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Abstract
With the availability of ever increasing data, more sophisticated queries will take longer time, and more
likely the statically-generated initial query processing plan will become suboptimal during execution.
For example, selectivity estimates and main memory availability in the system may change during exe-
cution. These discrepancies cause additional I/O and thrashing that may seriously lengthen query pro-
cessing time. In this paper, we apply and combine several apparently unrelated dynamic adaptation
methods such as choosing sort-merge join when operands are sorted, switching the operands for hash
joins when the left operand is found to be larger, and selecting memory allocation strategies (between
Max2Min and AlwaysMax as appropriate). We use the Ginga service, an adaptive query processing
web-service based on the notion of adaptation space, to organize and combine these adaptation methods
systematically. We also use Ginga’s query processing simulation system to evaluate the effectiveness
of these methods in isolation and in combination. Our experimental results show that combined query
adaptation can achieve significant performance improvements (up to 70% of response time gain) when
compared to individual solutions.

1 Introduction

Despite the continued evolution of computer systems under Moore’s Law, real world database systems al-
most always need more main memory than is available. This is the case for complex decision support
queries involving large relations and also in multi-user environments where a number of concurrently ex-
ecuting queries compete for a finite amount of main memory. Careful memory management for query
execution under memory constraints has been studied by several researchers, as summarized in Section 5.

During the execution of a complex query, the relationship between memory resource availability and
query processing requirements may change for a number of reasons. On the query processing requirements
side, for example, if intermediate join result sizes turn out to be significantly different from what is estimated
at query plan generation time, the execution may thrash due to insufficient memory. Similarly, a large
number of concurrent queries in the system may result in a query execution receiving fewer memory blocks
than the requirements established at the query plan generation time. In this paper, we investigate several
dynamic adaptation techniques that overcome the variable memory constraint bottlenecks when available
memory no longer matches query processing requirements at runtime.
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We have previously developed the Ginga service [9, 10] as a platform to study dynamic adaptation in
web service providing query processing. In a previous paper [9], we studied the trade-offs of different
adaptation strategies in query execution in the presence of network delays. In this paper, we use Ginga to
explore three techniques to accomplish dynamic adaptation to get around variable memory constraints. First,
we study the effects of changing the query plan by changing the join algorithms, for example, replacing a
hash join with a sort-merge join when one of the operands is sorted. Second, we fix the order of operands
of a hash join when the actual sizes contradict earlier expectations or estimation (the left operand should be
smaller than the right operand). Third, we choose a memory allocation strategy appropriate for the query
plan and memory available.

The first main contribution of this paper is the use of Ginga’s concept ofadaptation space [8] to organize
and combine the three dynamic adaptation techniques to manage variable memory constraints, which we
described in the previous paragraph, into a framework. This framework supports a systematic approach
that combines several previously unrelated heuristics and techniques for query adaptation into a cost-based
optimization solution.

The second main contribution of this paper is an experimental evaluation of the three adaptation tech-
niques and their combinations using Ginga’s dynamic query execution simulation facility. For a variety of
representative system configuration and workloads with memory bottlenecks, we show significant improve-
ments in response time under dynamic adaptation. Each adaptation method by itself provides modest gains
as expected, and their combination achieves significant performance improvements, up to 70% of response
time gain over the response time obtained by individual adaptation methods. These results show the promise
of the Ginga approach to combine dynamic memory adaptation techniques in a systematic way.

The rest of the paper is organized as follows. Section 2 outlines the main components of Ginga and
the concept of adaptation space. Section 3 summarizes the application of three adaptation techniques to
overcome memory bottlenecks. Section 4 studies the performance of these techniques for representative
scenarios. Section 5 summarizes related work and Section 6 concludes the paper.

2 Overview of the Ginga Service

2.1 Two-Phase Query Adaptation

Ginga [9] is an adaptive query processing service that divides query processing into two phases. At query
submission time, in a proactive adaptation engagement phase, Ginga builds an initial optimized query plan
�� for the input user query and generates some alternative execution plans���� � � �� � � � � �� that may be
needed due to runtime variations in the environment. During query execution, in a reactive control phase,
Ginga monitors the system resources availability through execution progress, determineswhen to change
the query plan andhow to adapt by choosing an alternative plan created in the proactive phase.

In Ginga, we organize the opportunities for adaptation and alternative query plans into an adaptation
space. An adaptation space is a directed graph where the nodes are calledadaptation cases and the arcs
are calledadaptation triggers. An adaptationcase���� is a pair (��, adaptationcondition����), where��
is a query plan and adaptationcondition���� is the set of memory constraint predicates under which��
was optimized (e.g., how many memory blocks have been allocated and the assumptions made about join
operand sizes). An adaptation trigger is a triple (adaptationevent����, adaptationaction��� � ���, adapta-
tion condition��� �) where�� is the current plan executing under adaptationcondition����. When a change
in system parameters invalidates a memory constraint predicate in adaptationcondition���� (e.g., unex-
pectedly large intermediate results), adaptationevent���� is fired. Then, adaptationaction���� ��� finds
adaptationcase���� such that adaptationcondition��� � has become valid by the adaptationevent. Since��
is the plan optimized for the new set of memory constraint predicates, the adaptationaction switches from
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�� to �� by replacing code or runtime flags in all the nodes involved in processing this query.
During the proactive adaptation engagement phase, Ginga builds an adaptation space for executing query

� through three main steps. First, Ginga generates the initial query plan�� under the initial assumptions
made about the runtime environment (e.g., expected memory size) in adaptationcondition����. Second,
Ginga creates the set of monitors that trigger an adaptationevent when one of the memory constraint pred-
icates in adaptationcondition���� becomes invalid. Third, for each such event, Ginga creates a new set of
memory constraint predicates and an alternative query plan optimized for it (adaptationcondition��� �) and
adaptationtrigger����. This process is repeated for each one of�� until all the memory constraint predi-
cates have been covered. The construction of an adaptation space can be eager, as outlined above, or lazy,
when the alternative query plans are generated only when needed. In general, the trade-offs in adaptation
space generation are a subject for future research and beyond the scope of this paper. For a relatively small
adaptation space, it is reasonable to generate it at initialization time. This is the assumption made in this
paper.

During the reactive control phase, Ginga adapts the execution of a query� by navigating the adapta-
tion space. When�� is executing, Ginga monitors the validity of memory constraint predicates in adapta-
tion condition����. If one (or more) of memory constraint predicates in adaptationcondition���� becomes
invalid, an adaptationevent���� is generated and adaptationtrigger���� is fired. Ginga makes the transi-
tion in the adaptation space to the next query plan�� by matching the new set of memory constraints with
adaptationcondition��� �. The query execution continues with�� .

2.2 Query Execution Model

In Ginga, query plans are processed according to the Segmented Execution Model (SEM) as described
in [12]. In this model, a query plan�� is first decomposed into a set of right-deep segments. Then, a
segment execution schedule,�������, is generated by assigning numbers to each segment in a left-deep
recursive manner. Segments are executed one at a time. For example, suppose that�� is the query plan
shown in Figure 1(a). According to SEM,�� will be divided into two segments,�	
�	��� and�	
�	���
(Figure 1(b)), where������� �
 �	
�	���� �	
�	��� �. Segments are further represented as a sequence
of operators. In this example,�	
�	��� �
 �� � and�	
�	��� �
 ��� ��� �� �.

Segment2

Segment1

J4

J1

R1 R2 R3

J3

J2

R4 R5

Ji: Hash Join i
Rj: Base Relation j

Legend:

(a) Query Plan P_i (b) Segmented Query Plan P_i

J1

R1 R2 J2

R4 R5

R3

J3

J4

Figure 1: Query plan decomposed into right-deep segments.

Segments are right-deep because right-deep trees allow us to pipeline the execution of hash joins and
achieve inter-operator parallelism. If enough memory is available for constructing the hash tables (or at least
part of them, if partitioning is needed) for the join operators involved in a right-deep (sub) tree, then we can
execute these operators concurrently in a pipeline fashion. The advantage is that we can eliminate the need
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for caching intermediate results into disk (as needed) and consequently improve the query total response
time. SEM assumes that join operators are hash-based

Considering that at any given moment there will be only one segment�� � ������� being executed,
in the rest of this paper, we study how to adapt the execution of�� when there is a violation of memory
constraint predicates in adaptationcondition(��) that affects the execution of��. Observe that by adapting
��, Ginga generates a new query plan�� .

3 Application of Ginga for Managing Memory Constraints

In this section, we first present three adaptation actions that Ginga can fire to accomplish dynamic adaptation
to cope with variable memory constraints: (1) changing join algorithms, (2) switching operands of a hash
join if left operand is larger than right operand, and (3) choosing a memory allocation strategy appropriate
for the query plan and memory available. Then, we describe how to organize these actions into an adaptation
space�, and how Ginga navigates� to get around the changes in memory constraints.

3.1 Changing Join Algorithm

In a relational database environment, three join algorithms have been commonly used: nested-loop join
(NLJ), hash join (HJ), and sort-merge join (SMJ). When compared, NLJ has the worst performance. In
general, HJ offers superior performance [11]. However, SMJ can outperform HJ if at least one of the
operands is sorted (see Section 4.1). Based on this observation, we present our first adaptation action, the
“Changing Join Algorithm” (Figure 2): Given��, the current segment to be executed from input plan��, for
all join operator��� � ��, if ��� is a HJ and at least one of its operands is sorted, then change��� to SMJ.

ADAPTATION ACTION adapt action chgJoinAlgo
Input: ��: current plan.
Output: �� : plan�� adapted.

1: Let �� �� ���� � � � � ��� 	� �
����� be the current segment to be executed.
2: �� � copyOf(��); // Make a copy of�� to generate the adapted plan�� .

// For each join operator in��, check whether we should change its method.
3: for ���� � �� do
4: if (����
����� �� sort merge join) and (isSorted(���������������) or isSorted(����������������)) then
5: ����
����� � sort merge join;

6: return ��

Figure 2: Adaptation Action “Changing Join Algorithms.”

3.2 Switching Operands of Hash Joins

The adaptation action “switching operands of hash joins” is a simple one: if the actual size1 of the left
operand of a hash join is larger than the size of the right operand, then switch the operands. However, de-
spite its simplicity, this action has interesting properties, as we illustrate next. We assume that operands are
switchedbefore starting the execution of the hash join. Figure 3 depicts the adaptation action for switching
operands.

Example 1 Consider the query plan�� shown in Figure 4(a) where������� �
 �	
�	��� �. Also,
assume thatsizeOf(��) � sizeOf(��) andsizeOf(��) � sizeOf(��), wheresizeOf��� returns
the size of� in bytes andsizeOf���� is the result size of��.

1The observed size at runtime of a base relation or intermediate result.
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ADAPTATION ACTION adapt action switchJoinOprnd
Input: ��: current plan.
Output: �� : plan�� adapted.

1: Let �� �� ���� � � � � ��� 	� �
����� be the current segment to be executed.
2: �� � copyOf(��);

// For each hash join operator in��, check whether we should switch its operands.
3: for � � �� � � � � � do
4: Let ��� � �� // Iterate thorugh the operators of�� in reverse order.
5: if (����
����� �� hash join) and (sizeOf(���������������) 	 sizeOf(����������������)) then
6: ��� � ����������������
7: ��������������� � ����������������� // Switching operands of���.
8: ���������������� � ����
9: ����
����� � hash join improved; // Flag that this join was improved.

// Check whether the switching of operands will result in changing the shape of the query tree.
10: if ��� is not the last operator in�� then
11: �� .reshapeQryTree(���); // Divide �� at ��� and change the shape of the tree.
12: break; // Interrupt thefor-loop.

13: return ��

Figure 3: Adaptation Action “Switching Operands of Hash Joins.”

Segment1.1Segment1

Segment1.2

J2

R2

R1J1

R3

(a) Initial Segment

R2

(b) Switching operands of J1 (c) Switching operands of J2

Plan P1 Plan P2

Segment1

J1

R2 R3

J2

R1

Plan P0

J1

Legend
Ji: Hash Join i
Rj: Base Relation j

J2

R1

R3

Figure 4: Effects of switching operands.

When Ginga executesadapt action switchJoinOprnd, the current segment of�� to be exe-
cuted is�	
�	��� and�� is the first operator considered in the for-loop of Line 3.�� satisfies the condition
in Line 4 and its operands are switched generating a new plan,�� (Figure 4(b)). A similar process is
executed for the next operator��, resulting in query plan�� shown in Figure 4(c).

When Ginga switches the operands of��, the original tree shape of�� is not affected. However, by
switching the operands of��, the original right-deep tree is transformed into a left-deep tree. In this
case, Ginga needs to change�	
�	��� by dividing it in two sub-segments, namely,�	
�	����� and
�	
�	�����, and updating the segment schedule of�� to ������� �
 �	
�	������ �	
�	����� �. The
division of �	
�	��� is necessary because we are using SEM, where each segment is a right-deep (sub)
tree. By switching the operands of��, we violated this property. The process of detecting the change
in shape of a query plan tree and updating the respective segment schedule is captured in Lines 9 and 10
(Figure 3).

The process of re-shaping the query tree by simply switching the operands of a hash join has two inter-
esting properties. First, we can perform a simple re-optimization of the current query plan by improving the
performance of hash joins. Second, if the size of the left operand is larger than expected, it is likely that the
result of the associated hash join operator will also not match its estimated size. By changing the shape of
the query tree, we are able to (1) stop the propagation of inaccurate estimated size of intermediate results
up into the tree and (2) handle the estimation error when we schedule the next segment generated in the
re-shaping process. This is possible because Ginga adapts each segment of a plan�� as they are scheduled
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(see Section 2.2).

3.3 Choosing Memory Allocation Strategy

Our third adaptation action for coping with variable memory constraints chooses the appropriate memory
allocation strategy for distributing the available memory among the operators of a segment so that the total
query response time is minimized. Different memory allocation strategies were proposed in the literature [6,
2]. In this paper, we focus on two strategies demonstrated to be the most efficient in a number of different
scenarios: Max2Min [6, 2], and the strategy proposed in [2], which we refer in this paper as AlwaysMax.

Briefly, Max2Min follows the heuristic described in [13]: in order to obtain better return on memory
consumption, allocate the maximum amount of memory to operators with small maximum memory require-
ments. AlwaysMax attempts to always provide the operators with their maximum memory requirements.
When there is not enough memory to match these maximum requirements, the segment is divided in two
sub-segments, which will be executed sequentially.

ADAPTATION ACTION adapt action chooseMemAlloc
Input: ��: current plan.
Output: �� : plan�� adapted.

1: Let �� �� ���� � � � � ��� 	� �
����� be the current segment to be executed.
2: �� � copyOf(��);

// Calculate the cost of executing�� using Max2Min.
3: 
������ � segmentExecCost(��, max2min,
�
��� ����);
4: ����
���� � max2min;

// Calculate the cost of executing�� using AlwaysMax.
5: ������������� � segmentExecCost(��, alwaysMax,
�
��� ����);

// Choose the allocation strategy that yields the least cost.
6: if (
������ � �������������) then
7: ����
���� � alwaysMax;
8: ��.memAllocAlgo =����
����; // Records the selected memory allocation strategy.

9: return �� ; // �� � �
�����.

Figure 5: Adaptation Action “Choosing Memory Allocation Strategy.”

Figure 5 depicts the adaptation action for choosing the appropriate memory allocation strategy. Given
��, the current segment to be executed from input plan��, Ginga first estimates the costs of executing��
using Max2Min and AlwaysMax. Then, Ginga chooses the strategy that yields the least response time. An
important parameter for estimating the execution cost of�� is�	���� ���	. Considering that each segment
is executed one at a time,�	���� ���	 is equal to the memory allocated by the Memory Manager for
executing��. Ginga estimates the cost of executing�� using the functionsegmentExecCost described
in the Appendix.

3.4 Constructing and Navigating the Adaptation Space

So far, we have described three adaptation actions for coping with variable memory constraints during
the execution of query plan��. In this section, we briefly describe how to organize these actions into an
adaptation space�, and how Ginga navigates� to get around changes in memory constraints.

Ginga will adapt the execution of�� when at least one of the memory constraint predicates listed in
Table 1 is invalidated. The associated adaptation events and actions to be fired are summarized in Ta-
ble 2. For example, if the predicate OperandPredicate is invalidated, then eventlarge operands is fired and
adapt action switchJoinOprnd is executed. Based on these events and actions, Ginga generates
the adaptation space for�� shown in Figure 6. We now describe how Ginga navigates this adaptation space.
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Table 1: Memory Constraint Predicates for plan��, where�� � ������� is the current segment to be
executed.

Predicate Name Description

Algo Predicate ���� � ��, if ����
����� ��  �! ,
then isSorted(���������������) == TRUEor isSorted(����������������) == TRUE;

OperandPredicate ���� � ��, if ����
����� �� "! ,
then sizeOf����������������� � sizeOf������������������.

MemorySizePredicate memory allocate to�� is greater or equal to the expected memory size
(i.e., the memory size assumed during the optimization process).

Plan P_j9

Legend:
AE: adaptation_event
AC: adaptation_action

AC(P_j5,P_j8): chooseMemAlloc
AE(P_j5): small_memory AE(P_j7): small_memory

AC(P_j7,P_j9): chooseMemAlloc

AC(P_j2,P_j4): chooseMemAlloc
AE(P_j2): small_memory AE(P_j3): small_memory

AE(P_i): small_memory
AC(P_i,P_j1): chooseMemAlloc

AC(P_j3,P_j6): chooseMemAlloc

AC(P_j3,P_j7): chgJoinAlgo

Plan P_i

Plan P_j1 Plan P_j2 Plan P_j3

AE(P_i): sorted_operands
AC(P_i,P_j2): chgJoinAlgo

AE(P_i): large_operands
AC(P_i,P_j3): switchJpoinOprnd

Plan P_j8

AE(P_j2): large_operands
AC(P_j2,P_j5): switchJpoinOprnd

Plan P_j6 Plan P_j7Plan P_j5Plan P_j4

AE(P_j3): sorted_operands

Figure 6: Adaptation space for coping with memory constraints.

Let 	�������� be the set of adaptation events of�� that were fired, and let���� 	�������� be the set of
all possible combination of these events. We call each combination��� � ���� 	�������� anadaptation
path, which describes a possible path in the adaptation space that Ginga can navigate to find the appropriate
alternative plan for��.

Example 2 Consider the adaptation space shown in Figure 6. Now, suppose that both AlgoPredicate and
OperandPredicate of plan�� were invalidated, firing eventssorted operands and large operands, respec-
tively. In this case, we have���� 	�������� � � (sorted operands, large operands); (large operands,
sorted operands)�. If Ginga follows the first adaptation path in���� 	��������, plan��	 will be selected
(see Figure 6). On the other hand, following the second adaptation path, Ginga will choose plan��
. The
decision on which plan to use is made by comparing the cost of each plan. Ginga selects the plan with the
least cost. The algorithm for navigating the adaptation space from Figure 6 is described in the Appendix.

It is important to observe that not all paths in���� 	�������� are relevant. For example, if both
Algo Predicate and MemorySizePredicate are invalidated, the alternative plan generated by executing first
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Table 2: Adaptation events and adaptation actions.

adaptation event(��) Invalidated Predicate adaptation action(��� �� )

sorted operands Algo Predicate adaptaction chgJoinAlgo
large operands OperandPredicate adaptaction switchJoinOprnd
small memory MemorySizePredicate adaptaction chooseMemAlloc

adaptaction chooseMemAlloc followed by adaptaction chgJoinAlgo is not a good solution. The selection
of the appropriate memory allocation strategy is based on the memory requirements of the operator algo-
rithms in the segment. If after the selection is done we change the operator algorithms, this will invalidate
the decision made adaptaction chooseMemAlloc. The adaptation space depicted in Figure 6 shows only
the relevant adaptation paths.

When Algo Predicate or OperandPredicate are invalidated, MemorySizePredicate may also become
invalid. This occurs because as Ginga changes the configuration of join operators, the expected memory
size for executing the new plan may also change. Consequently,small memory may be fired if the modified
join operators require more memory than what was originally allocated to��.

4 Performance Evaluation by Simulation

For all experiments reported in this paper, we use a simulator (based on the CSIM toolkit) that models a
server machine running Ginga. Table 3 lists the main parameters used for configuring the simulator. All
base relations involved in the queries submitted to Ginga are assumed to be available on the server’s local
disk. We use different sizes of base relations, where each tuple in a relation has 200 bytes.

The experiments are divided into three groups. The first group (Section 4.1) studies the effects of
changing join algorithms or operand ordering. The second group (Section 4.2) studies the effects of changing
memory allocation strategies. The third group (Section 4.2) studies the combination of different algorithms
and strategies.

Table 3: Simulation Parameters

Parameter Value Description

Speed 100 CPU speed (MIPS)
AvgSeekTime 8.9 average disk seek time (msecs)
AvgRotLatency 5.5 average disk rotational latency (msecs)
TranferRate 100 disk transfer rate (MBytes/sec)
DskPageSize 8192 disk page size (bytes)
MemorySize �� � � � ��� memory size (MBytes)
DiskIO 5000 instructions to start a disk I/O
Move 2 instructions to move 4 bytes
Comp 4 instructions to compare keys
Hash 25 instructions to hash a key
Swap 100 instructions to swap two tuples

4.1 Join Algorithms

To study the effects of changing join algorithms and operand ordering, we use a simple workload: a sin-
gle join � � �� � ��, where we fix���� � ������	� and vary the size of�� from �����	� to
�������	� using two different memory sizes, namely,������	� and ������	�. Arguably, more
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sophisticated joins will contain this elementary configuration as a subset and the results of this simple ex-
periment will apply to them as well. Although the join algorithms are well known, we were surprised by the
non-trivial differences among them. We ran experiments with a variety of operand and memory sizes to test
the sensitivity of the parameter settings, and found similar results.

The graphs in Figure 7 show the response time of executing join� as a function of�� size using four
different methods, namely, nested-loop join (NLJ), sort-merge join (SMJ), hash join (HJ), and hash-join
improved (HJ-Improved). HJ-Improved switches the operands when the left is larger than the right operand.
For sort-merge join, we study four subcases: with�� sorted,�� sorted, both sorted, and neither sorted.
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Figure 7: Response time of alternative join algorithms using two memory sizes: (a) 25MBytes and (b)
50MBytes.

When there is enough memory to fully execute� in main memory, all four join methods have sim-
ilar performance. The difference between their response time stems from the different number of CPU
instructions. However, as the size of the left operand (��) increases, requiring I/O operations, significant
differences arise. First, as expected, NLJ has the worse performance. The vertical lines at 25MB in Figure 7
(a) and at 50MB in Figure 7 (b) show the well understood scalability problems of NLJ and we do not discuss
it further.

For the main memory size of 50MB, Figure 7 (b) shows that SMJ is the fastest join method when��
or both�� and�� are sorted. It also shows that when only�� is sorted, SMJ is still better than HJ, but
HJ-Improved now performs better than SMJ. This is an interesting observation, since SMJ is slower than HJ
in the general case, when both�� and�� are unsorted. The figure shows that when one of the operands is
sorted, it is worth switching to SMJ in most situations. Similarly, HJ-Improved is a significant improvement
over static HJ, since HJ-Improved is able to cope with an increasingly larger size of left operand by always
switching the smaller operand to the left.

For a smaller main memory size of 25MB, Figure 7 (a) shows that the relative performance of HJ,
HJ-Improved, and SMJ becomes more intricate when the memory constraints are tighter. While the shape
of the curves remained the same, vertical displacements changed the trade-offs among them. First, since
�� does not fit in main memory anymore, when only�� is sorted, SMJ is significantly slower than when
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both operands are sorted. Second, the advantage of HJ-Improved starts later, losing to SMJ��-sorted for a
significant range of smaller�� sizes.

4.2 Memory Allocation Strategies

To study the effects of different memory allocation strategies, we chose the simple example query plan
�� (right-deep tree) depicted in Figure 8 with the following configuration:���� � ������	�, ���� �
������	�, ���� � �������	�, and ���� � ������	�. We ran experiments with a variety of tree
shapes, and operand and memory sizes to test the sensitivity of the parameter settings, and found similar
results.

The graphs in Figure 9 show the response time of executing�� as a function of the memory size allocated
to this plan using two different memory allocation strategies, namely, Max2Min and AlwaysMax. For a
smaller intermediate result (50MB), Figure 9 (a) shows that AlwaysMax loses to Max2Min when main
memory size is smaller (less than 20MB). The reason for that is because the intermediate result will not fit
in main memory, and it will have to be completely cached into disk and read back again. For intermediate
memory sizes (between 20MB and 75MB), AlwaysMax wins. This occurs because the extra I/O cost is
amortized by the gain that we get by giving the maximum memory blocks to each operator. But, as we
increase the size of the result of the��, even by amortizing the I/O cost, AlwaysMax will be no better than
Max2Min (Figure 9(b)).

Plan P0

R1

J2

R3R2

J1

Segment1
Legend

Rj: Base Relation j
Ji: Hash Join i

Figure 8: Query Plan�� used for the experiments described in Section 4.2 and Section 4.3.

In Figure 9(a) and (b), we can see 3 inflection points in the AlwaysMax curve, dividing it into 4 seg-
ments. In the first segment (up to about 30MB main memory), the response time rapidly decreases because
each join operator is receiving all memory blocks that are available to execute��. The second segment (be-
tween 30MB and 60MB) the response time does not decrease as fast as before because now�� (the smaller
of the two join operators w.r.t. memory requirements) receives all the memory that it needs to execute in its
best performance (i.e., without incurring any I/O costs), but�� still does not receive its maximum required
memory to also execute without I/O cost. The third segment shows intermediate results still present. Fi-
nally, when both joins can be executed in main memory, no more disk costs are necessary for caching the
intermediate result. That explain why around 92MBytes we have a sudden drop in the response time for
AlwaysMax. From this point on response time becomes dependent only on CPU cost for performing the
actual joins and I/O costs for reading the base relation. Similar observations are applied to the graph shown
in Figure 9(b).

In contrast, the Max2Min curve has one inflection point in Figure 9(a) and two in Figure 9(b). Up
to 30MB of main memory, both operators increasingly receive more memory blocks, resulting in a fast
decrease of the response time. For the smaller intermediate result, Figure 9(a), the same processing rate
continues. However, for a larger intermediate result, Figure 9(b), the smaller join receives its maximum
required memory, and the decreasing rate of the response time is given by the improvement in performance
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Figure 9: Performance of alternative memory allocation under two scenarios as we vary the memory size:
(a) ���� � ������	�; (b) ���� � �������	�.

of the execution of��, which receives more memory blocks. Finally, at around 92MBytes, the response
time becomes dependent only on CPU costs.

Figure 9(a) shows a non-trivial relationship between the two memory allocation strategies. It is non-
obvious when it is better to use one or the other. So we can conclude that indeed it is advantageous to choose
the most appropriate memory allocation strategy for the current memory constraints. As it is clearly shown
in this graph, there are moments where it is beneficial to use AlwaysMax and moments where Max2Min
is a better alternative. A third line (the bottom most) illustrates the adaptive strategy, where it will always
provide the response time using the memory allocation strategy that yields the fastest response time.

4.3 Combination of Adaptation Actions

One of the main results of using adaptation space is Ginga’s ability to combine different adaptation strategies
in a systematic way. Our next experiments combine the join method adaptations described in Section 4.1
with the memory allocation strategy adaptations described in Section 4.2. We again use query plan��
from Figure 8, but this time with the following configuration:���� � ������	�, ���� � ������	�,
���� � �������	�, ���� � ������	�, and���� � ������	�. Observe that with this configuration two
adaptation events will be fired during the execution of��: sorted operands and large operands. We also
assume that eventsmall memory is fired. We ran experiments with a variety of tree shapes, and operand and
memory sizes to test the sensitivity of the parameter settings, and found similar results.

Table 4: Adaptation Paths for the Experiments

Adapt. Path Events Sequence of actions

1 (memory size) Choosing Memory Allocation Strategies
2 (sorted operands, memory size) Changing Join Algorithm� Choosing Memory Allocation Strategies
3 (large operands, memory size) Switching Hash Join Operands� Choosing Memory Allocation Strategies
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The graphs in Figure 10 and Figure 11 show the response time of executing�� as a function of the mem-
ory size allocated to this plan when Ginga navigates the adaptation paths listed in Table 4. We omit the analy-
sis of other adaptation paths such as (large operands, sorted operands, memory size) and (sorted operands,
large operands, memory size) since they are subsumed by the cases in Table 4.

Figure 10(a) shows the benefits of switching the operands (Section 3.2) and called the HJ-Improved
case in the figures in Section 4.1. (We include this case here to simplify the explanation of figure 10(b).)
By switching the operands alone, Ginga can improve the response time modestly up to memory size of
30MBytes, when both operands fit in main memory and the response time of switching versus not switching
the operands becomes the same. Figure 10(b) shows the effects of combining adaptive memory allocation
with operand switching and changing to sort-merge join when one (or both) of the operands is sorted. As
expected, if the sorted relation has a small size (e.g.,��), the benefits are also small (not shown). When a
larger relation (��) is sorted, Figure 10(b) shows an improvement of up to 20% compared to the reference
line (adaptive memory allocation only). With an even larger relation (��) sorted, Figure 11(a) shows an
improvement of up to 42% over the response time of the reference line. When all operands are sorted, Ginga
shows an improvement in the response time of up to 70% for�� (Figure 11(b)), since the main memory
requirements are minimized. The benefits of adaptation action “Changing Join Algorithms” (Adaptation
Path 2) are maximized when the last operator (���) of a segment� is switched to SMJ. By changing��� to
SMJ, all join operators in� that depend on the result of��� (i.e., all remaining operators��� � �, � � � 
 �)
will also change to SMJ. Consequently, all SMJ join operators in� will have at least one operand sorted. As
demonstrated in Section 4.1, with this configuration, SMJ outperforms HJ in most situations.

We now further analyze the benefits and trade-offs of adaptation action “Switching Hash Join Operands”
(Adaptation Path 3) using the experiment results reported in Figure 12. The graphs in this figure show
the response time of executing�� as a function of result size of�� using two different memory sizes,
namely, 5MBytes and 10MBytes. The graph shows an improvement of up to 10%, when���� 
 ����. As
���� becomes larger than���� (=25MB), Ginga will no longer switch the operands, and the response time
becomes the same as the reference line (memory allocation only).

In Figure 12(a), the reference line (higher curve) has one inflection point, dividing it into two segments.
In the first segment (up to���� �13MB), Ginga chooses AlwaysMax as the memory allocation strategy. In
this strategy, if each operator in the segment cannot receive their maximum required memory, the segment
is cut, and the intermediate result between the two sub-segments must be cached into disk. AlwaysMax
yields better performance than Max2Min for small intermediate result size. However, as the size of the
intermediate result grows large, Max2Min becomes a better choice. In the second segment of the reference
curve, Ginga uses Max2Min memory allocation strategy. Similar observations are applied to the graph
shown in Figure 12(b).

In contrast, the lower curve for Adaptation Path 3 in Figure 12(a) has two inflection points, dividing it
into 3 segments. In the first segment (up to 5MB), the hash table for the left operand of��, which now is
��, can fit in main memory. In the second segment (between 5MB and 25MB), hash table for�� no longer
fits in main memory, requiring increasingly I/O operations for execution��. In the third segment, because
���� � ����, Ginga no longer switches the operands, and Adaptation Path 3 and reference line become the
same. Similar observations apply for Figure 12(b).

We have an interesting situation in Figure 12(a) when���� � ���� 
 ����, where switching
operands becomes worse than only selecting memory allocation strategy. The reason for that is the follow-
ing. When Ginga switches the operands of��, query�� is transformed in the left-deep tree, which results in
two segments, with a single operator each. Consequently, each operator will receive all memory available
for its execution, and if the intermediate result does not fit in main memory, it will have to be cached into
disk. For��� � ���� 
 ����, the extra I/O due to caching���� is amortized by the improvement of
switching the operands of��. However, when���� � ����, the benefits of switching operands no longer
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Figure 10: Performance of combining adaptation actions: (a) No operand is sorted; (b) Only�� is sorted.
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Figure 11: Performance of combining adaptation actions: (a) Only�� is sorted; (b) All operands are sorted.

14



0 5 10 15 20 25 30
800

850

900

950

1000

1050

1100

R
e
s
p
o
n
s
e
 T

im
e
 (

s
e
c
)

Size of J1 (MBytes)

Workload: (R1 JOIN (R2 JOIN R3)) right−deep; ****Memory Size: 5MB****
|R1|=25MB; |R2|=50MB; |R3|=100MB; |J2|=25MB; NONE SORTED

Only Mem.Alloc.Strategy
Switch Operands−>Mem.Alloc.Strategy
Ginga

(a)

0 5 10 15 20 25 30
750

800

850

900

950

1000

1050

R
e
s
p
o
n
s
e
 T

im
e
 (

s
e
c
)

Size of J1 (MBytes)

Workload: (R1 JOIN (R2 JOIN R3)) right−deep; ****Memory Size: 10MB****
|R1|=25MB; |R2|=50MB; |R3|=100MB; |J2|=25MB; NONE SORTED

Only Mem.Alloc.Strategy
Switch Operands−>Mem.Alloc.Strategy
Ginga

(b)

Figure 12: Performance of adaptation action Switching Operands, when no operands are sorted and memory
size equal to (a) 5MBytes and (b) 10 MBytes.

pays off if we compare it with the reference line. At this point, the caching cost can no longer be amortized
by the improvements for��, and the response time for Adaptation Path 3 becomes worse than the refer-
ence line. In Figure 12(b) this situation is not observed due to two reasons. First, with larger memory size
(=10MB), �� and�� have better performance. Second, given the improved performance of the hash joins,
the cost of caching���� can always be amortized by the improvement of switching the operands of��.

5 Related Work

There are three main problems related to memory management for query execution under memory con-
straints. The first problem focuses on how to allocate memory blocks to concurrent operators within a query
in a way that will minimize the total query response time. Different approaches to memory allocation were
proposed in the literature [6, 2] for addressing this problem. These approaches, which assume that query
execution follows SEM, can be broadly classified intostatic anddynamic memory allocation strategies. The
former is executed at start-up time whereas the later is applied at runtime, before executing each segment.
[6] has proposed and evaluated four static memory allocation strategies, which included Max2Min (also
called SMALL). As reported in [6], in general Max2Min presented best performance. However, the main
problem with static strategies is that they allocate memory based onestimated size of intermediate results. If
there is a significant difference between actual and estimated sizes of these results, query plans using static
memory allocation strategies may have suboptimal performance. [2] addresses this problem with a dynamic
strategy that we call in this paper AlwaysMax. As demonstrated in [2], in general AlwaysMax presents
better performance than Max2Min. However, as shown in Section 4.2, there are situations where Max2Min
can be a better choice than AlwaysMax. Ginga considers both strategies at runtime, before executing each
segment, and selects the one that yields the best response time.

The second problem associated to managing memory constraints represents the situation where memory
has been properly allocated to the query but the estimated sizes for the intermediate results were inaccurate,
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which may result in a significant increase of paging. Research work on query re-optimization [4, 1, 7] ad-
dresses this problem. Mid-query re-optimization [4] attempts to re-optimize the query execution whenever
a significant difference between estimated and observed values for operators’ selectivity is detected at run-
time. Eddies [1] suggests the re-ordering of operators in the presence of configuration fluctuations of the
runtime environment during query execution. [7] assumes that the estimated values for operators’ selectivity
and base relation sizes are not accurate and constructs the query plan at runtime as data become available.
Ginga is similar to these approaches in the sense that it also provides query re-optimization. However, these
approaches are limited to use only the adaptation actions that they propose. Extending these approaches to
handle runtime changes other than inaccurate estimated values is a non-trivial task. In contrast, Ginga uses
a unified simple model based on adaptation space that allows the incorporation of other dynamic adaptation
methods to handle different runtime changes in memory constraints.

The last problem related to managing memory constraints is how to allocate memory blocks available
in the system among concurrent queries, which is addressed by the research work on multi-query optimiza-
tion [3, 13]. [3] proposes a global optimization where the idea is to optimize all query plans at once while
determining how to distribute among the concurrent queries the memory blocks available in the system.
[13] introduces the concept ofreturn on consumption for studying the overall performance improvement
of individual join queries due to additional memory allocation. The inclusion of multi-query optimization
techniques into Ginga service is part of our future research work. In this paper, we assume that the Memory
Manager will handle the problem of distributing the system memory blocks among the concurrent queries.

Methodologically, the Ginga service follows our previous research on program specialization [5]. In pro-
gram specialization, we take advantage of quasi-invariants to eliminate unnecessary work. Similarly, Ginga
uses the memory constraint predicates in adaptation conditions to optimize query execution. The monitoring
of adaptation events is similar to the guarding of quasi-invariants, when an invalidation causes replugging of
specialized code. Unlike program specialization, which relies primarily on program manipulation methods
such as partial evaluation, Ginga uses many different techniques such as switching join algorithms, operand
ordering, and memory allocation strategies to optimize query processing.

6 Conclusion

With the availability of ever increasing data, more sophisticated queries will take longer time, and more
likely the statically-generated initial query processing plan will become suboptimal during execution. For
example, inaccurate selectivity estimates may cause the left operand of a hash join to become larger than
the right operand, causing the algorithm to require more main memory than necessary or additional I/O
overhead. Similarly, as main memory availability changes due to system load, memory allocation strategies
may slow down query processing at different degrees due to thrashing. While individual memory adaptation
methods have been studied in the past, combining them has been a non-obvious task due to the non-trivial
interactions among the methods and system components.

We have designed the Ginga service [9, 10] to investigate the effects of dynamic adaptation during
query execution. In a previous paper [9], we studied the trade-offs of different adaptation strategies in query
execution in the presence of network delays. In this paper, we focus on the adaptation techniques when
query execution becomes suboptimal due to memory constraint changes (Section 3). While a number of
unrelated adaptation techniques have been known to be effective in isolation, Ginga uses the concept of
adaptation space to organize and combine them. In the case of memory constraints, we apply and combine
several dynamic adaptation methods such as choosing sort-merge join when operands are sorted, switching
the operands for hash joins when the left operand is found to be larger, and selecting memory allocation
strategies, e.g., between Max2Min and AlwaysMax as appropriate.

We used Ginga’s query processing simulation system to evaluate the effectiveness of these three methods
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in isolation and in combination (Section 4). Our experimental results confirm that each method improves
query response time by reducing memory bottlenecks. More significantly, combined query adaptation can
achieve significant performance improvements (up to 70% of response time gain for representative system
and workload configurations) when compared to individual solutions. These results show that it is a good
idea to combine adaptive methods to address memory constraints at runtime, and Ginga offers a systematic
approach to organize and combine these methods in an effective way. The Ginga approach also offers
promise for the incorporation of other dynamic adaptation methods to handle runtime changes in memory
constraints.
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A Cost Estimation Functions and Adaptation Space

FUNCTION estimatedExeCost
Input: (1)��: current plan; (2)
�
��� ����: memory allocated to execute��.
Output: ������$�����: cost of executing�� starting at��, the current segment to be executed.

1: Let �
����� �� ��� � � � � �� 	

2: Let �� � �
����� be the current segment to be executed and� � �;
3: ������$����� � �;
4: for � � �� � � � � � do
5: ������$����� � ������$������ segmentExecCost(��� �� �
�
����
�����
�
��� ����);
6: return ������$�����;

Figure 13: Segment cost estimation.

FUNCTION segmentExecCost
Input: (1) ��: segment to be executed; (2)����
 ����: memory allocation strategy for��;

(3)
�
��� ����: memory allocated to execute��.
Output: �������: cost of executing��.

1: Let �� �� ���� � � � � ��� 	;
2: allocate memory(��� ����
 �����
�
��� ����); // Allocate memory to operators in�� using����
 ���� strategy.
3: ������� � �;
4: for � � �� � � � � � do
5: ������� � �������� ����
�����; // ����
����� is the cost function of HJ or SMJ.
6: return �������;

Figure 14: Cost estimation a query plan, starting from the current segment to be executed.
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ADAPTATION SPACE MgtMemoryConstraints
Input: adaptspace(��): adaptation space for��.
Output: �� : plan�� adapted.
Require: at least one of memory constraint predicates in adaptationcondition(�� ) is invalidate.

1: 
������ ��;
// Adaptation Path: (small memory)

2: if (MemorySizePredicate(�� ) == FALSE)then
3: adapt action chooseMemAlloc(���� �� );
4: 
������ � estimatedExeCost(���
�
��� ����);
5:

// Adaptation Paths: (sorted operands); (sorted operands, small memory); (sorted operands, large operands); and
(sorted operands, large operands, small memory).

6: if (Algo Predicate(�� ) == FALSE)then
7: adapt action chgJoinAlgo(��� ���);
8: if (MemorySizePredicate(��� ) == FALSE)then
9: adapt action chooseMemAlloc(���� ���);

10: 
����� �estimatedExeCost(����
�
��� ����);
11: if (
������ 	 
�����) then
12: 
������ � 
�����; �� � ���; // Adaptation Path: (sorted operands, small memory)
13: else if (OperandPredicate(��� ) == FALSE)then
14: adapt action switchJoinOprnd(���� ���);
15: if (MemorySizePredicate(��� ) == FALSE)then
16: adapt action chooseMemAlloc(���� ���);
17: 
����� �estimatedExeCost(����
�
��� ����);
18: if (
������ 	 
�����) then
19: 
������ � 
�����; �� � ���; // Adaptation Path: (sorted operands, large operands, small memory)
20: else
21: 
����� �estimatedExeCost(����
�
��� ����);
22: if (
������ 	 
�����) then
23: 
������ � 
�����; �� � ���;// Adaptation Path: (sorted operands, large operands)
24: else
25: 
����� �estimatedExeCost(����
�
��� ����);
26: if (
������ 	 
�����) then
27: 
������ � 
�����; �� � ���;// Adaptation Path: (sorted operands)
28:

// Adaptation Paths: (large operands); (large operands, small memory); (large operands, sorted operands); and
(large operands, sorted operands, small memory).

29: if (OperandPredicate(�� ) == FALSE)then
30: adapt action switchJoinOprnd(��� ���);
31: if (MemorySizePredicate(��� ) == FALSE)then
32: adapt action chooseMemAlloc(���� ���);
33: 
����� �estimatedExeCost(����
�
��� ����);
34: if (
������ 	 
�����) then
35: 
������ � 
�����; �� � ���;// Adaptation Path: (large operands, small memory)
36: else if (Algo Predicate(��� ) == FALSE)then
37: adapt action chgJoinAlgo(���� ���);
38: if (MemorySizePredicate(��� ) == FALSE)then
39: adapt action chooseMemAlloc(���� ���);
40: 
����� �estimatedExeCost(����
�
��� ����);
41: if (
������ 	 
�����) then
42: 
������ � 
�����; �� � ���;// Adaptation Path: (large operands, sorted operands, small memory)
43: else
44: 
����� �estimatedExeCost(����
�
��� ����);
45: if (
������ 	 
�����) then
46: 
������ � 
�����; �� � ���;// Adaptation Path: (large operands, sorted operands)
47: else
48: 
����� �estimatedExeCost(����
�
��� ����);
49: if (
������ 	 
�����) then
50: 
������ � 
�����; �� � ���;// Adaptation Path: (large operands)

51: return �� ;

Figure 15: Adaptation Space for Managing Memory Constraints.
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