Vulnerabilities and Security Threatsin Structured Peer-to-Peer Systems:
A Quantitative Analysis

Mudhakar Srivatsaand Ling Liu
College of Computing
Georgia Institute of Technology
{mudhakar, lingliu}@cc.gatech.edu

Abstract

A number of recent structured Peer-to-Peer (P2P) systems are built
on top of distributed hash table (DHT) based P2P overlay networks.
Almost all DHT-based schemes employ a tight-deterministic data
placement and ID mapping schemes. This feature on one hand pro-
vides assurance on location of data if it exists, within a bounded
number of hops, and on the other hand, opens doors for malicious
nodes to lodge attacks that can potentially thwart the functionality
of the P2P system.

This paper studies several serious security threats in DHT-based
P2P systems through three targeted attacks at the P2P protocol layer.
The first attack explores the routing anomalies that can be caused
by malicious nodes returning incorrect lookup routes. The second
attack targets the tight data placement scheme. We show that repli-
cation of data items, by itself, is insufficient to secure the data items.
The third attack targets the ID mapping scheme. We disclose that
the malicious nodes can target any specific data item in the sys-
tem; and corrupt/modify the data item to its favor. For each of
these attacks, we provide quantitative analysis to estimate the ex-
tent of damage that can be caused by the attack; followed by an
experimental validation and defenses to guard the DHT-based P2P
systems and counteract such attacks.

1 Introduction

P2P computing is commonly perceived as an infrastructure
offering both opportunities and threats. One way to mini-
mize threats in P2P systems is to understand the potential
threats and the level of damages they may cause to a P2P sys-
tem and to increase the system’s ability to defend itself from
malicious intents, malicious behaviors, and potential threats
incurred by known attacks or unpredicted attacks.

Attacks on a general P2P system can be targeted at three
layers: the network layer (say, TCP/IP), the overlay net-
work layer (say, lookup protocols) and the application layer.
There are marked differences in the security issues concerned
at each of these layers. Also, the algorithms used at the
higher layers largely depend on the guarantees provided by
the lower layers. For instance, the lookup protocols may as-

sume that the network layer reliably and securely delivers a
message to its intended recipient node. Breaking any of these
guarantees provided by a lower level layer to a higher-level
layer can disrupt the entire security infrastructure.

In this paper, we focus primarily on the vulnerability of
P2P systems for targeted (well-planned) attacks at the P2P
protocol/overlay network layer. Hence, we assume that the
underlying network layer is reliable and secure. In particu-
lar, we focus on several attacks that can potentially thwart
the functionality of the system, by preventing the nodes from
locating or accessing data on the overlay network. We dis-
cuss three targeted attacks and present defenses for the same.
We use quantitative analysis and experiments to demonstrate
the extent of damage that can be caused by these attacks with
and possible defense solutions.

The famous Sybil Attack paper [6] showed that entities
(nodes) can forge multiple identities for malicious intent,
and hence, a small set of faulty entities may be represented
through a larger set of identities. Douceur concludes in [6]
that for direct or indirect identity validation (without using a
centralized trusted agency), a set of faulty nodes can coun-
terfeit an unbounded number of identities. One solution sug-
gested to counter the Sybil attack in [6] is using secure node
IDs that are signed by well-known trusted certifying author-
ities. However, as Douceur pointed out himself that man-
dating that every node must possess a certificate would turn
out prohibitively expensive. Hence, one is forced to employ
weak secure node IDs (with challenges to verify the node
IDs); for example, several systems like CFS [5] use the IP-
address of a node as its weak secure ID. Therefore, it be-
comes very important to quantify and analyze the security
trade-offs when weak secure IDs are used.

However, the Sybil Attack paper provides neither a dis-
cussion nor any formal analysis on what concrete damage
such Sybil attacks might ground and how quantitative analy-
sis can help us understand the extent of damage such vulner-
abilities may cause.

The research presented in this paper is built on the re-
sults from the Sybil Attack paper [6] with two novel con-

tributions. First, we identify the attack on the DHT-based
routing schemes, which, to our knowledge, has not been dis-
cussed in existing literature. We provide experimental meth-
ods and quantitative analysis on the potential damage caused
by such attack and effectiveness of possible defense mecha-
nisms. Second, based on the results of the Sybil Attack paper
(a faulty peer can counterfeit a large number of identifiers),
we identify another two serious denial of information attacks
that can happen in concurrence with (or in the presence of) a
Sybil Attack — Attack on data placement scheme and Attack
on ID mapping scheme. We provide an in-depth quantitative
analysis on the extent of damage these attacks might cause,
followed by experimental validations, and present counter
measures against them.

2 Formal Modd

In this section, we formally describe a set of common prop-
erties of structured P2P systems. Our formal model brings
out the important concepts behind DHT-based systems that
aid us in analyzing the vulnerabilities and security threats on
structured P2P systems.

A typical DHT-based P2P protocol consists of a rout-
ing table based lookup service. The lookup service maps
a given key to a node (usually the IP-address of the node)
that is responsible for the key. Storage protocols are lay-
ered on top of the lookup protocol. For instance, CFS [5] is
a wide-area cooperative file system layered on Chord [23];
while OceanStore [10] is a distributed file system layered on
Tapestry [3]. A generic DHT-based lookup service has the
following properties:

(P1) A key identifier space, K. K is am-bit identifier space
where each data item is mapped to a unique identifier d € K
using any standard hash function (like MD5 [16] or SHA1
[20]).

(P2) ID Mapping Scheme defines a node identifier space S,
such that S = K. For example, Chord uses a one-dimensional
circular identifier space; while CAN uses a d-dimensional
coordinate space. Each node p is assigned an identifier
ID(p) € S. Some DHT based systems ([18]) allow nodes
to choose their identifier, while most others derive the identi-
fier of a node p, namely I D(p), as a strong one-way function
of an external identifier (E1D) of the node p. For example,
ID(p) could be equal to hash(IP(p)), where I P(p) denotes
the IP-address of node p. In this example, IP-address of a
node is used as its external identifier.

(P3) Rules for dividing the node identifier space among
the nodes. The DHT-based schemes define a responsibility
function for every node p which maps a node p to a con-
tiguous segment of identifier space S at time ¢, denoted as
Resp;(p). At any given time instant ¢, {Resp;(p) | p €
N(t)} partitions the node identifier space S, where N (%)

refers to the total collection of all nodes in the system at time
t. The algorithms also ensure that statistically every node
p shares the identifier space equally; that is, at any time in-
stant ¢, sizeof (Resp(p)) ~ sizeof(S)/N(t). Note that
the function sizeof depends on the nature of the identifier
space. For example, in Chord, sizeof () could be defined as
the length of the segment z; while in CAN, sizeof (z) could
be defined as the volume of the coordinate space spanned by
segment .

(P4) Data Placement Scheme specifies rules for mapping
keys to nodes: A node p is responsible for a key k € K at
time ¢ if and only if k& € Resp;(p). This guarantees that any
key k would always be found since the set { Resp:(p) | p €
N(t)} partitions the node identifier space S.

(P5) Routing Scheme uses the per-node routing tables.
Routing table entries on every node maintain references to
other nodes. More specifically, a distance metric is defined
between any two identifiers 4 and j as dist(¢, j). For exam-
ple, in Chord, dist(%, 7) may be simply defined as the length
of the segment (i, 7); while in CAN dist(i, j) could be de-
fined as the Cartesian distance between the points s and j in
a d-dimensional coordinate space. When a node n is queried
for key k, it returns a node m that is closer to key k; that is,
dist(ID(n), k) > dist(ID(m), k).

(P6) Rules for updating routing tables as nodes join and
leave. When a new node ¢ joins the network at time ¢,
it typically contacts an existing node p € N(t) such that
ID(q) € Respi(p). Note that there always exists such a
node m since the set {Respi(m) | m € N(t)} partitions
the identifier space S. The node ¢ typically assumes re-
sponsibility over a portion of the identifier space mapped to
node p; that is; Respy (p) and Respy (¢) partitions the space
Resp(p) fort' > t. Similarly, when a node leaves the net-
work, it hands over its responsibilities to another node in the
system.

The DHT-based systems guarantee location of any data
item within a bounded number of application level hops.
However, this advantage comes with a price: the DHT-based
systems enforce a highly rigid structure and rely heavily on
the correct functioning of (almost) all nodes in the system.
Their tightly coupled nature and heavy dependency on the
correctness of each node makes the DHT-based P2P systems
more susceptible to well-planned attacks. In short, an at-
tacker can potentially harm the system by targeting the del-
icately balanced structure enforced by the DHT-based sys-
tems.

3 Adversary Model

Adversaries refer to those nodes in the system, which ei-
ther intentionally or unintentionally do not adhere to the dis-
tributed lookup protocol correctly. The adversaries try to

mislead the non-malicious nodes by providing them with
wrong information in the form of incorrect lookup results or
providing invalid data through the data storage layer.

We assume that the underlying IP-network layer is secure.
Hence, (i) A malicious node has access only to the pack-
ets that have been addressed to it. (ii) All packets that can
be accessed by a malicious node can be potentially modified
(corrupted) by the malicious node. More specifically, if the
packet is not encrypted (or includes a message authentica-
tion code (MAC)) then the malicious node may modify the
packet in its own interest. (iii) The underlying domain name
service (DNS), the network routers, and the related network-
ing infrastructure is completely secure, and hence cannot be
compromised by a malicious node.

We also assume that a malicious node may own one or
more external identifiers (like IP-addresses). A malicious
node may assume any of the external identifier it owns. The
number of external identifiers that could be owned by a node
depends entirely on the nature of the external identifier. For
example, with IP-address as the EID, the introduction of IPv6
[9] could endow a malicious node with virtually thousands
of IP addresses. The same argument applies to dial-up users
who obtain Dynamic IP-address from a huge ISP (Internet
Service Provider). If the P2P system allows a node to choose
its identifier, then it only makes it easier for a malicious
node to attack the system. Therefore, our adversary model
assumes that the system always derives a node’s identifier
from its EID. We also assume that the malicious nodes may
be aware of other malicious nodes and hence, the malicious
nodes may join hands (collude) in a conspiracy against the
legitimate nodes.

4 Targeted Attacks and Defense
M echanisms

Under the adversary model discussed above, a collection of
malicious nodes can perform the following targeted attacks:

Attack on the Routing Scheme (Routing Anomalies): The ma-
licious nodes can lie about the next hop when asked about the
node id of a node responsible for a particular data item and
return incorrect lookup results, thereby, increasing the prob-
ability of lookup failures or dramatically increasing the cost
of a lookup operation. We identify the key properties of the
lookup protocol that determine the extent of damage caused
by such an attack.

Attack on the Data Placement Scheme (Information Decay):
The malicious nodes corrupt the information stored in the
system by repeatedly joining and leaving the network and
every time corrupting the data they are assigned responsibil-
ity for. We show that even when replication with majority
voting scheme are used, the information stored in the P2P
network decays in course of time.

Attack on the ID Mapping Scheme: The malicious nodes
plant an attack on a specific data item stored in the P2P net-
work. We show that such an attack is very powerful, though
it is quite expensive for the malicious nodes to execute such
an attack.

4.1 Attack on the Routing Scheme: Routing
Anomalies

A typical DHT-based P2P system constructs an overlay
topology in which every node plays the role of a client, a
server, a router, and a domain name server. When nodes act
as domain name servers - translating an identifier to the IP-
address of a node that is responsible for it (see Property P4
in Section 2), the malicious nodes can potentially exploit this
feature to misguide legitimate nodes with incorrect lookups.
This could result in denial of information - a legitimate node
is denied access to a data item; or sub-optimal performance
of the lookup algorithm. For example, a malicious node can
lie about the next hop when asked about the node id of a
node responsible for a particular data item and return incor-
rect lookup results. In the absence of no alternate paths any
malicious node along the only route can block all requests
(misguide), thereby, increasing the probability of lookup fail-
ures. In case there are alternative routes, this attack could
delay the routing of requests to correct nodes, thereby dra-
matically increasing the cost of a lookup operation.

There are several possible defense mechanisms to coun-
teract such vulnerabilities. Concretely, the properties of the
distributed lookup algorithm can be used to ascertain whether
a lookup for a given identifier is correct or not. For example,
[22] exploits the fact that: at each hop of the Chord lookup
algorithm the query originator knows that each step in the
lookup should lead him/her to get closer to the destination
identifier (see Property P5 in Section 2). Hence, the query
originator can check for this and detect an incorrect lookup.
On sensing an incorrect lookup, the query originator can
choose an alternative (possibly sub-optimal) path towards the
destination identifier. Informally, a lookup path from node n
to node m is the sequence of nodes through which a lookup
operation succeeds. We call node n the source and node
m the destination of the path. In the presence of malicious
nodes the performance of a lookup algorithm depends on the
following three factors: (i) Existence of multiple alternate
paths between any two identifiers, (ii) Lookup costs along
alternate paths between any two identifiers, and (iii) Ability
to detect incorrect lookups.

4.1.1 Alternate Lookup Paths

We first highlight the importance of alternate (possibly sub-
optimal) paths in enhancing the performance and robustness
of the lookup algorithm in the presence of attacks. We cap-

ture the notion of alternative lookup paths using the notion
of independence of lookup paths. We formally define inde-
pendence between two lookup paths as follows:

Definition Independent Lookup Paths: Let P and @ be dif-
ferent lookup paths from node n to node m. Two lookup paths
P and @ are said to be independent if and only if they do not
share a common node other than the source node n and the
destination node m.

Hence, each independent lookup path between a node n and a
node m is a statistically independent route for a lookup with
key k € Resp(m), originated at node n, to succeed. Note
that the property of independence is stronger than that of al-
ternate paths. For instance, there may exist multiple paths
between node n and node m responsible for the key k; how-
ever all these paths may happen to share a common node,
thereby making no two of them independent.

Most of the DHT-based systems do not guarantee the ex-
istence of multiple independent lookup paths between any
two identifiers. For instance, in Chord, all lookups for a key
k € Resp(m) will succeed only through the node pred(m),
where pred(m) denotes the predecessor of node m along the
Chord identifier circle. Hence, the number of independent
lookup paths between any node n and key k& € Resp(m)
is one, since all such lookup paths include node pred(m).
If the node pred(m) were malicious, lookup for any key
k € Resp(m) would fail. On the other hand, this situation is
greatly mitigated in DHT-based schemes like CAN that have
multiple independent lookup paths between any two identi-
fiers. More specifically, a d-dimensional CAN topology has
d independent lookup paths.

We use the probability of lookup failure as the metric for
measuring the benefits of alternate lookup paths. A lookup
for node m at node n results in a failure if all the lookup
paths from node n to node m contains at least one malicious
node. Intuitively, the number of independent lookup paths
the smaller is the probability of lookup failure. In the follow-
ing portions of this section we derive bounds on the probabil-
ity of lookup failure in terms of the number of independent
lookup paths.

Quantitative Analysis. Let ind denotes the number of in-
dependent lookup paths between the source and destination
node, p is the fraction of malicious nodes in the system,
and M denotes the number of hops required for a lookup to
succeed. Given ind independent lookup paths of length M
hops, one can show that the probability of a lookup failure is
bounded by Equation 1.

p™® < Pr(lookup failure) < (1 — (1 —p)M)ind (1)

Note that the existence of ind independent paths between a
source node src and destination node dst implies that there
exists nodes {ni,ns,--- ,mina} one of which occurs on all

paths from the node src to node dst. The lower bound is de-
rived from the fact that the lookup from node src for node dst
is guaranteed to fail if all the ind nodes {ny,n2, -+ ,nina}
were malicious. Let {Py, P, - - - P;,q} be any set of ind in-
dependent lookup paths between node src and node dst con-
taining nodes {n1,na,--- ,ninq} respectively. The proba-
bility of a lookup succeeding on any lookup path P; with
M hops equals (1 — p)™, namely, the probability that all
the nodes on that path were good. The upper bound fol-
lows from the independence of lookup failures along each
independent lookup path . For small values of p, the prob-
ability of lookup failure can be approximated to (M x p)in?
(M * p <« 1). Intuitively, the longer a lookup path (A1) the
higher is the chance that at least one node on the lookup path
turns out malicious. The statistical independence in lookup
failures along multiple independent paths ensures that the
probability of lookup failure decreases exponentially with the
number of independent paths (ind).

4.1.2 Alternate Optimal (less costly) Lookup Paths

Yet another important issue to be addressed with regard to
alternate lookup paths is the cost of these alternative paths
themselves. ldeally, the alternate paths should be alternate
optimal paths; otherwise, choosing highly sub-optimal alter-
nate paths may degrade the performance of the lookup al-
gorithm. Unfortunately, most of the DHT-based schemes do
not address such issues. For illustration, in Chord, say a node
n queries a good node z for key k£ and obtains the result as
node y as the result. Now, node n issues a query for key & to
node y. If node y were malicious, it would return an incor-
rect lookup result. If node n were to detect the invalid result,
the best choice it has is to ask node x (previous node on the
lookup path) for its next best choice for the query with key k.
Now, node z has to return a sub-optimal result, since it is not
aware of any node that is closer to key k than the malicious
node y. Since Chord maintains pointers to nodes at distance
that are an integer power of 2, it is likely that the next best
choice proceeds only half the distance along the identifier
circle when compared to the optimal choice. On the other
hand, in CAN it is quite possible for the alternate paths to be
near optimal. Consider the same scenario described above.
Assume, without loss of generality, that the identifier of node
x and key k differ along coordinates {c1, ca,- -+ ,¢}. Now,
if node = and node y varied along a coordinate c; (for some
j,» 1 < j <), then node z could choose other neighboring
nodes that vary along coordinates other than ¢;. In compar-
ison with Chord, the alternate choices provided for a lookup
in CAN, is likely to be much closer to optimality. We de-
fer further discussion on alternate-optimal paths to the end
of this section.

1This is an upper bound because the presence of alternate (but not inde-
pendent) lookup paths may decrease the probability of lookup failure

4.1.3 Detecting and Recovering from Invalid Lookups

Having highlighted the importance of good alternate paths,
we now study the importance of detecting incorrect (mali-
cious) lookups. In most of the DHT-based systems it is possi-
ble to detect invalid lookups with a reasonable degree of cer-
tainty since the lookup at each hop is supposed to get closer
to the destination identifier [22]. Hence, the query origina-
tor can check for this and detect an incorrect lookup. Upon
finding an incorrect lookup, the query originator can choose
an alternative (possibly sub-optimal) path towards the desti-
nation identifier. However, in certain cases like CAN’s RTT
optimization, the lookup results cannot be verified since the
intermediate lookup results are not available to the source
node (query originator). Therefore, for our quantitative anal-
ysis we consider the following two extreme scenarios:

e Scenario 1: An incorrect lookup can always be de-
tected.

e Scenario 2: An incorrect lookup cannot be detected:;
and hence, the querier blindly follows the lookup re-
sult.

For the sake of simplicity of analysis, we assume that the
DHT-based scheme has multiple alternate-optimal paths be-
tween any two identifiers (like CAN). Hence, the results ob-
tained from the results of our analysis below can be viewed
as the most optimistic case for the scenarios described above.

Quantitative analysis. Let M denote the mean number of
hops required to perform a lookup operation. For instance,
in Chord, M = Llog(N); in CAN, M = 2N where N is
the number of nodes in the system and d represents the di-
mensionality of CAN’s coordinate space. Let p denote the
percentage of bad nodes in the system. Also assume that the
bad nodes are uniformly spread throughout the node iden-
tifier space. Let f(z) be a function that maps the number
of hops required for a lookup when all nodes are good to
the number of hops required when p% of the nodes are mali-
cious. In other words, if a lookup would require 2 hops when
all nodes are good, it would require f(x) hops when p% of
the nodes are bad.

Scenario 1: Assuming that detecting an incorrect lookup is
always possible and that there always exists an alternate-
optimal path, fi(z) (the mapping function for scenario 1)
satisfies the following recurrence relation.

fiz) =1+ (1 —p)fi(z — 1) + pfi(z) ()

When a node n queries a node m for the next hop towards a
key identifier k£, node n expends one hop. Now, the success
of the lookup depends entirely on whether node m is good or
bad. If the node m is a good node (probability = 1 — p) then it
would have returned a correct lookup result. Hence, node n
would have to traverse z — 1 more hops to reach the key iden-
tifier & in the scenario where all nodes are non-malicious. In

the presence of malicious nodes, this would require f; (z—1)
hops by the definition of the function f;. If the node m were
a bad node (probability = p) then it would have returned an
incorrect lookup. However, node n detects this and chooses
an alternate-optimal path towards key k. Hence, node n is
still z hops away from key & in the scenario where all nodes
are good. In the presence of malicious nodes, this would cost
node n additional f; (x) hops (it is still possible to reach key
k in z hops in spite of ruling out one lookup path, since we
have assumed the presence of alternate-optimal paths).

Solving the recurrence relation, we get,

X
1-p

fi(z) = 3)
Hence, the expected (average) number of hops required for a
lookup operation is,

M

E[fi(z)] = -7

(4)
since, M = E[x] by definition.

Scenario 2: Assuming that incorrect lookups can neither be
detected or corrected, fo(x) (the mapping function for sce-
nario 2) satisfies the following recurrence relation,

fo(z) =1+ (1 —p)fa(z — 1) + pfa(M))

Note that the first two terms in the expression for f, follows
from the same arguments for scenario 1; it costs unity for
node n to query m and fa(z — 1) additional hops if node
m were good. However, if node m were malicious, it would
return an incorrect lookup and node n would blindly abide by
node mm’s result. Note that a collection of malicious nodes X
may keep circulating the query among nodes in X, thereby
ensuring that the query never succeeds. However, this would
cost the bad nodes in terms of their bandwidth for answering
repeated queries. Hence, we assume that the bad nodes return
a random node in the system as the next hop for key £ to
the query originator node n. Now, since the random node
could be located anywhere in the network, it would be M
hops away from the key & in the scenario where all nodes are
good. Hence, in the presence of malicious nodes, the lookup
operation would cost node n additional f2 (M) hops.

Using the recurrence relation 5 we compute the average
number of hops required for a lookup operation as follows.
We approximate E[f2(z)] to f2(E[z]) which is equal to
f2(M) (since M = E[z]). Note that fo(M) denotes the
lookup cost for scenario 2 in the presence of malicious nodes
when it would have required M hops in the absence of ma-
licious nodes. We observed that in most DHT-based systems
the mean number of hops M is also the most probable num-
ber of hops between any two random nodes in the system.
Hence, such an approximation does not significantly perturb
our analytical results. Further, our experimental results in

Figure 6 show that this approximation is acceptable. Hence,

1-(1-p™
E ~fo(M) = ——— 6
2] = (M) = — ®)
In order to make it easier to interpret this Equation we ap-
proximate the expression in Equation 6 for small values of p
as follows:

M

BB~ T3

()

Hence, the blow-up observed in the average lookup cost
for scenario 1 is 1% and for scenario 2 is 1_1Mp. Clearly,
scenario 2 pays higher penalty for its inability to detect and
recover from invalid lookups. Intuitively, in scenario 1, the
lookup makes one successful hop with a probability 1 — p;
hence, each hops translates into 1% hops. On the other
hand, scenario 2, pays heavily for every failed lookup. Let
us say that we start with a state S where the lookup opera-
tion is M hops from its target. Now, this lookup operation
succeeds if all the nodes in the path to the target are good
(Pr = (1—p)M); else it is back to its original state S. Hence,
the probability that a lookup succeeds in any given attempt
starting from state S is (1 — p)™; and hence the lookup cost
is varies as (1 — p)~M.

4.1.4 Enhanced Invalid Lookup Detection Algorithm

The basic invalid lookup detection algorithm relies on the
fact that: at each hop of the lookup algorithm the query orig-
inator knows that the lookup is supposed to get closer to the
destination identifier. We enhance this strategy with an al-
gorithm that checks whether a node m is indeed responsible
for a given key k. If node m claims that it is responsible for
key k, node n can verify if the key & is reasonably close to
ID(m), that is, dist(ID(m),k) < thr for some distance
threshold thr. This scheme has scope for both false positives
and false negatives. A false positive occurs when a node n
mistakenly believes that node m cannot be the node that is
responsible for key k&, when node m is actually responsible
for key k (dist(ID(m), k) > thr A k € Resp(m)). A false
negative occurs when a node n mistakenly believes that a
node m is responsible for key k, when node m is actually not
responsible for it (dist(ID(m), k) < thr A k ¢ Resp(m)).
Quantitative Analysis. Let Z be a random variable that de-
notes the distance between a key & and the node m that is
responsible for key k. Let fz(x) denote the probability dis-
tribution function (pdf) that the node p that is responsible for
any key k is within a distance of z (on Chord’s unit circle,
0 < z < 1) from the identifier k, i.e, dist(ID(p),k) < x
and k € Resp(p). Assuming N denotes the total number of
nodes in the system, one can show that

fz(x) = N*(1-2)V (8)

By the uniform and random distribution properties of the
hash function the identifier of a node will be uniformly and
randomly distributed between (0, 1). Hence, the probability
that the identifier of any node falls in a segment of length z
is equal to . Equation 8 follows from the fact that the prob-
ability that there exists a node between distance and x + dx
from key & is N xdz, and the probability that there is no other
node within a distance z from key k is (1 — z)¥~1. Using
Equation 8 one can show that, Pr(Z >) = e~thr,

Now, suppose that node n uses a threshold ¢thr and agrees
that node g is responsible for key & only if dist(ID(p), k) <
“’TT. The probability of false positive FP = Pr(Z > %)
can be derived from the probability distribution function of
the random variable Z. Hence,

FP(thr) = e7thr ©)

Now, we derive the probability of a false negative as a func-
tion of the threshold thr and p,, the fraction of malicious
nodes known to node m. Intuitively, if the threshold thr were
to be large, node m may be able to locate a malicious node
g known to node m that is within the threshold. We derive
the probability of a false negative F'NV as the probability that
there exists a malicious node known to node m in segment
of length thT" Following the same lines of arguments used to
derive Equations 8 and 9 the probability of a false negative is
given by Equation 10.

FN(thr,p,) =1 — e threm (10)

Note that the results shown in Equations 9 and 10 are ap-
plicable to the case wherein node identifiers are chosen uni-
formly and randomly (and hence, it does not apply directly to
CAN-RTT; CAN with RTT optimization). Observe that the
probability of false positive exponentially decreases with the
length of threshold segment and is independent of the frac-
tion of malicious nodes in the system.

Figures 1 and 2 show the probability of false positives
(fp) and false negatives (fp) for different values of thresh-
old (thr) and the fraction of malicious nodes in the system
(p). Note that “fp’ denotes the probability of false positive
and ‘fn-p’ denotes the probability of false negative when p%
of the nodes in the system are malicious. Figure 1 shows the
results for p,, = p, that is, node m is aware of all the bad
nodes in the system. Figure 2 shows the results for a more
realistic (less pessimistic) scenario wherein we assume that
only 20% of the malicious nodes collude (p,, = £). Ob-
serve from Figure 2 that for thr = 2.5, the false positive and
the false negative probabilities are both under 0.1 even for
p = 20%. Hence, this demonstrates that a node can correctly
decide on whether a lookup result is valid or not with a prob-
ability of 90%. Given the fact that fp is independent of p, in
both Figures 1 and 2 we plot the fp curve to show the mea-
surements obtained on how the probability of false positives
varies over different values of threshold (thr).

Verifiable Result Caching. Caching is a popular technique
to enhance the performance of any system. For instance, a
basic result caching scheme for a DHT-based P2P system
would cache lookup results at various nodes in the system;
a node upon receiving a lookup request, may lookup its lo-
cal cache and return appropriate cached results. However,
a major drawback with the basic caching scheme is that a
malicious node may misguide other nodes by returning in-
valid lookup results as if they were valid cached results. One
could overcome this problem by employing a verifiable re-
sult caching scheme that uses the enhanced invalid lookup
detection algorithm to identify (with fairly high probability)
the correct lookup results from the incorrect/malicious ones.
In short, one can use result caching to enhance both the per-
formance of the system and the verifiability to protect the
system from abuse by malicious nodes.

4.1.5 Experimental Validation

We have so far identified and quantitatively analyzed the
importance of multiple independent paths, alternate optimal
paths, the ability to detect and recover from invalid lookups,
and verifiable result caching in hardening targeted attacks on
the routing algorithm. Now we present four sets of exper-
iments to validate the above analysis. First, we study the
dependency between the number of independent paths and
the probability of lookup failure. Second, we measure the
lookup cost in the presence of malicious nodes and evalu-
ate the performance of the proposed defense mechanisms re-
garding to the two scenarios: An incorrect lookup (1) can
always be detected or (2) cannot be detected. The third set
of experiments demonstrates the benefits of the verifiable re-
sult caching scheme. Finally, we discuss some extensions
of concepts like alternate lookup paths to unstructured P2P
networks.

Experiment 1. In this experiment, we demonstrate that hav-
ing multiple independent lookup paths indeed decreases the
probability of lookup failures. We simulated the working of
a P2P system using the Chord lookup protocol with 1024
nodes. The average lookup cost when there are no malicious
nodes is 5, i.e., M = 5. We also constructed CAN sys-
tems with approximately the same average lookup cost; a 2-
dimensional CAN with 100 nodes (M = 5), a 3-dimensional
CAN with 216 nodes (M = 4.5), a 4-dimensional CAN with
625 nodes (M = 5), and a 10-dimensional CAN with 1024
nodes (M = 5). A random set of p% of the nodes were cho-
sen to behave maliciously. From a practical standpoint, we
associate a time-to-live (7T L) with every lookup operation.
Hence, a lookup operation is successful only if it terminates
correctly within TTL overlay network hops.

Table 1 compares the experimental results with the bounds
obtained from our analytical model (Equation 1, Section
4.1.1) when p = 10%. Although the bounds obtained from

our quantitative analysis are not very tight, the trends re-
vealed by our analysis closely reflect the results obtained
from our experiments. For instance, the upper bound on the
probability of lookup failure sharply decreases with increase
in the number of independent lookup paths. This motivated
us to experiment with a number of DHT-based P2P systems
with varying number of independent lookup paths.

Figure 3 shows that the probability of lookup failure with
TTL = 100 >, M = 5 and varying p. Observe that 50%
of the lookups fail in Chord when about 25% of the nodes
are malicious, while a 4-D CAN with 25% malicious nodes
records less than 10% lookup failure. This amply verifies the
fact that the probability of lookup failure increases steeply
with the decrease in the number of independent paths.

Figure 4 shows the probability of lookup failure with
TTL = 100 and p = 10% and varying M. Observe that the
probability of lookup failure increases with the mean number
of hops (). Note that for any lookup path to succeed, all
the nodes on the lookup path must be non-malicious; longer
the path, higher is the probability that at least one malicious
node appears on that path.

Experiment I1. In this experiment, we illustrate the perfor-
mance of DHT-based P2P systems for the scenarios 1 and
2 discussed in section 4.1.3. Figure 5 shows the average
lookup cost for scenario 1 wherein, the legitimate nodes ver-
ify whether the lookup result appears to be valid by checking
if the new node is indeed closer to the key k. On detecting
an invalid lookup, node n gets the next best alternative node
and forwards the query to it. Note that this strategy for de-
tecting invalid lookups has scope for a one-sided error of
concluding that an incorrect (or a sub-optimal) lookup result
as a correct result. The estimates from our quantitative analy-
sis are labeled as ‘check_Ehops’ (Equation 4, Section 4.1.3);
they denote the lower bounds obtained on the expected num-
ber of hops assuming a large number of independent paths.
The lines labeled “‘chord_check’ and ‘cand_check’ refer to
the cases wherein the lookup protocol checks for validity
as a part of the Chord, and the d-dimensional CAN proto-
cols respectively. We shall discuss the implications of Fig-
ure 5 in conjunction with the Figures 6 and 7. Figure 6
shows the average lookup cost for scenario 2 wherein, the
legitimate nodes do not test the validity of the lookup re-
sults. The line labeled ‘nocheck_Ehops’ (Equation 6, Section
4.1.3) shows the results obtained from our quantitative anal-
ysis. The lines labeled ‘chord_nocheck’ and ‘cand_nocheck’
refer to the cases where the Chord and the d-dimensional
CAN protocols were used without checking for the valid-
ity of lookup operations. Finally, Figure 7 shows the mean
lookup cost in the presence of p = 10% malicious nodes
for varying values of M (the mean number of hops in the
absence of malicious nodes). Note that all failed lookups ter-

2TTL was set high enough to ensure that most of the alternate lookup
paths are explored by the lookup algorithm

0.8
0.6 1

0.4

'fn-5 —=— |

02 'fn-10

'fn-15"

AR , 20" —e—

0 1 2 3 4 5 6 7 8 9
Threshold

False Positives and Negatives

Figure 1: Probability of False Positives
and False Negatives with 100% Collu-

False Positives and Negatives

e
'fn-10"
081 'fn-15'
'fn-200 —e—

0.6
0.4

0.2

Threshold

Figure 2: Probability of False Positives
and False Negatives with 20% Collusion

sion

0.9
o 08F

S
5 0.7 r

DHT | Lower | Expt | Upper g
Bound | Result | Bound g 067
Chord 0.1 029 | 040 g os|
CAN-2 | 001 | 009 | 016 5 04l
CAN-3 | 0001 | 004 | 006 £ o3
CAN-4 | 00001 | 0015 | 0.28 g T
CAN-10 0.0 10-% | 107% & o
of

"chord_failure’ —+—
‘can2_failure’ —<—
‘can3_failure’ —8—
‘can4_failure’

'chord_failure’
‘can2_failure’
‘can3_failure’
‘cand_failure’

Probability of Lookup Failure
o
N

10 20 30

Table 1: Probability of Lookup Failure Figure 3: Probability of a lookup failure:
Initial T7TL = 100and M =5

(p = 10%): Quantitative Analysis

minate when their TT L expires. Based on Figures 5 and 6,
we can testify the following statements:

Validate our quantitative analysis. Observe that
‘check_Ehops’ and ‘nocheck_Ehops’ act as lower bounds
for the ‘check’ and the ‘nocheck’ versions of the lookup
protocol respectively. Also, observe that the results for
a 10-D CAN closely matches our quantitative analysis,
since our analysis was specifically targeted at obtaining
lower bounds on lookup costs assuming a large humber of
independent paths between any two identifiers.

Checking the validity of a lookup result becomes very impor-
tant for large values of p and large values of M. However, for
small values of p, checking the validity of a lookup result is
not very vital in the presence of multiple independent paths.
In fact, for p < 40%, a 10-D CAN with no validity checks
incurs no more than 5-8% higher lookup cost than a 10-D
CAN that performs validity checks. But, for large values of
p (around p = 70%), the lookup protocols that do not include
validity checks incur as high as 40-50% (for 10-D CAN) to
about 200% (for Chord) (Note that Figure 6 shows the results
only up to p = 50%). Also, observe from Figure 7 that for
M < 8 ‘can8_nocheck’ incurs about 30% lower lookup cost
than ‘can4_check’.

Importance of good alternate paths. Since ‘can3_check’
has multiple near-optimal alternate paths, its lookup cost

40
Percentage of Malicious Nodes

50 60 70 3 4 5 6 7 8
Mean Number of Hops (M)

Figure 4: Probability of a lookup failure:
Initial TT L = 100 and p = 10%

is within thrice of the optimal lookup cost even when p
equals 70%. On the other hand, ‘chord_check’ shows
much poorer performance, primarily because of the fact that
Chord does not provide multiple independent lookup paths.
The same argument also explains the better performance of
‘can8_nocheck’ over ‘can4_check’ in Figure 7 (for M < 8).
Further, the vitality of alternate paths is more blatantly re-
vealed by the figure from the fact that, ‘chord_check’ per-
forms worse than ‘can3_nocheck’.

Finally, the readers should keep in mind that it is indeed
possible to strengthen the Chord or the CAN protocol to
make up for certain deficiencies that we have pointed out
in this paper. The readers should consider our viewpoint of
these protocols as specific instances that were suitable for us
to illustrate the key properties of a DHT-based P2P system.

Experiment I11. In this experiment, we illustrate the perfor-
mance enhancement that we achieve when verifiable pointer
caching is employed by a DHT-based P2P system. Figure
8 shows the mean lookup cost for varying fractions of mali-
cious nodes using the Chord lookup protocol on 1024 nodes
under the following three scenarios: (i) No pointer caching,
(ii) Basic pointer caching and (iii) Verifiable pointer caching.
For this experiment, we chose the caching parameters as fol-
lows: the per-node cache size was set to 64 routing table en-
tries (pointers) with a simple LRU based replacement strat-

©
=}

©
o

'nocheck_Ehops’
’can10_nocheck’

'can3_nocheck’
'chord_nocheck’

‘check_Ehops’ —+—
‘can10_check’ —<—
‘can3_check’ —&—
"chord_check’

~
=)
~
S

@
o
o
o

3
o
o
o

w
=]
w
o

Mean Lookup Cost (Hops)
B
o

n
o
N
o

Mean Lookup Cost (Hops)
8

N
o
2
S)

— T "can8_check’ —+—

‘can4_check’ —<— b
‘can8_nocheck’ —8— nl
‘can4_nocheck’ —e—

Mean Lookup Cost (Hops)
o
N

0 10 20 30 40 50 60 70 0 5
Percentage of Malicious Nodes

10 15 20 25 30 35 40 45 50 3 4 5 6 7 8 9 10
Percentage of Malicious Nodes

Mean Lookup Cost (M)

Figure 5: Lookup Costs: Scenario 1 with Figure 6: Lookup Cost: Scenario 2 with Figure 7: Lookup Costs Vs M: p =

‘no-cache’ ——
‘basic-cache’ —x—
50 - ‘verifiable-cache’ —&—

30 -

Mean Lookup Cost (Hops)

0 10 20 30 40 50 60 70
Percentage of Malicious Nodes

Figure 8: Verifiable Result Caching

0.9 T T T
‘random’ —+—
0.8 ‘power-law’ —>—

0.7
0.6
0.5
0.4
0.3
0.2
0.1
o

Probability of Lookup Failure

10 20 30 40 50 60 70
Percentage of Malicious Nodes

Figure 9: Unstructured P2P Networks

egy, and we employed path caching (a lookup result is cached
at all nodes along its lookup path). With verifiable result
caching in place, a malicious node is largely constrained to
return correct lookup results. This significantly reduces the
mean lookup cost by about 40-60% when compared to the
basic caching scheme. Observe that in the presence of a large
population of malicious nodes, the basic caching scheme
breaks down; one could attribute this to the same reasons
that cause the lookup algorithms with no checks (scenario 2
in section 4.1.3) to fail in the presence of large population of
malicious nodes.

Experiment 1V: Extensions to Unstructured P2P Net-
works. We briefly compare the structured and the unstruc-
tured P2P systems with respect to their susceptibility to rout-
ing anomalies. Unstructured P2P networks like Gnutella [8]

10%

use a broadcast-styled lookup algorithm, which has lot of re-
dundancy built into it (and hence reduces the probability of
lookup failure 3) but largely increases the messaging traffic.
One could build such redundancy into a DHT-based lookup
protocol by broadcasting a lookup query along all alternate-
optimal paths. Nevertheless, even when a broadcast-based
lookup protocol is used, the notion of the number of inde-
pendent paths plays a crucial role in determining the proba-
bility of a successful lookup. Figure 9 shows the probabil-
ity of a successful lookup on a 1024 node unstructured P2P
network built on a random topology with uniform node de-
gree 3 and a random power-law topology with mean node
degree 3 [19]. We picked 100 random pairs of nodes and
measured the number of independent paths between them 4.
For a random topology, we observed that the mean number of
independent paths was ind,.pq0m = 2-91 and for a power-
law topology, the mean number of independent paths was
indpower1aw = 1.94. From Figure 9, it is apparent that the
random power-law topology pays with 40-70% higher proba-
bility of lookup failure for having a fewer number of indepen-
dent paths. This experimental result assumes lot of practical
relevance, since the actual topology of the Gnutella network
is observed to be a random power-law topology [19].

4.2 Attacking the Data Placement Scheme

In this section, we show a mechanism through which the ma-
licious nodes could corrupt the data stored in the P2P system.
In particular, we quantify and analyze the extent to which
malicious nodes can corrupt data and discuss plausible solu-
tions to harden the system against such an attack.

Consider a DHT-based data storage system. A typical
storage system built on a DHT-infrastructure incorporates
replication as a mechanism to guarantee high availability of
data. We argue that though replication is a very good mech-

SA malicious Gnutella node simply drops all incoming query request
without broadcasting them.

4By Menger’s theorem [14], the number of independent paths equals the
vertex connectivity of a graph; and vertex connectivity can be measured
using network flow techniques [15]

anism to ensure high reliability and high availability of data,
replication alone is insufficient to tolerate attacks by mali-
cious nodes.

We illustrate this scenario in detail in the context of a dis-
tributed P2P trust management system. A P2P trust manage-
ment system such as [1, 25] provides schemes to estimate the
trustworthiness of any node in the P2P system. Trust infor-
mation about every node is replicated on several other nodes
with a hope that using a majority decision drawn from the
trust values reported by all the replicas could defend ma-
licious behavior of some of the replica holders. Also, a
trust management system usually assigns a low (default) trust
value to a newly joining node [25]. Hence, the good nodes
typically stay longer in the system to preserve the reputation
they have earned so far, whereas the bad nodes would enter
and leave the system more frequently to erase the poor rep-
utations they have had. Now we show that replication and
majority voting alone cannot secure a trust system from ma-
licious nodes.

Let G be the number of good or legitimate nodes, B be
the number of bad or malicious nodes, R be the number of
replicas maintained by the system for every data item (usu-
ally, R € B < @) and Ng;p denote the number of external
identifiers owned by each node. Recall that in the adver-
sary model (section 3) we assume that every bad nodes can
own several EIDs, the bad nodes can decay the data stored
in the system through the following simple strategy: The bad
nodes repeatedly join and leave the system each time using
a random EID (from the pool of EIDs they own) and cor-
rupt the data assigned to them. Choosing different EIDs en-
ables the bad nodes to be assigned entirely different node
identifiers each time (assuming uniform random properties
of the hash function), thereby corrupting different data sets
each time (see DHT properties P2 and P4 outlined in Section
2). On the other hand, the good nodes attempt to validate
data before they accept data from any leaving node by using
a majority decision (see property P6 in Section 2). We use
quantitative analysis and experiment validation to show that
replication and majority voting alone are insufficient to guard
a P2P system against such an attack.

4.2.1 Quantitative Analysis

Let ¢r be the corruption threshold, namely, the number of
replicas that are required to be corrupted so as to ensure
that the data item cannot be recovered. Note that cr de-
pends on the properties of the data item stored. First, we
argue that in the context of a trust management system, cr
should be equal to [R/2] (a simple majority decision). Most
trust systems like [1, 25] allow nodes to transact with each
other and submit an evaluation of the transaction to R replica
nodes. Also, the trust value for a node is evaluated incremen-
tally, and does not change dramatically on the addition of a

10

new report. Given this property of the trust value, one need
not worry much about inconsistent updates at different repli-
cas (some replicas might have received more recent reports),
since it anyway does not significantly alter the node’s trust
value. One could simply use the median of the trust values
reported by the replicas as the actual trust value of the node.
Hence, the only way cr incorrect trust values could radically
alter the median of R trust values (given that the remain-
ing R — cr trust values are approximately the same) is for
cr > [R/2].

On the other hand, for data items whose updates can
significantly affect their values, one would have to choose
cr > [R/3], based on the famous Lamport’s Byzantine gen-
erals problem and Byzantine quorum systems [12, 13]. For
encrypted and authenticated data, the corruption threshold cr
equals R, since any data item can be successfully recovered
as long as there exists one uncorrupt copy of the data item in
the system. In short, the hardness of corrupting a replicated
data item (cr) depends on the nature of the data item.

We estimate the extent of damage caused by malicious
nodes in two steps. First, we derive the extent of data corrup-
tion that can be caused by malicious node at any given snap-
shot or time instant. Then, we estimate the fraction of data
items that get corrupted over a long period of time. Just for
the simplicity of the analysis assume that all the bad nodes
operate in lockstep; that is, all of them join the system at the
same time (or within a short interval) and all of them cor-
rupt data and leave the system at the same time (or within a
short interval). Therefore, when all the bad nodes are a part
of the system, the system consists of G good nodes and B
bad nodes. Usually, the replicas for a data item d is located
at identifiers {hash(d || 0),hash(d || 1),---,hash(d ||
R — 1)} ®. Since a DHT-based scheme divides the identifier
space uniformly among all the nodes, the probability that any
given data item d is stored at a malicious node is 5. At
this time instant, the probability that a data item d cannot be
recovered is the probability that at least cr replicas of the data
item d are stored at bad nodes, denoted by Prgecqy (B, G). It
can be defined as follows:

R
, B
Priceay(B,G) = Y binom(z——zi0,B) (11)

g>cr

Where binom(p; q, R) denotes the probability in a binomial
distribution for ¢ successes from R trials where the probabil-
ity of success in any trial is p.

As bad nodes join and leave the system, they cor-
rupt data items stored at different portions of the identifier
space. Given B identifiers, the malicious nodes can cor-
rupt Prdecay(B,G)”‘ portion of the identifier space. Let
the number of EIDs owned by a bad node be denoted by

5Note that there is a small probability that two or more replicas hash to
the same physical node

Ngrp. The number of data items that would be decayed
after many iterations by the malicious nodes is equivalent to
the number of data items that would have decayed if there
were B.yy = Ngrp * B bad identifiers in the system. Thus
the number of data items that are eventually corrupted (af-
ter possibly infinite rounds by the malicious nodes) can be
estimated by Equation 12.
Prggcay(BJ G) = Prdecay(Beff; G) (12)
There are three remarks on the above equations. First,
the probability that at least ¢r replicas of the data item d
are stored at bad nodes in a given round (Equation 11), de-
notes the probability that a data item survives in this round
of bad nodes joining/leaving the system. Second, the proba-
bility that a data item survives across multiple rounds of bad
nodes joining/leaving depends on how EIDs are chosen by
the bad nodes in a given round. More specifically, if the mali-
cious nodes do not choose their EIDs randomly and indepen-
dently (from their pool of EIDs) then Equation 12 may not
be a good approximation for the expected number of nodes
that will not survive the attack. In other words, if the EIDs
{EID,,EID,,--- ,EID..} are required to corrupt a data
item d, then at some round a set of cr malicious nodes must
choose their EIDs as {EID1,EIDs,--- ,EID,,} respec-
tively. Third, we have assumed that the good nodes do not
enter or leave the system frequently. Observe that in a more
realistic scenario, when the good nodes enter and leave the
system, the expected number of data items that can survive
this attack would be even smaller than the result obtained
from Equation 12. Also, note that if a node were allowed
to choose its node identifier then Ngjp is practically infinite
and hence all the data items in the system would eventually
decay.

4.2.2 Experimental Validation

We have so far identified and quantitatively analyzed the im-
portance of the corruption threshold, the number of replicas,
the fraction of malicious nodes, and the number of EIDs in
hardening targeted attacks on the data placement scheme.
Now we present two sets of experiments. The first set of
experiments demonstrate the data placement scheme attack
and show the rate at which data items are corrupted in the
system. The second set shows the relationship between the
nature of the data item and the effort required to corrupt it.

Experiment 1. In this experiment, we demonstrate the data
placement scheme attack. We simulated the working of a
P2P system using the Chord lookup protocol [23] with 1024
good nodes. We allow each node a maximum of 20 EIDs.
The results from our simulation are shown in Figures 10 and
11. Figure 10 shows the rate at which information decays
for different populations sizes of the malicious nodes (us-
ing R = 7 replicas for each data item). Observe that with

11

p = 20%, 50% of the data items in the system is corrupted
in less than 20 iterations. Figure 11 illustrates the rate of
information decay for different values of R (number of repli-
cas) for an extremely small population of malicious nodes =
2% of the system size. Observes that even when 11 replicas
(R = 11) are maintained for every data item, the malicious
nodes can corrupt 15% of the data items in about 125 iter-
ations. The results obtained from our quantitative analysis
(Equation 12) closely matches the experimental results for
the fraction of corrupted data items at ¢time = 600. Also,
the initial decay rate (time < 20) closely matches our es-
timate from Equation 11; For example, from Figure 10 for
%bad = 30, the initial decay rate from our experiments
is about 12.3% per unit time and that from our quantita-
tive analysis is about 12.5% per unit time. For intermedi-
ate time intervals, the decay rate falls below 12.5% per unit
time since the probability of data item decay in any two iter-
ations are no longer independent. These results clearly indi-
cate that information decays very rapidly in course of time.
Note that a trust management system becomes useless when
more than B/(B + G) of the trust values are incorrect. In
fact, a large fraction of incorrect trust values backfires on the
system since the bad nodes would be considered good and
vice-versa. Note that in the absence of a trust management
system, even when a node makes a random choice on other
nodes with whom it can transact, the probability of choosing
a bad node is only B/(B + G).

Experiment II. In this experiment, we show the relation-
ship between the nature of a data item and the effort re-
quired to corrupt it. Figure 12 shows the number of data
items that are eventually corrupted in the P2P system for
different values of Ng;p for three data protection charac-
teristics: cryptographically secure schemes (‘encrypt), trust
systems (‘trust-majority-vote) and Byzantine read-write quo-
rums (‘rw-quorums). From Figure 12 is apparent that the
cryptographic schemes (cr = R) shows much higher tol-
erance to malicious nodes than a trust systems with majority
vote based data recovery (cr = [R/2]), which in turn is bet-
ter than a simple Byzantine group based read-write quorum
(er = [R/3]). Interestingly, our analytical results match the
experimental results very closely (with a standard deviation
of the order of 10~2); hence, for the sake of clarity we re-
moved the analytical results from Figure 12.

4.2.3 Defense

The key problems using the replication-based security
scheme are: (i) When the trust values are stored in plain-text,
the bad nodes can toggle the trust values to make good nodes
appear bad and vice-versa, and (ii) When a data item gets cor-
rupted irrecoverably, it can never be detected (or corrected).
We can solve this problem by using cryptographic tools to
provide confidentiality and authentication guarantees. This

1 T Tt F—f— 04
0.9
0.8
0.7
0.6
05
0.4
03
0.2
0.1

0.35
0.3
0.25
0.2
0.15
0.1
'%bad=10" —+—

96bad=20" —x—
%bad=30" —5—

0.05

Fraction of Corrupted Data Items
Fraction of Corrupted Data Items

0.9
0.8
0.7
0.6
0.5
0.4
03
0.2
0.1

"encrypt’ ——
‘trust-majority-vote’ —x<x— i
‘rw-quorums’ —&—

Fraction of Corrupted Data Items

0 0

200 300 400 500 600 0 100 200
Time (Number of Iterations)

0 100

Figure 10: Decay rate for R =7

requires any transaction performed in the system to be signed
by all the parties involved in the transaction. This solution
clearly improves the corruption threshold ¢r to R, since any
data item can be recovered as long as at least one signed copy
of the data item survives and the decreases the probability of
decay of any data item to,

B R
B+G)

PTdecay(B; G) = ((13)

Observe that using the same analysis as described in Ap-
pendix B, the bad nodes can repeatedly join and leave the
system and amplify the effective number of bad nodes B,y
to B x Ngyp. Further, it seems that information does decay
using this scheme, though to a much lower extent, when com-
pared to the case wherein the data items are not encrypted.
However, by cryptographically signing data items, we pre-
vent good nodes from being misguided by a corrupt data
item. Hence, the fact that the legitimate nodes can figure out
whether a particular data item is indeed corrupted, at least
protects them against such invalid data items. Further, when
a good node is assigned a corrupted data item, it can take
corrective measures on the data item. In the context of a trust
system, a good node may reinitialize corrupted trust values
to a base (default) value. Note that such corrective measures
do not always exist; in say the file sharing scenario, there is
no useful default value that can be associated with a file, in
the event that all its copies are corrupted.

Figure 13 shows the efficacy of a trust management in
terms of the percentage of successful transactions in the P2P
system. We compare three versions of the trust management
system: (i) ‘majority-vote’-a basic majority vote based trust
management system, (ii) ‘encrypt-nodefault’-a cryptograph-
ically secure trust system, and (iii) ‘encrypt-default’-a cryp-
tographically secure trust system that assigns a default value
to any corrupted trust value. Figure 13 shows that the trust
management system gains significantly from cryptographic
techniques; further, the luxury of having a default value to
reset any corrupted data item improves the mean transac-
tion success rate by a little over 5% (when compared to the

300
Time (Number of Iterations)

Figure 11: Decay rate for %bad = 10

12

400 10
Number of EIDs

Figure 12: Corruption of Different Data
Types: %bad = 10and R = 7

‘encrypt-nodefault’ case).

Figure 14 shows the fraction of data items that are even-
tually corrupted versus the number of replicas maintained by
the system using the majority-vote based trust management
system (“majority-vote’) and a cryptographically secure sys-
tem (“encrypt’). Note that with Ngyp = 10 and the percent-
age of bad nodes = 5% and 20% of the number of good nodes
(G), the effective percentage of bad nodes turns out to be
Bes¢ = 50% and 200% of the number of good nodes respec-
tively. Observe that the majority vote based algorithm fails
when B.;y > G, that is, with increasing number of replicas
the percentage of corrupted data items increases. However,
using a cryptographically secure system, one can always re-
duce the percentage of corrupted data items by increasing the
number of replicas (recall Equations 12 and 13).

So far, we have demonstrated the ability of the crypto-
graphic techniques (over the basic replication) to secure the
system from the data placement scheme attack. However,
using cryptographic solutions in a large scale distributed sys-
tem brings in issues such as key management and perfor-
mance overheads. CFS [5] and Farsite [2] present solutions
to this problem in the context of a distributed file system.
In CFS (a distributed read-only file system), the root block
is identified by a public-key and signed by the correspond-
ing private key; the other blocks are identified by crypto-
graphic hashes of their contents. In Farsite, a directory is
implemented on a collection of machines using a Byzantine-
fault-tolerant protocol and file contents are stored encrypted
on file hosts.

In addition to these techniques, one can protect data items
stored in the system by hiding the keys used to encrypt them.
Say, the owner of a data item d encrypts it using a key & and
stores the key at a location identified by some random iden-
tifier rand_id. The owner distributes rand_id only to those
nodes that have the right to access the data item d. The node
that is responsible for the identifier rand_id (say, node n)
returns the key & when some node (say, node m) presents
the secret identifier rand_id. Assuming that rand_id is hard
to guess (sufficiently long), only the nodes that have been

1 ! — 1

‘encrypt-default’ —+—
‘encrypt-nodefault’ —<—
‘'majority-vote’ —&—

Fraction of Successful Transactions
o
o

Percentage of Corrupted Data Items

'majority-vote-%bad=5"
'majority-vote-%bad=20"

‘encrypt-%bad=5
‘encrypt-%bad=20"

t-3 -2 t-1 t t+1 t+2

Epoch Use SK(t)

Number of EIDs

Figure 13: Fraction of Successful Trans-
actions Vs Number of EIDs (%bad = 10

and R=17) 10

permitted access to the data item d can retrieve its key (if
node n were honest). However, node n may misuse the key
k to illegally gain access to data item d. One could get rid of
complete dependence on a single node by storing the key at r
identifiers, say {rand_id,rand_ids,-- - ,rand_id,}. How-
ever, replicating the key & at different nodes © does not help
(in fact, it makes the situation worse); hence we need to di-
vide the key & into r secret shares [21] and store one share
at each of these r nodes. If mal denotes the number of mali-
cious nodes (in the set of r nodes) and mal < thr < r is the
threshold used for constructing secret shares, and mal < r/3
then the key & would be secure [12].

The cryptographic techniques described above are suit-
able for cases wherein access to a collection of data items
had to be limited to a group of nodes in the system. How-
ever, in other scenarios like the trust management system,
a report about a transaction can be filed by any node. In
such scenarios, it is very important to preserve the authentic-
ity and non-repudiability of the reports. Hence, one would
have to rely on public-key cryptography based algorithms to
provide the required level of security (a shared symmetric
key neither provides authentication or non-repudiation, since
any node that knows the key could have generated the re-
port). However, a 1024-bit RSA [11] signature costs about
8ms; and signature verification costs about 1ms on 900 MHz
Pentium 111 processor using the standard OpenSSL library
[17]. But one could use several interesting properties of a
trust management system to avoid using public-key cryptog-
raphy. Most trust evaluation mechanisms operate in epochs
(rounds); all the reports filed in a round is evaluated (by in-
completely trusted agents) only at the beginning at the next
round (for various performance reasons). Further, every re-
port is used exactly once, to evaluate the new trust value of
nodes at the beginning of each epoch. For an illustration of
a typical trust evaluation mechanism see Figure 15. Hence,
at epoch ¢, a node n may encrypt all its reports using a cheap

6Note that we ignore the small probability that two or more random iden-
tifiers hash into the same node

10 0 2 4 6
Number of Replicas (R)

8

Figure 14: Fraction of Corrupted Data
Items Vs Number of Replicas (Ngrp =

13

10 12

Reports Trust SK(t) SK(t+1)

symmetric key encryption algorithm (DES [7] is about 1000
times faster than RSA [11]) with key SK,(¢). At the be-
ginning of the next epoch ¢ + 1, the node n authenticates its
reports by sending SK,(¢) to the incompletely trusted trust
evaluation agents; and, node n uses a new key SK,(t + 1)
for filing reports in epoch ¢ + 1. The trust evaluation agents
may use a Byzantine-fault-tolerant protocol to evaluate the
trust value of nodes; however, they cannot misuse node n’s
symmetric key SK,(t) after node n reveals it at epoch ¢ + 1
since, node n would anyway not reuse the key SK,,(t) in the
future epochs (see Figure 15 for a graphical illustration).

Although using encryption/decryption mechanism se-
cures the system to some extent as we have shown in this
subsection, we believe that it is helpful to develop an ana-
lytical model for the “amount of security that one can obtain
and compare it with experimental results. Our research and
experiments on these cryptographic techniques are ongoing.
Due to space restrictions we skip the analysis and experimen-
tal results on these techniques.

4.3 AttackingthelD-to-Key Mapping Scheme

The Sybil attack paper [6] shows that there is really no scal-
able solution to prevent the malicious nodes from forging
identities. In this section, we present the ID-to-Key map-
ping attack (ID Mapping for short) - a major vulnerability
in the DHT-based systems as a direct effect of the Sybil at-
tack. We show how the malicious nodes could exploit the
peer identifier-to-key mapping to corrupt a specific data item
stored in the P2P system. We quantify and analyze the cost
of attacking a specific data item and discuss some approaches
to mitigate this problem.

Almost all DHT-based system use a strong one-way hash
function (like MD5 [16] or SHA1 [20]) to derive a node iden-
tifier from its EID; and, any node p has direct access to a
data item d if and only if d € Resp(p) (P2 and P4, Section
2). Therefore, for a malicious node n to target a data item
with identifier d, it needs to select an EID such that if node

I / ? I ? ? I
File /:valuate Reveal Reveal -

Future

Figure 15: Trust Evaluation Mechanism

n joins the system with ID(n) = hash(n.EID), it will be
made responsible for the target data item d. However, we
show that the cost of attacking a specific data item d € K
(key identifier space K) is much easier than inverting the
ID mapping hash function. Recall that by birthday paradox
[24], the cost of inverting a strong one-way hash function
is O(y/sizeof(S)), where S is the hash space (in our case,
the identifier space). In this section, we present a O(G) at-
tack for attacking any specific data item stored in the system.
This attack assumes significance because the number of good
nodes G is of the order of a few thousands, while sizeof(S)
for say MD5 is 2128,

Concretely, given a data item d a malicious node can lo-
cate the node at which the data item d is stored using the
lookup protocol. Let the data item d be stored at node ¢ at
time ¢, namely, d € Resp:(q). A malicious node p gains ac-
cess to the target data item d through the following two steps:
First, it attempts to pick an EID that hashes into Resp;(q).
As we have described in section 2 (P6), when a node p with
ID(n) € Resp:(q) joins the network, it would share the re-
sponsibility of node ¢. Given that the node p gets assigned a
portion of the node ¢’s responsibility, there is a good chance
that the target data item d indeed gets assigned to node p.
Observe that if the system did not enforce restrictions on a
node’s identifier, a malicious node p could trivially choose
its node identifier to be d thereby ensuring that the target data
item d is assigned to it.

4.3.1 Quantitative Analysis

Let G denote the number of good nodes in the system. As-
sume for the sake of simplicity that there are no malicious
nodes in the system. Now, every node in the system would
be responsible for approximately 1/G*" portion of the iden-
tifier space. The identifier space can be viewed as if it were
divided into G equal sized buckets. Hence, the probability
that a random identifier falls into a given bucket m is 1/G.
The probability that a malicious node hits upon an EID that
hashes into bucket m in its k" attempt is given by,

1\ "1
Pr(k attempts) = (1 — —> — (14)

G G
where the first & — 1 attempts fails to fall into bucket m,
while the kt" attempt succeeds. Observe that the number of
attempts required in Equation 14 follows a Geometric Dis-
tribution. The malicious nodes could choose m such that
their target data item d is currently held by node m, i.e.,
d € Respi(m). It follows from Equation 14 that the ex-
pected number of attempts required to obtain an identifier
that hashes into node m is G. Also, the probability that
more than G attempts are required is % for substantially large
values of G. But, having obtained an identifier that hashes
into node m’s identifier space does not guarantee that the

14

malicious node n is assigned the target data item d. (Note
Respy (n) and Respy (m) partitions Resp,(m), for t' > ¢
(see property P6 in Section 2). Since the data item d can
lie anywhere in the identifier space assigned to node m, the
probability that node n gets to store data item d after it joins
the network is % Hence, with a reasonably large probability,
a malicious node n can obtain access to a target data item d
in G attempts. In fact,

1 1
Pr(Number of attempts < G) = 3 <1 - g) (15)

Consequently, one can improve the chances of this targeted
attack in O(@G) attempts since,

Pr(Number of attempts > c¢G) = (% (1 + %)) (16)

for some integer ¢ > 0.

In a P2P system where R replicas are maintained for each
data item, a group of B malicious nodes may join hands to
corrupt a data item d irrecoverably as follows. Each of the
malicious nodes performs an ID Mapping attack using the
above strategy on any of the R replicas of data item d. When
the malicious nodes succeed in gaining control over cr copies
of the data item d, they can corrupt it and leave the system.

Consider the case wherein the IP-address of a node is used
as its EID. Given the fact that IPv6 can potentially provide
every node with thousands of addresses, it is quite feasible,
though expensive, for a malicious node to perform this at-
tack. The same argument is also applicable to dial-up users
who obtain Dynamic IP-address from a huge ISP (Internet
Service Provider). Also note that computing O(G) hashes is
computationally feasible. As a simple example, using the
standard OpenSSL library, a typical 900MHz Pentium 111
takes about 1 second to compute one million hashes (MD5).

4.3.2 Experimental Validation

We simulated the Chord lookup protocol [23] with varying
number of good nodes. We chose 100 random data items
to attack. Table 2 summarizes our observations on the num-
ber of EIDs required for a successful attack on these data
items. Our observations very closely match the results from
our analysis (Equation 16): Pr(Ngip < 4G) = 0.79 and
PT‘(NE]D S SG) = 0.96.

G | Averagetime | E[Nz:1p] | P(Neip < 4G) | P(Neip < 8G)
‘ ‘ (millisec) ‘ ‘ ‘

1024 232 2112 0.80 0.96

2048 122 4301 0.76 0.95

4096 847 8157 0.76 0.97

8192 16.08 16421 0.64 0.99

Table 2: Attack on ID Mapping Scheme

4.3.3 Defense

The Sybil attack paper [6] suggests the use of trusted cer-
tification authorities to strictly bind an identity to an entity
(node). However, employing trusted certification authorities
turns out prohibitively expensive. In order to reduce certifi-
cation costs, one could employ weak secure identifiers, like
the node IP-address, which can be challenged and verified
easily.

Yet another approach to solve this problem would be to
mitigate it as follows. When a new node joins the system,
it typically contacts a publicly known and trusted bootstrap
server to obtain an entry point node to bootstrap itself into
the system. In this solution, the ID for a node is not de-
rived from any of the EIDs owned by the node. Instead, the
bootstrap server assigns a random id € S to the node (and
issues a certificate with a short life-time) when a node joins
the system. Observe that if a malicious node joins the system
O(G) times, it gets assigned a given target data item with a
large probability as in Equation 16. However note that con-
trary to the techniques that derive a node’s ID from its EID,
a malicious node cannot offline determine the EID that can
be used to gain control over the target data item. Instead, the
malicious node has to physically attempt joining the system
O(Q) times, each time contacting the bootstrap server. Note
that contacting the bootstrap server O(G) takes significantly
longer time; but, it does not prevent a malicious from eventu-
ally gaining control over a target data item. To prevent this,
one could implement weak security checks through the boot-
strap server; for example, the bootstrap server could detects
frequent attempts by a node from a single IP-domain ’ to join
the system.

The key advantage of using EIDs to derive node identifiers
is that every node has a unique identity in the system as long
as the node continues to use the same EID. Hence, the system
can maintain persistent information about the node across
multiple joins/leaves by that node. For example, the trust
value of a node could be retained in the system even after
the node leaves the system (provided the node uses the same
EID). In comparison, the bootstrap server based random node
ID generation technique, maintains complete anonymity of a
node (does not even require an EID) but is incapable of main-
taining persistent node information. But, when the number of
EIDs that could be owned by a node (Ngrp) is very large it
is more desirable to use non-EID dependent techniques with
weak checks by the bootstrap server, since it at least avoids
the cheap offline attack.

"Multiple 1P-addresses owned by a node hopefully fall into the same IP-
domain

15

5 Redated Work

Sit and Morris [22] discuss several security considerations
in a distributed hash table based P2P system. They present
a framework for performing security analysis of P2P net-
works and discuss a wide range of possible attacks including:
routing layer attacks like node lookup, routing table mainte-
nance and network partitioning; application layer attacks on
file storage; and ad hoc attacks like denial-of-service attacks
by rapidly joining and leaving the network. Their paper sug-
gests the use of repeated checking as a defense against rout-
ing attacks on the system. It also suggests using replication to
handle storage and retrieval attacks. Our work not only quan-
tifies the lookup costs using repeated checks but also shows
that merely performing repeated checking does not help es-
pecially in the absence of multiple independent lookup paths.
Also, we showed that replication is a good tool for ensuring
high reliability and availability of data; but replication alone
is incapable of securing data.

Castro et al. [4] discuss several issues on secure routing
on DHT based P2P systems. They suggest redundant rout-
ing as a solution for strengthening the routing scheme using
a routing failure test based on the density of node identifiers.
In redundant routing, the query source sends lookup query
through different routes with a hope that at least one them
eventually reaches the destination node. Note that our anal-
ysis of multiple near optimal independent paths is applicable
to the case where redundant routing is used. Also observe
that having multiple independent paths improves the proba-
bility of success in a smaller number of hops in both repeated
checking and redundant routing techniques.

The Sybil attack paper [6] showed that entities (nodes) can
forge multiple identities for malicious intent, thereby hav-
ing a set of faulty entities represented through a larger set
of identities. The paper concludes that for direct or indi-
rect validation, a set of faulty nodes can counterfeit an un-
bounded number of identities. The paper also suggests that
one solution to the Sybil attack is using secure node IDs that
are signed by well-known certifying agents. However, re-
quiring every node to possess a certificate would turn out
prohibitively expensive; and may discourage even the good
nodes from joining the system in the first place. Hence, one
is forced to employ weak secure node IDs (that significantly
reduce the number of identities owned by an entity). There-
fore, this paper (Section 4.2 and 4.3) assessed the risks and
security threats when such weak secure IDs are deployed in
a DHT-based P2P system.

6 Conclusion

We have studied vulnerabilities of the overlay network layer
in a DHT-based P2P system through investigating three tar-

geted attacks and suggesting possible defense mechanisms.
We have identified the key properties of a DHT-based system
that determine the hardness of these attacks. First, we have
highlighted the importance of multiple independent paths, al-
ternate optimal paths, the ability to detect and recover from
invalid lookups, and verifiable pointer caching in hardening
the routing (lookup) algorithm. Second, we described an at-
tack on the Data Placement Scheme and showed that repli-
cation is good for high reliability and availability; but repli-
cation in conjunction with encryption tools is essential for
security. Third, we discussed an attack on the ID Mapping
Scheme and showed that attacks on specific data items are
quite plausible on DHT-based systems; we have also demon-
strated the dependency between the hardness of such an at-
tack and the number of external identifiers owned by a node.
We present the quantitative analysis to estimate the extent of
possible damages caused by these three types of attacks and
use the experimental methods to demonstrate the validity of
the attacks identified. In conclusion, we strongly believe that
incorporating these security features in the overlay network
layer (coupled with a secure physical network layer and a
trust-support enabled application layer) will provide a secure
infrastructure for large-scale decentralized P2P applications.

References

[1] K. Aberer and Z. Despotovic. Managing trust in a peer-2-
peer information system. In Proceedings of the 10th Inter-
national Conference of Information and Knowledge Manage-
ment, 2001.

A. Adya, W. Bolosky, M. Castro, G. Cermak, R. Chaiken, J. R.
Douceur, J. Howell, J. R. Lorch, M. Theimer, and R. P. Wat-
tenhofer. Farsite: Federated, available and reliable storage for
an incompletely trusted environment. In 5th Symposium on
OSDI, 2002.

J. K. B. Zhao and A. Joseph. Tapestry: An infrastructure for
fault-tolerance wide-area location and routing. Technical Re-
port UCB/CSD-01-1141, University of California, Berkeley,
2001.

M. Castro, P. Druschel, A. Ganesh, A. Rowstron, and D. S.
Wallach. Secure routing for structured peer-to-peer overlay
networks. In OSDI, 2002.

F. Dabek, M. F. Kaashoek, D. Karger, R. Morris, and I. Stoica.
Wide-area cooperative storage with cfs. In Proceedings of the
18th SOSP, October 2001.

(2]

(3]

(4]

(5]

[6] J. Douceur. The sybil attack. In 2nd Annual IPTPSWbrkshop,
2002.
[7]1 FIPS. Data encryption standard (des).

http://iwww.itl.nist.gov/fipspubs/fip46-2.htm.
(8]

Gnutella. The gnutella home page. http://gnutella.wego.com/,
2002.

[9] IPv6. The ipv6 information page. http://www.ipv6.org/, 2002.

16

[10] J. Kubiatowics, D. Bindel, Y. Chen, S. Czerwinski, P. Eaton,
D. Geels, R. Gummadi, S. Rhea, H. Weatherspoon,
W. Weimer, C. Wells, and B. Zhao. Oceanstore: An archi-
tecture for global-scale persistent storage. In Proceedings of
the 9th International Conference on Architectural Support for
Programming Languages and Operating Systems, November
2000.

[11] R. Laboratries. Rsa cryptography
http://www.rsasecurity.com/rsalabs/pkcs/.

standard.

[12] L.Lamport, R. Shostak, and M. Pease. The byzantine generals
problem. In IEEE Computer Society Press, 1982.

[13] D. Malkhi and M. Reiter. Byzantine quorum systems. In
Springer Verlay (Distributed Computing), 1998.

[14] MathWorld. Menger’s theorem.
http://mathworld.wolfram.com/MengersTheorem.html,

2002.

[15] MathWorld. Network flow.
http://mathworld.wolfram.com/NetworkFlow.html, 2002.

[16] MD-5. The md5 message-digest algorithm.
http://www.ietf.org/rfc/rfc1321.txt, 1992.

[17] OpenSSL. Openssl. http://www.openssl.org/.

[18] S. Ratnasamy, P. Francis, M. Handley, R. Karp, and
S. Shenker. A scalable content-addressable network. In Pro-
ceedings of SGCOMM Annual Conference on Data Commu-
nication, August 2001.

[19] M. Ripeanu. Peer-to-peer architecture case study: Gnutella
network. Technical Report TR-2001-26, University of
Chicago, 2001.

[20] SHAL. Us secure hash algorithm .
http://www.ietf.org/rfc/rfc3174.txt, 2001.

[21] A. Shamir. How to share a secret? In Communications of the

ACM, 1979.

[22] E. Sitand R. Morris. Security considerations for peer-to-peer
distributed hash tables. In Proceedings of IPTPS 2002.

I. Stoica, R. Morris, D. Karger, M. Kaashoek, and H. Bal-
akrishnan. Chord: A scalable peer-to-peer lookup service for
internet applications. In Proceedings of SGCOMM Annual
Conference on Data Communication, August 2001.
[24] Wikipedia. Birthday
http://www.wikipedia.org/wiki/Birthday_paradox.

[23]

paradox.

[25] L. Xiong and L. Liu. A reputation-based trust model for peer-
to-peer ecommerce communities. In IEEE Conference on E-

Commerce (CEC' 03), 2003.

