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Abstract 

Clustering is a technique commonly used in scientific 
research. The task of clustering inevitably involves 
human participation – The clustering is not finished when 
the computer/algorithm finishes but the user has 
evaluated, understood and accepted the patterns. This 
defines a human involved “clustering-
analysis/evaluation” iteration. Instead of neglecting this 
human involvement, we provide a visual framework 
(VISTA) with all power of algorithmic approaches (since 
their result can be visualized), and in addition we allow 
the user to steer/monitor/refine the clustering process 
with domain knowledge. The visual-rendering result also 
provides a precise pattern for fast post-processing. 

 Keywords: Scientific Data Clustering, Information 
Visualization, VISTA, Human Factor in Computing 

 

1. Introduction 
 

Clustering is a basic technique commonly used in data 
analysis tasks, where there is little prior information (e.g. 
statistical models) available about the data. In the past 
few decades, researchers have provided hundreds of 
clustering algorithms. Most of the researches have been 
focused on the efficient and effective clustering of the 
datasets with regular cluster distribution, in which 
clusters have spherical shapes and can be represented by 
centroids and radiuses approximately, but they do poorly 
(may produce high error rate) on skewed datasets, which 
have non-spherical regular or totally irregular cluster 
distributions.  

Some researchers have realized this problem and try to 
present cluster shapes as precisely as possible in the 
clustering process, such as representative-point based 
algorithm CURE [7] and density-based algorithm 
DBSCAN [22]. CURE uses several representative points 
to describe the boundary of a cluster approximately, 
instead of using one centriod only. This approach works 
for the non-spherical regular shapes, such as elongated 
regular shapes. However, it still does not work very well 
for clusters of irregular shapes. In general, the number of 
points used to represent a cluster increases as the 
complexity of its shape increases. Since the user may not 
know how irregular the cluster shape is, it is hard for 

her/him to know how many representative points are 
enough to describe the cluster boundary precisely. In 
general, it is very difficult to tune the parameters of the 
algorithm to find a satisfactory result, like the number of 
representative points in CURE, the MinPts and ε in 
DBSCAN.  

It is well known that, given a dataset, it is possible to 
have more than one criterion to partition the dataset with 
respect to different domain constraints. There is an 
interesting “whale, elephant, and tuna fish classification” 
example in [21], which illustrates that the same dataset 
may need to be partitioned differently for different 
purposes. It is also recognized that the automated 
algorithms are lack of the flexibility to enable people to 
realize the cluster shape and make any modification to the 
clustering result easily.  

Most frequently, the task of clustering is letting the 
user gets an initial understanding of the data; which 
means the clustering is not finished until the user has 
evaluated, understood and accepted the patterns or results. 
This defines a “clustering – analysis/evaluation” iteration. 
Instead of being neglected in this process, we think the 
user should be able to participate in the clustering process 
by providing the domain knowledge and making better 
decisions based on his perception. Therefore, we provide 
a visual framework (VISTA) with all power of 
algorithmic approaches (since their result can be just 
visualized), and in addition we allow the user to 
steer/monitor/refine the clustering process with any 
domain knowledge. The visual rendering result also 
provides a precise pattern for fast post-processing.  

There are three main contributions in this paper.  
•  First, we provide a visual framework with all power 

of algorithmic approaches and, in addition, we allow 
the user to steer/monitor/refine the clustering process 
with domain knowledge. 

•  Second, we introduce a visual cluster rendering 
system VISTA, which can visualize the result of any 
clustering algorithms, and help the user to understand 
and adjust the cluster distribution interactively.  

•  Third, we present a map-based cluster encoding 
technique (ClusterMap) which provides a relatively 
precise pattern for fast labelling or classification, in 
the post-clustering phase.  



We have conducted two sets of experiments on a set of 
datasets selected from the public domain, one is designed 
to evaluate the effectiveness of the visual cluster 
rendering system, and the other is to measure the 
performance of the ClusterMap and compare it with two 
commonly known cluster representations.  

The rest of the paper is organized as follows. Section 2 
gives the visual framework for cluster analysis and 
outlines the VISTA approach. Section 3 introduces the 
VISTA visual clustering system. We discuss the 
reliability of the visual clustering in terms of the 
underlying visualization model and the flexibility in terms 
of the interaction techniques used in the visual rendering. 
Section 4 describes the map based cluster representation 
ClusterMap, which takes advantage of the visual 
rendering results. Section 5 discusses some experiments, 
which demonstrate the effectiveness of the VISTA 
clustering rendering system and better performance of 
using ClusterMap for post-processing. The paper ends 
with a discussion on the related work, a summary, and an 
outline of the future work.  

 
2. A Visual framework for cluster analysis 

 
Since most frequently, the cluster analysis involves the 

“clustering – analysis/evaluation” iterations. In many 
cases, a normal process can be described as follows:  

1. Run the algorithms with initial parameters. 

2. Analyse the clustering results with statistical 
measures and domain knowledge to evaluate the 
cluster quality.   

3. If the result is not satisfactory, adjust the 
parameters and re-run the clustering algorithms, 
then do 2 again until find satisfactory result. 

4. If the result is satisfactory, do post-processing, 
which may include labelling the items in the 
entire dataset with the cluster labels.  

With the automated algorithms, in step 2, it is often 
hard to reveal the skew distribution with statistical 
information, such as mean, variance and diameter. In step 
3, it is also very hard to find appropriate parameters for 
some algorithms for a new run. For example, CURE [7] 
requires the parameter of the number of representative 
points and shrink factor, DBSCAN [22] needs proper ε 
and MinPts to get satisfactory clusters, DENCLUE [23] 
needs to define the smoothness level and the significance 
level. In step 4, a coarse post-processing may produce 
unsatisfactory final results, even though the intermediate 
clustering result is pretty good.   

If the step 2 and 3 can be combined together, which 
means the user can do evaluation when clustering is in 
process, and be able to monitor or refine the clustering 
process, the length of the iterations would be reduced 

greatly. In addition, the user would understand more 
about the dataset and thus be more confident with the 
clustering result.  

However, it is obviously very hard for the automated 
algorithms to achieve such a goal. Instead, we think 
interactive cluster rendering could be a good candidate. 
Former studies [7] in the area of visual data exploration 
support the notion that visual exploration can help in 
cognition. Visual representations can be very powerful in 
revealing trends, highlighting outliers, showing clusters, 
and exposing gaps. With the right coding, human pre-
attentive perceptual skills enable users to recognize 
patterns, spot outliers, identify gaps and find clusters in a 
few hundred milliseconds [24]. In addition, it requires no 
understanding of complex mathematical or statistical 
algorithms or parameters [10].  

It seems visualization will perfectly perform our plan. 
However, cluster visualization introduces several hard 
problems too (we will give them in the next section). A 
better way is to take advantage of the resourceful 
clustering algorithms, and combine their results with an 
interactive visualization system. Therefore, we propose a 
visual framework (Figure 1) that can, not only 
utilize/process/improve the results of the clustering 
algorithms, but also get human involved in the clustering 
process.  

 
Visual Cluster Rendering System  
         The system VISTA can process the data directly and 

produce a data partition interactively by the user, or 
take advantage of the clustering algorithms to 
visualize the algorithmic clustering results. The user 
can observe the algorithmic clustering results from 
different angles by interactively adjusting the visual 
parameters. By observing the dynamically changed 
cluster visualization, the user may have clues about 
how to improve the current cluster definition and 
incorporate the domain knowledge into clustering 
process. 

Figure 1. The visual framework for cluster analysis 



 
Data Filter  

Data Filter prepares the data for visualization. It 
handles the missing values and normalizes the data. 
If the dimensionality is too high, dimensionality 
reduction techniques are applied to get a 
manageable number of dimensions. When data sets 
grow past a million items and cannot be easily seen 
on a computer display, Data Filter also extract 
relevant subsets, aggregate data into meaningful 
units, or randomly sample to create a manageable 
dataset.   

Label Filter/Selector 
Label Selector selects which clustering result will be 
used in visualization. While a clustering algorithm 
finishes, it usually assign a label to each item in the 
dataset. Label Filter extracts a part of the labels 
according to the data items extracted by Data Filter. 
For example, VISTA may want to visualize one 
cluster of the data only. In this case, the labels of 
this cluster are extracted.  

Post-processing 
          Labeling entire or part of dataset is necessary for 

many applications. One of the most common 
succeeding tasks of clustering is classification, 
which usually requires a set of correctly labeled data 
items as training set. The accuracy of the training 
set would affect the performance of the 
classification algorithms greatly. In our framework, 
a new cluster presentation, ClusterMap, and the 
associated post-processing method are developed. 
ClusterMap makes the labeling result as possibly 
consistent as the expected cluster distribution.   

 
3. VISTA – an interactive cluster rendering 
system 
 

Although visualization approaches have advantages 
over the automated techniques in statistics or machine 
learning. However, cluster visualization brings up four 
specific problems:  
•  First, the limited system capability, e.g. memory and 

CPU, may restrict the size of the datasets that can be 
visualized in real time. The screen size is also a 
particular limitation for visualization. 

•  Since the dataset usually have dimensionality higher 
than 3D, how to visualize clusters of such datasets 
without introducing too much visual bias is the 
second problem. This is known as the cluster- 
preserving problem [9]. The visual biases can be 
classified to “broken” clusters, “overlapped” clusters, 
and clustered outliers. A well-designed visualization 
model can remove part of these biases and the rest 

can be possibly corrected through visual tuning 
operations. A key question is how to design a set of 
easy-to-use visual interface operations based on a 
reasonable visualization model so that one can use 
them to improve the visual clustering quality. 

•  The third problem is the fact that human needs 
experience to use the visualization system, and 
human-computer interaction usually costs more time 
than automated algorithms. To alleviate this problem, 
the system should be easy to use and gives the user 
confidence about what she/he has seen or found.    

We describe the VISTA solutions to address the three 
problems of cluster visualization. In VISTA, we mainly 
implement the sampling techniques in Data Filter to 
address the first problem. More concretely, we use 
sampling to generate a representative dataset that is 
manageable in size. Then we derive cluster patterns from 
this sample set, which are then applied to label the entire 
dataset. Solutions to the second problem depend on the 
underlying mechanisms used for visualization. We 
developed one kind of scatterplot like visualization based 
on α-mapping (in section 3.1) and star coordinates [14], 
where a dense point-cloud is considered a real cluster or 
several overlapped clusters. We believe this is the most 
intuitive way to visualize clusters.  

 
3.1 A cluster visualization model  
 

A good cluster visualization model ensures the 
visualization system to produce reliable visualizations 
that preserve the cluster structure at most. In the first 
version of VISTA, we only consider the visualization 
model defined in metric Euclidean distance space and the 
visualization involves several connected transforms and 
finally produce a 2D visualization that partially keeps k-D 
information. Concretely, the VISTA visualization model 
consists of a max-min normalization with estimated 
bounds and the α-mapping. We proved that this model is 
linear mapping based, and thus have the important 
property that maintains the reliability of the system. 
 
3.1.1 Max-min normalization with estimated bounds. 
We consider the processed dataset in form of a 
column*row table, where columns represent the 
dimensions and a row is regarded as one data item. When 
the Euclidean distance is used to measure the similarity of 
two data items, we really want each dimension to have 
the same effect to the similarity measurement. The goal of 
using normalization in VISTA visualization model is to 
eliminate the dominating effect of the large value 
columns to the distance and let each column contributes 
equally. The normalized result also fits the α-mapping 
results into a resizable visualization area. Given the 



maximum and minimum bounds (max and min) of a 
column, max-min normalization defines the following 
transformation to scale all items in the column into [-1, 
1]: 
   max-min normalization: 1min)(maxmin)(*2 −−−=′ vv , 
v is the original value and v’ is the normalized value  (1) 

 
A problem with the max-min normalization is the 

possibility of encountering “out of bounds” error, when 
the normalized dataset is a sample set of the entire 
dataset. The max and min bounds used for the sample 
dataset may not be the bounds for the entire raw dataset. 
To handle the “out of bounds” error, we propose a 
modified max-min algorithm to minimize the impact of 
“out of bounds” while still taking the advantage of 
original max-min normalization.  

There are two problems: (1) how to minimize the 
probability of data items “out of bounds”; (2) if the “out 
of bounds” data is occurred, how to handle them. One 
feasible assumption is that the distribution of each column 
in a very large dataset can be approximately modelled as 
a normal distribution. Let ix  denote the average value of 
column i, n is the number of rows in the sample dataset, 
si

2 is the deviation, and xij is the value of the item in row j 
of column i. The mean and variance of a column can be 
approximated by ix  and si

2. 
Let the probability of data items in the raw dataset that 

are out of bounds be limited toε , and bi denote the 
distance from bounds to the estimated mean. With 
Chebyshev’s Inequality, which is held for large samples, 
the distance from bounds to the mean iµ  can be 
computed as follows:  

P{|X – iµ | ≥ bi } ≤ 2

2
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i
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Using the ix  and 2
is as approximation, the bounds of a 

column can be approximately defined as: 
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Considering the actual bounds [min(sci), max(sci)] of 
the ith column (sci) in the sample, we represent the 
bounds of the ith column as:   
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In the first prototype of VISTA, we set ε = ¼, and yield 
the bounds: 

[ ]}2),max{max(,}2),min{min( iiiiii sxscsxsc +−  

All of the parameters used to normalize the columns can 
be calculated by scanning the sample set once. When the 
normalization is applied to the raw dataset later on, a 
value in column i, if out of bounds, can be scaled to the 
nearby bound. 

3.1.2. The α-mapping. The fundamental idea of α-
Mapping is to build a k-parameter-adjustable linear 
mapping that can arrange the k-dimensional data points in 
a 2D star coordinates [14], while preserving the clusters 
partially. The 2D star coordinates are then used to 
implement an interactive cluster rendering system.  

The α-mapping maps a normalized k-dimensional 
point to a point in 2D visual space. It utilizes the frame of 
2D star coordinates [9] but makes significant 
improvement to enable more efficient interactive 
techniques. A k-axis 2D star coordinates is defined by an 
origin o~ (x0, y0) and k coordinates S1, S2, …, Sk , which 
represent the k dimensions in 2D spaces. The k 
coordinates are equidistantly distributed on the 
circumference of the circle C, as in Figure 2, where the 

unit vectors are )ˆ,ˆ(~
yixii uuS = , i= 1..k, 

)/2sin(ˆ),/2cos(ˆ iuiu yixi ππ == . The radius c of the circle C 
is adjusted by the display area (e.g. initially can be set to a 
half of the width of the display area).   

We describe α-mapping as follows. Let a 2D point Q 
(x, y) represent a k-dimensional (k-d) max-min 
normalized data point P(x0, x1,…xi…,xk), |xi| ≤ 1 in 2D star 
coordinates. Q(x, y) is determined by the average of the 
vector sum of k vectors is~ ·x'ij (i= 1..k ), which is 
adjusted by k parameters (α1, α2,…, αk) and scaled by the 
radius c.  
______________________________________________ 
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The αi (i = 1, 2,…k, –1≤αi ≤1) in the formula of 
definition (2) are dimension adjustment parameters, one 
for each of the k dimensions. In VISTA, αi is set to 0.5 
initially.  
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Figure 2. Illustration of α-mapping and star 
coordinate with k=6 



 
There are two advantages over the α-mapping: 
1) It is a linear (or affine) mapping, given the constants 

αi. It is known that the linear mapping does not break 
clusters [9] but may cause overlapped clusters [14], and 
sometimes, overlapped outliers to form fake clusters. 
Given that the α-mapping is linear and thus there is no 
“broken clusters” in the visualization. All we need to do 
is to separate the overlapped clusters, or those falsely 
clustered outliers, which can be achieved with the help of 
dynamic visualization through interactive operations.  

2) The mapping is adjustable by αi. The αi (i = 1,2,…k, 
–1≤αi ≤1) can be regarded as the weight of the i-th 
dimension, which means how significant the i-th 
dimension is in the visualization. Changing αi 
continuously, we can see the effect of the i-th dimension 
to the cluster distribution in a series of smoothly changed 
projections, which provide important cluster clues.  

3) Experience with using VISTA system shows α-
mapping is better than the original mapping in star 
coordinates paper [14], in terms of visual scaling and the 
effect of interaction for rendering clusters.  

 
3.2 VISTA Cluster Rendering System 

 
We build an interactive cluster rendering system using 

the mapping-based visualization model. The first 
prototype of the VISTA visual rendering system is 
designed for Euclidean datasets. The system is available 
for downloading at disl.cc.gatech.edu/VISTA.  

 
3.2.1Cluster rendering methods. Two kinds of visual 
rendering methods are used in Vista system, one is 
unguided rendering and the other is guided. In unguided 
rendering process, a user marks clusters based on the 
information obtained via dynamic and interactive 
exploration, such as dense point-cloud area and cluster 
behaviors. In this kind of exploration, dynamic 
visualization produced by a continuous α-parameter 
adjustment, plays the important role to distinguish 
whether a dense area is a real cluster or a cluster formed 
by overlapping. However, for some complex cluster 
distribution, it may be still hard to distinguish the 
boundaries, thus may lead to a higher error rate than the 
guided process.  

In guided rendering, the data items may already have 
been labeled by clustering algorithms, or there are a small 
number of data items, which are labeled by experts with 
domain knowledge, acting as “landmarks” in 
visualization. In both cases, the labeled items are 
visualized in different colors. Therefore, in a satisfactory 
visualization, the points in the same color (in the same 
cluster) should be in the same region. However, cluster 
rendering plays different roles in the two scenarios. In the 

first case, where items labeled by a cluster algorithm, 
visual rendering can be used to correct the imprecise or 
incorrect cluster boundaries. In addition, the domain 
knowledge can be applied to merge/split clusters, and 
create cluster hierarchies. In the second case, the 
landmark points are visualized in different features so that 
the user can use them as guiding information to find some 
visualization that distinguishes the application-specific 
cluster structure. Because the “guideboard” is available, 
the guided rendering usually gives better results than the 
unguided rendering in practice.  

 
3.2.2 Interactive cluster rendering operations. As 
discussed in Section 3.1, an important feature of the 
VISTA mapping model is its ability to preserve the 
clusters partially during the mapping of k-dimensional 
space to a 2D k-axis star coordinate space. The task of the 
Vista cluster rendering system is to utilize the interactive 
visualization techniques to help users find or separate the 
overlapped clusters through continues dynamic 
visualization operations. We have designed and 
implemented a set of interactive rendering operations in 
VISTA. Some main operations include α-parameter 
adjustment, subset selection, cluster merging/splitting and 
defining cluster hierarchies.   

The most frequently used operation is α-parameter 
adjustment, which changes α parameters defined in 
formula (2) and thus changes the projection plane. Each 
change refreshes the visualization in real time (about 
several hundred milliseconds in terms of the size of the 
dataset and the capability of system). α-parameter 
adjustment enables the user to find the dominating 
dimensions, to observe the dataset from different angles 
and to discriminate the real clusters from overlapping 
clusters in continuously changed visualizations. The user 
mainly uses this operation to find the sketch of a cluster 
distribution. Random rendering and automatic rendering 
are another two automated α-parameter adjustment 
methods complement to the basic α-parameter 
adjustment. Random rendering changes α parameters of 
all dimensions randomly at the same time and helps users 
find interesting patterns if the cluster distribution is not so 
obvious. Automatic rendering continuously changes the α 
parameter of one chosen dimension automatically, which 
can save some interactive operations.  

Another set of operations are point-set oriented, used 
to edit the cluster definition in flat level 
(merging/splitting) or hierarchical level (defining 
hierarchies, zooming in/out and so on). Due to the space 
limitation, most features presented in [1] are not 
introduced here. 

 

4. ClusterMap– a new cluster representation  
 



The best way to discuss the features of the ClusterMap 
representation and the associated post-processing 
methods is to compare it with two typical representation 
methods introduced in [21]. They are centroid-based 
representation and boundary representative points based 
representation. We name the associated post-processing 
methods as Centroid-Based Labelling (CBL) and 
Representative-Point-Based Labelling (RPBL). To label a 
point, CBL compares the distances of this point to the 
centroids of clusters. The point is labelled with the cluster 
ID of the nearest centroid. RPBL utilizes the 
representative points produced by clustering. To label a 
point, it looks up the nearest neighbour of this point 
among all representative points and labels the point with 
the cluster ID of the nearest representative point. Given 
that the total number of representative points is much 
larger than the number of clusters, RPBL costs more to 
label the entire dataset than CBL does. However, CBL 
produces high error rate for most irregular cluster shapes. 
So it is clear that a key challenge to the distance-
comparison based labelling algorithms is making a 
reasonable tradeoff between precision and performance. 
In addition, neither RPBL nor CBL distinguishes outliers, 
which leads to a high error-rate for those datasets that 
have many outliers.  

In comparison, the ClusterMap labeling algorithm runs 
faster and yields better results. The basic idea behind the 
ClusterMap is “mapping is labelling”. Briefly, with 
VISTA system, we can find a satisfactory mapping that 
discriminates clusters and outliers well, and the clustering 
result is encoded as a ClusterMap that includes the 
mapping parameters to create the final visualization and 
the coding for different cluster regions. In most situations, 
the ClusterMap provides more details than the centroid 
based or representative points based cluster 
representation, thus its labeling is more precise in post-
processing. Some additional benefits are 1) the boundary 
can be adjusted and modified to adapt to any special 
situation, 2) the outliers can be distinguished well, 3) and 
the general clustering algorithms can utilize ClusterMap 
as their labelling phase by loading the clustering labels 

into VISTA visual rendering system and defining a 
satisfactory ClusterMap. The ClusterMap algorithm 
includes three components: map-based encoding of the 
clustering rules, map-reading and mapping-based 
labeling. 

 
4.1 Encoding Clustering Rules  
 

When visual cluster rendering produces a satisfactory 
visualization, we can set the boundaries of clusters by 
freehand drawing on the visualization. Each cluster is 
assigned with a unique cluster identifier. After the cluster 
regions are marked, the entire display area can be saved 
(represented) as a 2D (width by height) byte array. Each 
grid in the array is labeled by the corresponding cluster 
ID if it is located on a cluster region, otherwise, labeled as 
outlier. The display area is about 688*688 pixels on 
1024*768 resolution screen, slightly larger for higher 
resolution. So it requires about several megabyte memory 
in maximum. Figure 3 shows an example of Cluster Map 
with three clusters. As shown in Figure 3, the Cluster 
Map array is often a sparse matrix, which can be stored 
more space-efficiently.  

 
4.2 ClusterMap labeling 
 

The post-processing phase is usually separated from 
the visual cluster rendering process. Therefore, the 
ClusterMap should be loaded into memory before 
labeling. Reading the cluster map (the 2D projection array 
and the mapping parameters) into memory costs only 
several hundreds of microseconds and thus can be 
ignored from the entire post-processing.  

The Map based labelling follows a similar mechanism 
as to the α-mapping, which applies the mapping formulas 
derived from the visualization model (in section 3):  
______________________________________________ 
Normalization: x'ij = δi*(xij – mini) -1     (3)   
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where pxi = kuxii /ˆα , pyi = kuyii /ˆα  and , δi = 2/(maxi – 

mini)  can be pre-computed at the beginning of labelling. 
______________________________________________ 

Concretely, the labeling algorithm reads the j-th row 
(x0j, x1j…xij…xkj) from the k-D raw dataset, and uses the 
formula (3) to generate a max-min normalization for each 
dimension and the formula (4) to yield a 2D projection 
coordinate (x′j, y′j). Reading the value of the cell (x′j, y′j) 
in the 2D array, it gets the cluster ID label for the j-th 
row, either, zero for outliers or a positive integer for a 
cluster. This process repeats over the entire raw dataset to 
label every item. 

 
 

Figure 3: a sample map with 3 clusters  



4.3 Complexity Analysis 
  

Given a raw dataset, assume that, k is the 
dimensionality and N is the size of the raw dataset. We 
count the number of necessary multiplication to estimate 
the cost. Therefore, one k-d Euclidean distance 
calculation costs k multiplication. Map rebuilding and 
parameter reading cost constant time (see section 5). In 
the labelling step, for each data item in the raw dataset, 
the max-min normalization costs k multiplication. The α-
mapping function costs k multiplication respectively to 
calculate x and y coordinates. Searching for the cluster 
map to get the corresponding cluster ID costs O(1) time. 
Hence, the total cost for the entire dataset is 3kN.  

While kd-tree [22] is used to organize the 
representative points, we get optimal complexity for the 
distance-comparison based labelling algorithms. The cost 
to find the nearest neighbour point in kd-tree is at least 
log2(cm) distance calculation for RPBL and at least 
log2(c) for CBL. As reported in the CURE paper, only 
when the number of representative points is great than 10 
(m>=10), the RPBL can get right clusters for irregular 
cluster shapes.  

 
5. Experiments  

 
This section presents two sets of experiments. The 

main objective of these experiments is to evaluate the 
effectiveness of the VISTA visual clustering system, and 
the predominance of ClusterMap over the other cluster 
representations.  

The first prototype of the VISTA cluster rendering 
system can deal with up to 50,000 items in real time in 
common desktop environment. With better configuration, 
it can deal with more items. In this range, the size of the 
dataset does not affect the performance of the clustering 
process nor the clustering result. For very large datasets, 
the raw dataset is first sampled to get a representative 
subset in population of less than 50,000 items. That 
means the categories of datasets, whether they are small, 
medium or large, will not make much difference in 
evaluating results. We can choose several public-domain 

datasets that are irregular in cluster distribution, although 
they are small or medium in size. The second set of 
experiments is designed to show the ClusterMap cluster 
representation has advantages over RPBL and CBL, in 
terms of better performance and lower error rate. As we 
discussed in section 4.3, the costs of the labelling 
algorithms are analytically linear, therefore, again, a 
small/medium sample size is sufficient to show the linear 
trends over the large dataset.  

 
5.1 Effectiveness of Visual Cluster Rendering 

 
The VISTA visual clustering system was implemented 

in Java. Our initial experiments were conducted on a 
number of well-known datasets that can be found in UCI 
machine learning database (www.ics.uci.edu). These 
datasets, although small or medium in size, have irregular 
cluster distribution, which is an important factor for 
testing the effectiveness of the VISTA system.  

It is well known that CURE gives better results than 
other existing algorithms by recognizing clusters in 
irregular shapes. To show how effective the VISTA 
visual cluster rendering is, in terms of accuracy 
improvement, we choose to compare the error rates of the 
VISTA visual cluster rendering results with that of the 
CURE clustering algorithm.  

Table 2 shows the experiments on effectiveness of 
VISTA over 10 well-known datasets, where N is the 
number of rows in the given dataset, k is dimensionality 
of the dataset. U.Gu. denotes the unguided rendering, 
and Gu denotes the guided rendering. Guided rendering 
uses a small number of labels (5%) already given in the 
test dataset. It shows that CURE produces high error 
rates when applied to these datasets, which means an 
automatic algorithm is not adapted to application-
specific clustering. It also shows that guided rendering 
can utilize a small amount of information, which is not 
enough for classification algorithms, to produce more 
application specific results. A set of visualization results 
can be found on Vista web site.    

Table 1: Cost estimation of the three labelling 
algorithms. 

k   Dimensionality 
N Total rows in raw dataset 
c The number of clusters 
m The number of representative points, used in CURE 
f1 The cost of ClusterMap, 3kN 
f2 The cost of representative labelling, cmkN > f2 > 

log2(cm)* kN 
f3 The cost of Centroid-based labelling, ckN ≥ f3 > 

log2(c)*kN 

Table 2: Error rates of Vista cluster rendering on 
typical datasets having irregular cluster shapes 

Vista(%) Dataset N k 
U.Gu Gu 

CURE
% 

Breast-wisc 699 10 16.7 4.3 36.6 
Credit-screen 690 15 20.2 14.5 31.7 
Hepatitis 155 19 21.9 20.6 41.3 
Iris 151 4 5.5 3.3 35.7 
Page-blocks 5473 10 13.0 7.0 53.4 
Heart 270 12 24.0 16.7 49.6 
Mushroom 8124 21 24.7 2.5 36.8 
Australian 690 14 15.4 14.4 35.7 
Wine 178 12 7.9 6.2 34.3 



 
5.2 ClusterMap Labelling 

We have discussed three different disk-labelling 
algorithms: Representative-Point Based labelling (RPBL), 
Centroid-Based labelling (CBL), and ClusterMap. In this 
section we study the performance and error rate of 
ClusterMap compared to the two other popular labelling 
algorithms RPBL and CBL. In the following subsections, 
we first describe the datasets used in the experiments and 
the environmental setup for these experiments. Then we 
discuss the experimental results obtained over different 
datasets.  

 
5.2.1  Datasets and experiment setup. Two datasets are 
used for the second set of the experiments reported in this 
paper. One is the simulated dataset DS1 used in CURE. 
DS1 is a 2D dataset having five regular clusters, 
including three spherical clusters, two connected elliptic 
clusters, and many outliers. In our experiments, DS1 is 
used to evaluate the effect of outliers to the labelling 
algorithms. The second dataset we use is a real dataset – 
Shuttle dataset (STATLOG version). It is a 9-dimensional 
dataset with very irregular cluster distribution. There are 
seven clusters in this dataset, among which one is very 
large with approximately 80% of data items, and two are 
moderately large with approximately 15% and 5% of data 
items, respectively. The others are tiny. Shuttle dataset is 
used to evaluate the effect of clustering result to the 

labelling process. All datasets have original labels, so we 
can calculate exact error rate with the original labels and 
produced labels. 

The three labelling algorithms are implemented in 
C++. We use the CURE clustering algorithm 
implemented by U. of Wisconsin at Madison, to get 
representative points for RBPL, with the parameters: the 
number of representative points is 10, alpha (shrink 
factor) is set to 0.5, and k is the expected number of 
clusters. We use ANN (Approximate Nearest Neighbour) 
C++ library from U. of Maryland at College Park to 
construct kd-tree for RBPL and CBL. When we evaluate 
the experimental results, the constant parts – the cost of 
cluster map rebuilding or kd-tree building are excluded 
from the graphs but still listed in discussion. 

 
5.2.2 Experimental results on DS1 dataset. We run 
Vista to get the ClusterMap in the resolution of 688*688. 
The cost to rebuild the cluster map is about 340~360ms. 
In contrast the cost to build kd-tree is about 1~2ms. 
CURE clustering algorithm is performed on the dataset of 
5000 data items to get the representative points. The 
experimental result in Figure 4 shows that the costs of the 
three algorithms are linear to the size of the dataset. 
RBPL costs about 1.6 times more than ClusterMap. We 
also found that CBL with kd-tree search costs more than 
with the direct search because of the small number of 
nodes in kd-tree.  
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 Figure 4: Time cost on DS1    Figure 5: Error rate on DS1   Figure 6: RPBL labelling result on DS1 
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Figure 7: Time cost on Shuttle         Figure 8: Error rate on Shuttle     Figure 9: Visualization  

of correct labelling on Shuttle 



The DS1 dataset is used to show the effect of outliers 
to the labelling algorithms. The error rate of RBPL is on 
average of 4.5% over DS1; the error rate of the CBL has 
the error rate of 6.8%; while the error rate of ClusterMap 
has only about 1.5%. ClusterMap also shows a more 
stable error rate. From the visualization of the labelling 
results, CBL suffers from the large circle cluster and 
outliers. Most RBPL errors come from the outliers.  Due 
to the space limitation, we only show the visualization of 
CURE labelling results. Visualization of RBPL labelling 
on a 10000-item subset (Figure 6) shows the outliers are 
labelled as the nearby cluster.  

 
5.2.3 Experimental results on shuttle dataset. Shuttle 
dataset has very irregular clusters (Figure 9). With a small 
number of “landmark points”, we can easily and correctly 
define the clusters with VISTA. We run ClusterMap on 
the same resolution. Again, CURE algorithm is 
performed on a 5000-item subset to get the representative 
points. The result also shows the costs of the three 
algorithms are linear to the size of Shuttle dataset (Figure 
7), but this time RBPL costs about 2.6 times as much as 
ClusterMap and the CBL should use direct search again 
because there are only 3 centroids.  

We use the shuttle dataset to evaluate how the errors 
from the clustering algorithms affect the labelling 
algorithms. Figure 8 shows that the error rate of RBPL is 
on average of 17% over the Shuttle dataset and the CBL 
has an error rate of 18%. ClusterMap has only 4.2% of 
incorrect labelling, much lower than the other two 
algorithms. The high error rate with the RBPL is 
primarily caused by the incorrect clustering result or lack 
of the ability to describing irregular cluster shapes, which 
leads to wrong boundary description for labelling. 

Let us take a closer look at the three large clusters 
shown in Figure 9. Cluster c3 actually has two parts; c1 
and c2 are connected; c1 is a triangular shape in 2D star 
coordinates. CURE clustering simply cannot incorporate 
the application-specific features. In the visualization of 

RBPL on 10000-item subset (Figure 10), we can see 
CURE divides the original cluster c3 into two parts and 
cannot discriminate c1 and c2. Since centroids cannot 
represent the irregular cluster distribution, the error rate 
of CBL is also very high.  

 

6. Related work 
 
Data Clustering has been extensively studied over the 

past decade. An overview about the clustering algorithms 
can be found in [21]. Many new algorithms such as 
CLIQUE, DBSCAN/GDBSCAN[22], WaveCluster[16], 
CURE[3], BIRCH[8], DECLUE[23] and so on, have 
emerged in recent years. 

Various efforts are made to visualize multidimensional 
datasets. The early research on general plot based data 
visualization is Grand Tour and Projection Pursuit [12]. 
Since there are numerous projections from a 
multidimensional data space to a 2D space, the purpose of 
the Grand Tour and the Project Pursuit is to guide user to 
walk through a series of interpolated projection to find 
the interesting ones. L.Yang [13] utilizes the Grand Tour 
technique to show projections of datasets in an animation. 
However, all these Grand Tour based techniques are not 
clustering-faced and not flexible enough for incorporating 
domain knowledge. Star Coordinate [14] is a 
visualization system designed to visualize and analyze 
clusters. The mapping functions and some of the 
interaction techniques are to some extent similar to the 
VISTA cluster rendering. However, the emphasis and 
contributions in [14] are solely on visualization design. 
There is no discussion on how the visual framework can 
be established for general clustering process. Other 
techniques, such as Parallel Coordinates, Scatterplot 
matrices, coplots, and prosection [2] create static 
visualization only, thus they do not provide enough 
cluster information by using visualization. Keim, etc. [25] 
also explored density-based visualization and reviewed 
the visual data mining approaches and systems [20]. 

 
7. Conclusion 

 
Most of researchers have focused on the automatic 

clustering algorithms. Very few have addressed the 
human factor in the clustering process. In fact, human can 
not be ignored from the cluster analysis. Instead of 
neglecting this human involvement, we provide a visual 
framework (VISTA) with all power of algorithmic 
approaches, and in addition, we allow the user to 
participate in the “clustering-analysis/evaluation” 
iteration with interactively changing the cluster definition. 
We also introduced a visual cluster rendering system 
VISTA built on some reliable transformations and 
enriched by a bunch of interactive techniques to help the 
user participate in the clustering process. A new cluster 

 
Figure10: Visualization of CURE clustering result  



representation ClusterMap based on the visualization 
results, encodes the visual rendering result into a precise 
pattern that enables a better post-processing.  
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