by loading the node from the disk into a memory cache. They system
used least recently used policy for node replacement. To minimize the I/O overhead, a look-ahead
thread is used to utilizes the user motion to predict the future user’s viewpoint, use the PLP [54] to
determine the set of potentially visible nodes, and send fetch request for these nodes.

Varadhan and Manocha [82] has developed an algorithm to render large geometric models at
interactive rates. Their algorithm assumes that the scene graph has been constructed and the space
was portioned appropriately. However, the algorithm precomputed static levels of detail for each
object and associate them with the leaf nodes. At run time the algorithm traverses the scene graph
from the root node at each frame. For each visited node it performs a culling tests to determine
whether it needs to recursively scan the visited node or not. These culling tests include view
frustum culling, simplification culling, and occlusion culling. Upon the completion of the traversal
the algorithm computes the list of object representations that need to be rendering in the current
frame. They refer to the list of object as the front. As the user changes its view position and
direction objects representation in the front list may changes its level of detail or visibility status.

The traversal of the scene graph in an out-of-core manner is achieved by maintaining a scene
graph skeleton that includes the nodes, connectivity information, bounding boxes, and error met-
rics. The resulting skeleton typically include small fraction of the scene graph. At run time, they
use two processes, one for rendering and the other manages the disk I/O. During the rendering
of one frame the I/O process goes into three stages- continue prefetching for the previous frame,
fetching, and prefetching for the current frame. The goal of the prefetching is to increase the
hit rate during the fetch stage. The prefetching takes into account the speed and the direction of
the users’ motion to estimate the appropriate representation for each object and potentially visible
objects in the next frames. To further optimize the prefetching process by prioritizing the differ-
ent object representations in the front the prefetch selects them based on their priority. The least
recently used policy is used to remove object representation from the cache.



6 GLOBAL ILLUMINATION

Teller et al. [78] describe a system for computing radiosity solutions of large environments. Their
system is based on partitioning the dataset into small pieces, and ordering the radiosity computation
in such a way as to minimize the amount of data that needs to be in memory at any given size.
They exploit the fact that when computing radiosity computation for a given patch only requires
information about other parts of the model that can be seen from that patch, which often is only a
small subset of the whole dataset.

Pharr et al. [67] describe techniques for ray tracing very complex scenes. Their work is based
on the caching and reodering computations. Their approach uses three different types of caches:
ray, geometry, and texture caches. In order to optimize the use of the cache, they developed a
specialized scheduler that reorders the way the rendering computations are performed in order
to minimize I/O operations by exploiting computational decomposition, ray grouping, and voxel
scheduling.

Wald et al. [84,85] present a real-time ray tracing system for very-large models. Their system
is similar in some respects to Pharr et al., and it is also based on the reordering of ray computations
(ray grouping) and voxel caching. By exploting parallelism both at the microprocessor level (with
MMX/SSE instructions) and at the machine level (PC clusters), Wald et al. are able to compute
high-quality renderings of complex scenes in real time (although the images are relatively low
resolution).
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