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Abstract. !

Serverless distributed computing has received significant attention
from both the industry and the research community. Among the most
popular applications are the wide area network file systems, exem-
plified by CFS [4], Farsite [1] and OceanStore [12]. These file sys-
tems store files on a large collection of untrusted nodes that form an
overlay network. They use cryptographic techniques to secure files
from malicious nodes. Unfortunately, cryptographic techniques can-
not protect a file holder from a Denial-of-Service (DoS) or a host
compromise attack. Hence, most of these distributed file systems are
vulnerable to targeted file attacks, wherein an adversary attempts to
attack a small (chosen) set of files by attacking the nodes that host
them. This paper presents LocationGuard — a location hiding tech-
nique for securing overlay file storage systems from targeted file at-
tacks. LocationGuard has three essential components: (i) location
key, consisting of a random bit string (e.g., 128 bits) that serves as the
key to the location of a file, (ii) lookup guard, a secure algorithm to
locate a file in the overlay network given its location key such that nei-
ther the key nor the location is revealed to an adversary, and (iii) a set
of location inference guards, which refer to an extensible component
of the LocationGuard. The basic core of this component includes four
pluggable inference guards: (a) lookup frequency inference guard, (b)
end-user IP-address inference guard, (c) file replica inference guard,
and (d) file size inference guard. The combination of location key,
lookup guard, and location inference guards makes it very hard for
an adversary to infer the location of a target file by either actively
or passively observing the overlay network. In addition to traditional
cryptographic guarantees like file confidentiality and integrity, Loca-
tionGuard can be used to mitigate Denial-of-Service (DoS) and host
compromise attacks by constructing an efficient file access control
mechanism, while adding almost zero performance overhead and very
minimal storage overhead to the overlay file system. Our experimen-
tal results quantify the overhead of employing LocationGuard and
demonstrate its effectiveness against DoS attacks, host compromise
attacks and various location inference attacks.

1 Introduction

A new breed of serverless file storage services, like CFS [4],
Farsite [1], OceanStore [12] and SiRiUS [7], have recently
emerged. In contrast to traditional file systems, they harness
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the resources available at desktop workstations that are dis-
tributed over a wide-area network. The collective resources
available at these desktop workstations amount to several peta-
flops of computing power and several hundred peta-bytes of
storage space [1].

These emerging trends have motivated serverless file storage
as one of the most popular application over decentralized over-
lay networks. An overlay network is a virtual network formed
by nodes (desktop workstations) on top of an existing TCP/IP-
network. Overlay networks typically support a lookup proto-
col. A lookup operation identifies the location of a file given
its filename. Location of a file denotes the IP-address of the
node that currently hosts the file. There are four important is-
sues that need to be addressed to enable wide deployment of
serverless file systems for mission critical applications.

Efficiency of the lookup protocol. There are two kinds of

lookup protocol that have been commonly deployed: the Gnutella-

like broadcast based lookup protocols [6] and the distributed
hash table (DHT) based lookup protocols [23, 19, 20]. File sys-
tems like CFS, Farsite and OceanStore use DHT-based lookup
protocols because of their ability to locate any file in a small
and bounded number of hops.

Malicious and unreliable nodes. Serverless file storage ser-
vices are faced with the challenge of having to harness the col-
lective resources of loosely coupled, insecure, and unreliable
machines to provide a secure, and reliable file-storage service.
To complicate matters further, some of the nodes in the overlay
network could be malicious. CFS employs cryptographic tech-
niques to maintain file data confidentiality and integrity. Far-
site permits file write and update operations by using a Byzan-
tine fault-tolerant group of meta-data servers (directory ser-
vice). Both CFS and Farsite use replication as a technique to
provide higher fault-tolerance and availability.

Targeted File Attacks. A major drawback with serverless file
systems like CFS, Farsite and OceanStore is that they are vul-
nerable to targeted attacks on files. In a targeted attack, an
adversary is interested in compromising a small set of target
files through a DoS attack or a host compromise attack. A
denial-of-service attack would render the target file unavail-
able; a host compromise attack could corrupt all the replicas
of a file thereby effectively wiping out the target file from the
file system. The fundamental problem with these systems is
that: (i) the number of replicas (1) maintained by the system



is usually much smaller than the number of malicious nodes
(B), and (ii) the replicas of a file are stored at publicly known
locations. Hence, malicious nodes can easily launch DoS or
host compromise attacks on the set of R replica holders of a
target file (R < B).

Efficient Access Control. A read-only file system like CFS
can exercise access control by simply encrypting the contents
of each file, and distributing the keys only to the legal users of
that file. Farsite, a read-write file system, exercises access con-
trol using access control lists (ACL) that are maintained using
a Byzantine-fault-tolerant protocol. However, access control
is not truly distributed in Farsite because all users are authen-
ticated by a small collection of directory-group servers. Fur-
ther, PKI (public-key Infrastructure) based authentication and
Byzantine fault tolerance based authorization are known to be
more expensive than a simple and fast capability-based access
control mechanism [3].

Bearing these issues in mind, in this paper we present Loca-
tionGuard as an effective technique for countering targeted file
attacks. The fundamental idea behind LocationGuard is to hide
the very location of a file and its replicas such that, a legal user
who possesses a file’s location key can easily and securely lo-
cate the file on the overlay network; but without knowing the
file’s location key, an adversary would not be able to even lo-
cate the file, let alone access it or attempt to attack it. Loca-
tionGuard implements an efficient capability-based file access
control mechanism through three essential components. The
first component of LocationGuard is a location key, which is a
random bit string (128 bits) used as a key to the location of a
file in the overlay network, and addresses the capability revoca-
tion problem by periodic or conditional rekeying mechanisms.
A file’s location key is used to generate legal capabilities (to-
kens) that can be used to access its replicas. The second com-
ponent is the lookup guard, a secure algorithm to locate a file in
the overlay network given its location key such that neither the
key nor the location is revealed to an adversary. The third com-
ponent is an extensible collection of location inference guards,
which protect the system from traffic analysis based inference
attacks, such as lookup frequency inference attacks, end-user
IP-address inference attacks, file replica inference attacks, and
file size inference attacks. LocationGuard presents a careful
combination of location key, lookup guard, and location infer-
ence guards, aiming at making it very hard for an adversary to
infer the location of a target file by either actively or passively
observing the overlay network.

In addition to providing an efficient file access control mech-
anism with traditional cryptographic guarantees like file con-
fidentiality and integrity, LocationGuard mitigates Denial-of-
Service (DoS) and host compromise attacks, while adding al-
most zero performance overhead and very minimal storage over-
head to the file system. Our initial experiments quantify the
overhead of employing LocationGuard and demonstrate its ef-
fectiveness against DoS attacks, host compromise attacks and
various location inference attacks.

The rest of the paper is organized as follows. Section 2 pro-
vides terminology and background on overlay network and
serverless file systems like CFS and Farsite. Section 3 de-
scribes our threat model in detail. We present the core tech-
niques of LocationGuard in Sections 4, 5, 6 and 7 followed
by a brief discussion on overall system management in Section
8. We present a thorough experimental evaluation of Loca-
tionGuard in Section 9, related work in Section 10, and con-
clude the paper in Section 11.

2 Background and Terminology

In this section, we give a brief overview on the vital proper-
ties of DHT-based overlay networks and their lookup protocols
(e.g., Chord [23], CAN [19], Pastry [20]). All these lookup
protocols are fundamentally based on distributed hash tables,
but differ in algorithmic and implementation details. All of
them store the mapping between a particular search key and
its associated data (file) in a distributed manner across the
network, rather than storing them at a single location like a
conventional hash table. Given a search key, these techniques
locate its associated data (file) in a small and bounded num-
ber of hops within the overlay network. This is realized using
three main steps. First, nodes and search keys are hashed to a
common identifier space such that each node is given a unique
identifier and is made responsible for a certain set of search
keys. Second, the mapping of search keys to nodes uses poli-
cies like numerical closeness or contiguous regions between
two node identifiers to determine the (non-overlapping) region
(segment) that each node will be responsible for. Third, a small
and bounded lookup cost is guaranteed by maintaining a tiny
routing table and a neighbor list at each node.

In the context of a file system, the search key can be a filename
and the identifier can be the IP address of a node. All the avail-
able node’s IP addresses are hashed using a hash function and
each of them store a small routing table (for example, Chord’s
routing table has only m entries for an m-bit hash function and
typically m = 128) to locate other nodes. Now, to locate a
particular file, its filename is hashed using the same hash func-
tion and the node responsible for that file is obtained using the
concrete mapping policy. This operation of locating the appro-
priate node is called a lookup.

Serverless file system like CFS, Farsite and OceanStore are
layered on top of DHT-based protocols. These file systems
typically provide the following properties: (1) A file lookup
is guaranteed to succeed if and only if the file is present in
the system, (2) File lookup terminates in a small and bounded
number of hops, (3) The files are uniformly distributed among
all active nodes, and (4) The system handles dynamic node
joins and leaves.

In the rest of this paper, we assume that Chord [23] is used
as the overlay network’s lookup protocol. However, the re-
sults presented in this paper are applicable for most DHT-based
lookup protocols.



3 Threat Model

Adversary refers to a logical entity that controls and coordi-
nates all actions by malicious nodes in the system. A node is
said to be malicious if the node either intentionally or uninten-
tionally fails to follow the system’s protocols correctly. For ex-
ample, a malicious node may corrupt the files assigned to them
and incorrectly (maliciously) implement file read/write opera-
tions. This definition of adversary permits collusions among
malicious nodes.

We assume that the underlying IP-network layer is secure. Hence,

(i) a malicious node has access only to the packets that have
been addressed to it, (ii) all packets accessed by a malicious
node can be potentially corrupted by the malicious node. More
specifically, if the packet is not encrypted or does not include
a message authentication code (MAC) then the malicious node
may modify the packet to its own interest, and (iii) the underly-
ing domain name service (DNS), the network routers, and re-
lated networking infrastructure are assumed to be secure, and
hence cannot be compromised by an adversary.

An adversary is capable of performing two types of attacks
on the file system, namely, the denial-of-service attack, and
the host compromise attack. When a node is under denial-
of-service attack, the files stored at that node are unavailable.
When a node is compromised, the files stored at that node
could be either unavailable or corrupted. We model the mali-
cious nodes as having a large but bounded amount of physical
resources at their disposal. More specifically, we assume that
a malicious node may be able to perform a denial-of-service
attack only on a finite and bounded number of good nodes, de-
noted by . We limit the rate at which malicious nodes may
compromise good nodes and use A to denote the mean rate per
malicious node at which a good node can be compromised. For
instance, when there are B malicious nodes in the system, the
net rate at which good nodes are compromised is A x B (node
compromises per unit time). Every compromised node behaves
maliciously. For instance, a compromised node may attempt to
compromise other good nodes. Every good node that is com-
promised would independently recover at rate p. Note that the
recovery of a compromised node is analogous to cleaning up
a virus or a worm from an infected node. When the recovery
process ends, the node stops behaving maliciously. Unless and
otherwise specified we assume that the rates A and p follow an
exponential distribution.

3.1 Targeted File Attacks

Targeted file attack refers to an attack wherein an adversary
attempts to attack a small (chosen) set of files in the system. An
attack on a file is successful if the target file is either rendered
unavailable or corrupted. Given R replicas of a file f, file f
is unavailable (or corrupted) if at least a threshold ¢r number
of its replicas are unavailable (or corrupted). For example, for
read/write files maintained by a Byzantine quorum [1], cr =

File Storage System

LocationGuard

Overlay Network

TCP/IP Network

Figure 1: LocationGuard: System Architecture

Lookup Frequency
Inference Guard

Location Key

End-User IP-Address
Inference Guard

LocationGuard Lookup Guard

File Replica
Inference Guard

Inference Guards

File Size
Inference Guard

Figure 2: LocationGuard: Conceptual Design

[R/3]. For encrypted and authenticated files, cr = R, since
the file can be successfully recovered as long as at least one
of its replicas is available (and uncorrupt) [4]. Most P2P trust
management systems such as [25] uses a simple majority vote
on the replicas to compute the actual trust values of peers, thus
we have cr = [R/2].

Distributed file systems like CFS and Farsite are highly vul-
nerable to target file attacks since the target file can be ren-
dered unavailable (or corrupted) by attacking a very small set
of nodes in the system. The key problem arises from the fact
that these systems store the replicas of a file f at publicly
known locations [11] for easy lookup. For instance, CFS stores
a file f at locations derivable from the public-key of its owner.
An adversary can attack any set of cr replica holders of file
f, to render file f unavailable (or corrupted). Farsite utilizes
a small collection of publicly known nodes for implementing
a Byzantine fault-tolerant directory service. On compromising
the directory service, an adversary could obtain the locations
of all the replicas of a target file.

Files on an overlay network have two primary attributes: (i)
content and (ii) location. File content could be protected from
an adversary using cryptographic techniques. However, if the
location of a file on the overlay network is publicly known,
then the file holder is susceptible to DoS and host compromise
attacks. LocationGuard provides mechanisms to hide files in
an overlay network such that only a legal user who possesses
a file’s location key can easily locate it. Thus, any previously
known attacks on file contents would not be applicable unless
the adversary succeeds in locating the file. It is important to
note that LocationGuard is oblivious to whether or not file con-
tents are encrypted. Hence, LocationGuard can be used to pro-
tect files whose contents cannot be encrypted, say, to permit
regular expression based keyword search on file contents.



4 LocationGuard

4.1 Overview

We first present a high level overview of LocationGuard. Fig-
ure 1 shows an architectural overview of a file system powered
by LocationGuard. LocationGuard operates on top of an over-
lay network of N nodes. Figure 2 provides a sketch of the
conceptual design of LocationGuard. LocationGuard scheme
guards the location of each file and its access with two objec-
tives: (1) to hide the actual location of a file and its replicas
such that only legal users who hold the file’s location key can
easily locate the file on the overlay network, and (2) to guard
lookups on the overlay network from being eavesdropped by
an adversary. LocationGuard consists of three core compo-
nents. The first component is location key, which controls the
transformation of a filename into its location on the overlay
network, analogous to a traditional cryptographic key that con-
trols the transformation of plaintext into ciphertext. The sec-
ond component is the lookup guard, which makes the loca-
tion of a file unintelligible. The lookup guard is, to some ex-
tent, analogous to a traditional cryptographic algorithm which
makes a file’s contents unintelligible. The third component
of LocationGuard includes an extensible package of location
inference guards that protect the file system from indirect at-
tacks. Indirect attacks are those attacks that exploit a file’s
metadata information such as file access frequency, end-user
[P-address, equivalence of file replica contents and file size to
infer the location of a target file on the overlay network.

In the following subsections, we first present the main concepts
behind location keys and location hiding (Section 4.2) and de-
scribe a reference model for serverless file systems that operate
on LocationGuard (Section 4.3). Then we present the concrete
design of LocationGuard’s three core components: the loca-
tion key (Section 5), the lookup guard (Section 6) and a suite
of location inference guards (Section 7).

4.2 Concepts and Definitions

In this section we define the concept of location keys and its
location hiding properties. We discuss the concrete design of
location key implementation and how location keys and loca-
tion guards protect a file system from targeted file attacks in
the subsequent sections.

Consider an overlay network of size NV with a Chord-like lookup
protocol . Let f*, f2,---, ff denote the R replicas of a file
f. Location of a replica f refers to the IP-address of the node
(replica holder) that stores replica f?. A file lookup algorithm
is defined as a function that accepts f* and outputs its location
on the overlay network. Formally we have I : f* — loc maps
areplica f? to its location loc on the overlay network P.

Definition 1 Location Key: A location key lk of a file f is
a relatively small amount (m-bit binary string, typically m =

128) of information that is used by a Lookup algorithm ¥ :
(f,1k) — loc to customize the transformation of a file into its
location such that the following three properties are satisfied:

1. Given the location key of a file f, it is easy to locate the
R replicas of file f.

2. Without knowing the location key of a file f, it is hard
for an adversary to locate any of its replicas.

3. The location key [k of a file f should not be exposed to
an adversary when it is used to access the file f.

Informally, location keys are keys with location hiding prop-
erty. Each file in the system is associated with a location key
that is kept secret by the users of that file. A location key for
a file f determines the locations of its replicas in the overlay
network. Note that the lookup algorithm W is publicly known;
only a file’s location key is kept secret.

Property 1 ensures that valid users of a file f can easily access
it provided they know its location key (k. Property 2 guaran-
tees that illegal users who do not have the correct location key
will not be able to locate the file on the overlay network, mak-
ing it harder for an adversary to launch a targeted file attack.
Property 3 warrants that no information about the location key
lk of a file f is revealed to an adversary when executing the
lookup algorithm W.

Having defined the concept of location key, we present a refer-
ence model for a file system that operates on LocationGuard.
We use this reference model to present a concrete design of
LocationGuard’s three core components: the location key, the
lookup guard and the location inference guards.

4.3 Reference Model

A serverless file system may implement read/write operations
by exercising access control in a number of ways. For exam-
ple, Farsite [1] uses an access control list maintained among
a small number of directory servers through a Byzantine fault
tolerant protocol. CFS [4], a read-only file system, may imple-
ment access control by encrypting the files and distributing the
file encryption keys only to the legal users of a file. In this sec-
tion we show how a LocationGuard based file system exercises
access control.

In contrast to other serverless file systems, a LocationGuard
based file system does not directly authenticate any user at-
tempting to access a file. Instead, it uses location keys to im-
plement a capability-based access control mechanism, that is,
any user who presents the correct file capability (token) is per-
mitted access to that file. Furthermore, it utilizes lookup guard
and location inference guards to secure the locations of files
being accessed on the overlay network. Our access control
policy is simple: if you can name a file, then you can access it.
However, we do not use a file name directly; instead, we use a
pseudo-filename (128-bit binary string) generated from a file’s
name and its location key (see Section 5 for detail). The re-



sponsibility of access control is divided among the file owner,
the legal file users, and the file replica holders and is managed
in a decentralized manner.

File Owner. Given a file f, its owner u is responsible for se-
curely distributing f’s location key [k (only) to those users who
are authorized to access the file f.

Legal User. A user v who has obtained the valid location key
of file f is called a legal user of f. Legal users are authorized
to access any replica of file f. Given a file f’s location key [k,
a legal user u can generate the replica location token 7[t* for its
it" replica. Note that we use r/t* as both the pseudo-filename
and the capability of f?. The user v now uses the lookup algo-
rithm ¥ to obtain the IP-address of node r = W(rit*) (pseudo-
filename rlt?). User u gains access to replica f* by presenting
the token 7t to node r (capability rt?).

Good Replica Holder. Assume that a node r is responsible
for storing replica f*. Internally, node 7 stores this file content
under a file name r{t’. Note that node r does not need to know
the actual file name (f) of a locally stored file rit’. Also, by
design, given the internal file name 7[t*, node r cannot guess
its actual file name (see Section 5). When a node r receives a
read/write request on a file 7[t* it checks if a file named rlt? is
present locally. If so, it directly performs the requested opera-
tion on the local file rit?. Access control follows from the fact
that it is very hard for an adversary to guess correct file tokens.

Malicious Replica Holder. Let us consider the case where
the node r that stores a replica f* is malicious. Note that
node 7’s response to a file read/write request can be undefined.
Note that we have assumed that the replicas stored at malicious
nodes are always under attack (recall that up to cr — 1 out of
R file replicas could be unavailable or corrupted). Hence, the
fact that a malicious replica holder incorrectly implements file
read/write operation or that the adversary is aware of the to-
kens of those file replicas stored at malicious nodes does not
harm the system. Also, by design, an adversary who knows
one token rlt’ for replica f* would not be able to guess the file
name f or its location key [k or the tokens for others replicas
of file f (see Section 5).

Adversary. An adversary cannot access any replica of file f
stored at a good node simply because it cannot guess the token
rlt’ without knowing its location key. However, when a good
node is compromised an adversary would be able to directly
obtain the tokens for all files stored at that node. In general,
an adversary could compile a list of tokens as it compromises
good nodes, and corrupt the file replicas corresponding to these
tokens at any later point in time. Eventually, the adversary
would succeed in corrupting c¢r or more replicas of a file f
without knowing its location key. LocationGuard addresses
such attacks using location rekeying technique discussed in
Section 7.3.

In the subsequent sections, we show how to generate a replica
location token rit* (1 < ¢ < R) from a file f and its location

key (Section 5), and how the lookup algorithm ¥ performs a
lookup on a pseudo-filename rIt* without revealing the capa-
bility r/t* to malicious nodes in the overlay network (Section
6). It is important to note that the ability of guarding the lookup
from attacks like eavesdropping is critical to the ultimate goal
of file location hiding scheme, since a lookup operation using
a lookup protocol (such as Chord) on identifier r/t? typically
proceeds in plain-text through a sequence of nodes on the over-
lay network. Hence, an adversary may collect file tokens by
simply sniffing lookup queries over the overlay network. The
adversary could use these stolen file tokens to perform write
operations on the corresponding file replicas, and thus corrupt
them, without the knowledge of their location keys.

S Location Keys

The first and most simplistic component of LocationGuard is
the concept of location keys. The design of location key needs
to address the following two questions: (1) How to choose a lo-
cation key? (2) How to use a location key to generate a replica
location token — the capability to access a file replica?

The first step in designing location keys is fo determining the
type of string used as the identifier of a location key. Let user
u be the owner of a file f. User u should choose a long ran-
dom bit string (128-bits) [k as the location key for file f. The
location key [k should be hard to guess. For example, the key
lk should not be semantically attached to or derived from the
file name (f) or the owner name (u).

The second step is to find a pseudo-random function to derive
the replica location tokens rlt’ (1 < i < R) from the filename
f and its location key lk. The pseudo-filename it is used as
a file replica identifier to locate the i‘" replica of file f on the
overlay network. Let Ej;(x) denote a keyed pseudo-random
function with input = and a secret key [k and || denotes string
concatenation. We derive the location token rit! = Ej(f ||
i). Given a replica’s identifier rltt, one can use the lookup
protocol W to locate it on the overlay network. The function £
should satisfy the following conditions:

la) Given (f || 4) and lk it is easy to compute Ey(f || ©).

2a) Given (f || 4) it is hard to guess Ej(f || ) without
knowing k.

2b) Given Ey(f || 4) it is hard to guess the file name f.

2¢) Given Eji(f || ) and f it is hard to guess lk.

Condition 1a) ensures that it is very easy for a valid user to lo-
cate a file f as long as it is aware of the file’s location key [k.
Condition 2a), states that it should be very hard for an adver-
sary to guess the location of a target file f without knowing its
location key. Condition 2b) ensures that even if an adversary
obtains the identifier 7It’ of replica f?, he/she cannot deduce
the file name f. Finally, Condition 2c) requires that even if
an adversary obtains the identifiers of one or more replicas of
file f, he/she would not be able to derive the location key [k



from them. Hence, the adversary still has no clue about the
remaining replicas of the file f (by Condition 2a). Conditions
2b) and 2c) play an important role in ensuring good location
hiding property. This is because for any given file f, some of
the replicas of file f could be stored at malicious nodes. Thus
an adversary could be aware of some of the replica identifiers.
Finally, observe that Condition 1a) and Conditions {2a), 2b),
2¢)} map to Property 1 and Property 2 in Definition 1 (in Sec-
tion 4.2) respectively.

There are a number of cryptographic tools that satisfies our re-
quirements specified in Conditions 1a), 2a), 2b) and 2c). Some
possible candidates for the function E are (i) a keyed-hash
function like HMAC-MDS [9], (ii) a symmetric key encryp-
tion algorithm like DES [5] or AES [15], and (iii) a PKI based
encryption algorithm like RSA [13]. We chose to use a keyed-
hash function like HMAC because it can be computed very
efficiently. HMAC-MDS5 computation is about 40 times faster
than AES encryption and about 1000 times faster than RSA
encryption using the standard OpenSSL library [16]. In the
remaining part of this paper, we use khash to denote a keyed-
hash function that is used to derive a file’s replica location to-
kens from its name and its secret location key.

6 Lookup Guard

The second and fundamental component of LocationGuard is
the lookup guard. The design of lookup guard aims at securing
the lookup of file f such that it will be very hard for an adver-
sary to obtain the replica location tokens by eavesdropping on
the overlay network. Concretely, let 7it* (1 < i < R) denote a
replica location token derived from the file name f, the replica
number ¢, and f ‘s location key identifier [k. We need to secure
the lookup algorithm W (r{t*) such that the lookup on pseudo-
filename rlt* does not reveal the capability ¢ to other nodes
on the overlay network. Note that a file’s capability rit’ does
not reveal the file’s name; but it allows an adversary to write on
the file and thus corrupt it (see reference file system in Section
4.3).

There are two possible approaches to implement a secure lookup
algorithm: (1) centralized approach and (2) decentralized ap-
proach. In the centralized approach, one could use a trusted
location server [10] to return the location of any file on the
overlay network. However, such a location server would be-
come a viable target for DoS and host compromise attacks.

In this section, we present a decentralized secure lookup proto-
col that is built on top of the Chord protocol. Note that a native
Chord-like lookup protocol I'(rt*) cannot be directly used be-
cause it reveals the token 7lt* to other nodes on the overlay
network.

6.1 Overview

The fundamental idea behind the lookup guard is as follows.
Given a file f’s location key [k and replica number i, we want

rlt
tk,

Figure 3: Lookup Using File Identifier Obfuscation: Illustration

to find a safe region in the identifier space where we can obtain
a huge collection of obfuscated tokens, denoted by {TK'},
such that, with high probability, T'(tk?) = ['(rit?), Vtk' € TK*.
We call tk! € TK*® an obfuscated identifier of the token 7t*.
Each time a user u wishes to lookup a token 7[t?, it performs
a lookup on some randomly chosen token tk? from the obfus-
cated identifier set TK*®. Lookup guard ensures that even if
an adversary were to observe obfuscated identifier from the set
TK* for one full year, it would be highly infeasible for the
adversary to guess the token 7it’.

We now describe the concrete implementation of the lookup
guard. For the sake of simplicity, we assume a unit circle for
the Chord’s identifier space; that is, node identifiers and file
identifiers are real values from O to 1 that are arranged on the
Chord ring in the anti-clockwise direction. Let I D(r) denote
the identifier of node r. If r is the destination node of a lookup
on file identifier rit’, i.e., r = I'(rlt), then 7 is the node that
immediately succeeds rIt’ in the anti-clockwise direction on
the Chord ring. Formally, r = T'(rit?) if ID(r) geq rit* and
there exists no other nodes, say v, on the Chord ring such that
ID(r) > ID(v) > rit'.

We first introduce the concept of safe obfuscation to guide us
in finding an obfuscated identifier set 7K' for a given replica
location token 7It*. We say that an obfuscated identifier tk*
is a safe obfuscation of identifier I’ if and only if a lookup
on both rit! and tk® result in the same physical node 7. For
example, in Figure 3, identifier tk¢ is a safe obfuscation of
identifier rit! (I'(rit") = T'(tk}) = r), while identifier tk} is
unsafe ([(tk%) =" # 7).

We define the set TK' as a set of all identifiers in the range
(rlt? — srg, rlt’), where srg denotes a safe obfuscation range
(0 < srg < 1). When a user intends to query for a replica lo-
cation token rt’, the user actually performs a lookup on an ob-

fuscated identifier tk' = ob fuscate(rit’) = rit' —random(0, srg).

The function random(0, srg) returns a number chosen uni-
formly and randomly in the range (0, s7g).

We choose a safe value srg such that:

(C1) With high probability, any obfuscated identifier tk® is a
safe obfuscation of the token r/t’.

(C2) Given an obfuscated identifier tk? it is very hard for an
adversary to guess the actual identifier rlt’.

Note that if srg is too small condition C1 is more likely to
hold, while condition C2 is more likely to fail. In contrast, if



srg is too big, condition C2 is more likely to hold but condition
C1 is more likely to fail. In our first prototype development
of LocationGuard, we introduce a system defined parameter
sq to denote the minimum probability that any obfuscation is
required to be safe. In the subsequent sections, we present a
technique to derive srg as a function of sq. This permits us to
quantify the tradeoff between condition C1 and condition C2.

6.2 Determining the Safe Obfuscation Range

Observe from Figure 3 that a obfuscation rand on identifier
rit’ is safe if rit'—rand > ID(r"), where 7’ is the immedi-
ate predecessor of node r on the Chord ring. Thus, we have
rand < rit'—ID(r"). The expression rit'—ID(r’) denotes
the distance between identifiers rit‘ and ID(r’) on the Chord
identifier ring, denoted by dist(rit‘, ID(r')). Hence, we say
that a obfuscation rand is safe with respect to identifier rlt* if
and only if rand < dist(rlt', ID(r")), or equivalently, rand
is chosen from the range (0, dist(ritt, ID(r"))).

We use Theorem 6.1 to show that Pr(dist(rit’, ID(r')) > rg)
= e~ "9*N where N denotes the number of nodes on the over-
lay network and rg denotes any value satisfying 0 < rg <
1. Since an obfuscation rand is safe with respect to rit? if
dist(rlt', ID(r")) > rand, the probability that a obfuscation
rand is safe can be calculated using e~ 7" N

Now, one can ensure that the minimum probability of any ob-
fuscation being safe is sq as follows. We first use sq to obtain
an upper bound on rand: By e—rand«N > sq, we have, rand <
%G(Sq). Hence, if rand is chosen from a safe range (0, srg),
where srg = _l%“(sq), then all obfuscations are guaranteed to

be safe with a probability greater than or equal to sq.

For instance, when we set sq = 1 — 2720 and N = 1 million
nodes, srg = *W = 2740, Hence, on a 128-bit Chord
ring rand could be chosen from a range of size srg = 2'2® x
2740 — 288 Table 1 shows the size of a sq—safe obfuscation
range srg for different values of sq. Observe that if we set
sq = 1, then srg = % = 0. Hence, if we want 100%
safety, the obfuscation range srg must be zero, i.e., the token
rlt* cannot be obfuscated.

Theorem 6.1 Let N denote the total number of nodes in the
system. Let dist(x,y) denote the distance between two iden-
tifiers © and y on a Chord’s unit circle. Let node r' be the
node that is the immediate predecessor for an identifier vt
on the anti-clockwise unit circle Chord ring. Let ID(r') de-
note the identifier of the node r'. Then, the probability that
the distance between identifiers rit* and 1D(r') exceeds rg
is given by Pr(dist(rlt', ID(r")) > rg) = e~ "9*N for some
0<rg<Ll

Proof Let Z be a random variable that denotes the distance
between an identifier 7t* and node 7. Let fz(rg) denote the
probability distribution function (pdf) that the node 7’ is at a
distance 7¢g from the identifier rit, i.e., dist(ID(r"), rit) =

rg. We first derive the probability distribution fz(rg) and use
it to compute Pr(Z > rg) = Pr(dist(rit!, ID(r")) > rg).

By the uniform and random distribution properties of the hash
function the identifier of a node will be uniformly and ran-
domly distributed between (0, 1). Hence, the probability that
the identifier of any node falls in a segment of length x is equal
to x. Hence, with probability AArg, a given node exists be-
tween a distance of (rg,rg + Arg) from the identifier 7it°.
When there are N nodes in the system, the probability that one
of them exists between a distance (rg,rg + Arg) is N « Arg.
Similarly, the probability that none of other node N — 1 nodes
lie within a distance rg from identifier rit® is (1 — rg)™V 1.
Therefore, f(x) is given by Equation 1.

fz(rg) = Nx(1—rg)" " (1

Now, using the probability density function in Equation 1 one
can derive the cumulative distribution function (cdf), Pr(Z >
rg) = e~ "9*V using standard techniques in probability the-

ory. ||

6.3 Ensuring Safe Obfuscation

Given that when sq < 1, there is small probability that an ob-
fuscated identifier is not safe, i.e., 1 — sq > 0. We first discuss
the motivation for detecting and repairing unsafe obfuscations
and then describe how to guarantee good safety by our lookup
guard through a self-detection and self-healing process.

Let node 7 be the result of a lookup on identifier r{t* and node
v (v # 1) be the result of a lookup on an unsafe obfuscated
identifier tk?. To perform a file read/write operation after lo-
cating the node that stores the file f, the user has to present
the location token rlt’ to node v. If a user does not check for
unsafe obfuscation, then the file token 7/t* would be exposed
to some other node v # r. If node v were malicious, then it
could misuse this information to corrupt the file replica actu-
ally stored at node r (using the capability rit?).

We require a user to verify whether an obfuscated identifier is
safe or not using the following check: An obfuscated identifier
tk® is considered safe if and only if rit! € (tk?, ID(v)), where
v = ['(tk'). By the definition of v and tk?, we have tk* <
ID(v) and tk* < rit' (rand > 0). By tk* < rit* < ID(v),
node v should be the immediate successor of the identifier rit*
and thus be responsible for it. If the check failed, i.e., ritt >
ID(v), then node v is definitely not a successor of the identifier
rlt!. Hence, the user can flag tk* as an unsafe obfuscation of
rit'. For example, referring Figure 3, tk! is safe because, rit!
€ (tkt,ID(r)) and r = T'(tk?), and k% is unsafe because, rit’
¢ (tki, ID(r")) and ' = T'(tk}).

When an obfuscated identifier is flagged as unsafe, the user
needs to retry the lookup operation with a new obfuscated iden-
tifier. This retry process continues until max_retries rounds or
until a safe obfuscation is found. Thanks to the fact that the
probability of an unsafe obfuscation can be extremely small,



1 — sq 2710 2715 2720 2725 2750

o 58 593 58 553 o8
Elretries] 2710 [ 2715 [ 2720 [ 9=35 | =30
hardness (years) | 2°° 233 228 2% 218

Table 1: Lookup Identifier obfuscation

the call for retry rarely happens. We also found from our exper-
iments that the number of retries required is almost always zero
and seldom exceeds one. We believe that using max _retries
equal to two would suffice even in a highly conservative set-
ting. Table 1 shows the expected number of retries required
for a lookup operation for different values of sq.

6.4 Strength of Lookup Guard

The strength of a lookup guard refers to its ability to counter
lookup sniffing based attacks. A typical lookup sniffing attack
is called the range sieving attack. Informally, in a range siev-
ing attack, an adversary sniffs lookup queries on the overlay
network, and attempts to deduce the actual identifier r/¢* from
its multiple obfuscated identifiers. We show that an adversary
would have to expend 22® years to discover a replica location
token 7lt* even if it has observed 2%° obfuscated identifiers of
rit’. Note that 22° obfuscated identifiers would be available to
an adversary if the file replica f* was accessed once a second
for one full year by some legal user of the file f.

One can show that given multiple obfuscated identifiers it is
non-trivial for an adversary to categorize them into groups such
that all obfuscated identifiers in a group are actually obfusca-
tions of one identifier. To simplify the description of a range
sieving attack, we consider the worst case scenario where an
adversary is capable of categorizing obfuscated identifiers (say,
based on their numerical proximity).

We first concretely describe the range sieving attack assum-
ing that sq and srg (from Theorem 6.1) are public knowledge.
When an adversary obtains an obfuscated identifier tkt, the
adversary knows that the actual capability r/t’ is definitely
within the range RG = (tk',tk’ + srg), where (0, srg) de-
notes a sq—safe range. In fact, if obfuscations are uniformly
and randomly chosen from (0, srg), then given an obfuscated
identifier tk?, the adversary knows nothing more than the fact
that the actual identifier r/t* could be uniformly and distributed
over the range RG = (tk', tk' + srg). However, if a persistent
adversary obtains multiple obfuscated identifiers that belong to
the same target file, the adversary can sieve the identifier space
as follows. Let RG1, RGs, - - - , RG,;q denote the ranges cor-
responding to nid random obfuscations on the identifier rit’.
Then the capability of the target file is guaranteed to lie in the
sieved range RG, = N7 RG;. Intuitively, if the number of
obfuscated identifiers (nid) increases, the size of the sieved
range RG; decreases.

Let E[RG ] denote the expected size of the sieved range. The-
orem 6.2 shows that E[RG] = >2%. Hence, if the safe range
srg is significantly larger than nid then the lookup guard can
tolerate the range sieving attack. Recall the example in Section

6 where sqg = 1 — 272°, N = 109, the safe range srg = 2°5.
Suppose that a target file is accessed once per second for one
year; this results in 22° file accesses. An adversary who logs
all obfuscated identifiers over a year could sieve the range to
about E[|RG;|] = 2%3. Assuming that the adversary performs
a brute force attack on the sieved range, by attempting a file
read operation at the rate of one read per millisecond, the ad-
versary would have tried 23° read operations per year. Thus,
it would take the adversary about 263 /235 = 228 years to dis-
cover the actual file identifier. Table 1 summarizes the hardness
of breaking the obfuscation scheme for different values of sq
(minimum probability of safe obfuscation), assuming that the
adversary has logged 22° file accesses (one access per second
for one year) and that the nodes permit at most one file access
per millisecond.

Discussion. An interesting observation follows from the above
discussion: the amount of time taken to break the file identifier
obfuscation technique is almost independent of the number of
attackers. This is a desirable property. It implies that as the
number of attackers increases in the system, the hardness of
breaking the file capabilities will not decrease. The reason for
location key based systems to have this property is because the
time taken for a brute force attack on a file identifier is funda-
mentally limited by the rate at which a hosting node permits
accesses on files stored locally. On the contrary, a brute force
attack on a cryptographic key is inherently parallelizable and
thus becomes more powerful as the number of attackers in-
creases.

Theorem 6.2 Let nid denote the number of obfuscated identi-
fiers that correspond to a target file. Let RG s denote the sieved
range using the range sieving attack. Let srg denote the max-
imum amount of obfuscation that could be sq—safely added to
a file identifier. Then, the expected size of range RG¢ can be
calculated by E[|RG|] = 24

nid*

Proof Let tk! ;, = rit' — randma, and tki = = ritt —
rand,,;, denote the minimum and the maximum value of an
obfuscated identifier that has been obtained by an adversary,
where rand,,q, and rand,,;, are chosen from the safe range
(0, srg). Then, we have the sieved range RGs = (tk!, ., tke ..
srg), namely, from the highest lower bound to the lowest up-
per bound. The sieved range RG s can be partitioned into two
ranges RG.,in and RG 4z, Where RGin = (tkS, ., Tt?)

and RGpar = (rlt' tk? . + srg). Thus we have E[|RG|] =
EHRGmm” + EHRGmaz”-

The size of the range RGin, denoted as |RGyinl, equals to
raNd iy since is rlt* — tk}, .. = randmi,. We show that
the cumulative distribution function of rand,,;, is given by

Equation 2.
r nid
Pr(randy,im > rg9) = (1 — _g) 2)
srg

Since an obfuscation rand is chosen uniformly and randomly
over a range (0, srg), for 0 < rg < srg, the probability that



any obfuscation rand is smaller than rg, denoted by Pr(rand <
rg), is %. Hence, the probability that any obfuscation rand

is greater than rg is Pr(rand > rg) =1 — Pr(rand < rg)

=1- %. Now we compute the probability that rand,,;,
= min{randy, rands, - , rand,;q} is greater than rg. We

have Pr(randm,., > rg) = Pr((rand; > rg) A (randy >

rg) A -+ A (randpgq > rg)) = H?idl Pr(rand; > rg) =

nid
(-#)
srg :

Now, using standard techniques from probability theory and
Equation 2, one can derive the expected value of rand,,y:
E[|RGminl|] = Elrandpi,] ~ 4. Symmetrically, one can
show that the expected size of range RG 4z 18 F[|RGmaz|] =
229 . Hence the expected size of sieved range is E[|RG,|] =

E[[RGin]] + B[ RGrasl] > 2. 1

= nid"

7 Location Inference Guards

Location inference attacks refer to those attacks wherein an
adversary attempts to infer the location of a file using indi-
rect techniques that exploit file metadata information such as
file access frequency, file size, and so forth. LocationGuard
includes a suite of four fundamental and inexpensive inference
guards: lookup frequency inference guard, end-user IP-address
inference guard, file replica inference guard and file size infer-
ence guard. LocationGuard also includes a capability revo-
cation based location rekeying mechanism as a general guard
against any inference attack. In this section, we present the
four fundamental inference guards and the location rekeying
technique in detail.

7.1 Passive Inference Guards

Passive inference attacks refer to those attacks wherein an ad-
versary attempts to infer the location of a target file by pas-
sively observing the overlay network. We present two infer-
ence guards: lookup frequency inference guard and end-user
IP-address inference guard to guard the file system against two
common passive inference attacks. The lookup frequency in-
ference attack is based on the ability of malicious nodes to ob-
serve the frequency of lookup queries on the overlay network.
Assuming that the adversary knows the relative file popularity,
it can use the target file’s lookup frequency to infer its location.
The end-user IP-address inference attack is based on assump-
tion that the identity of the end-user can be inferred from its
[P-address by an overlay network node r, when the user re-
quests node 7 to perform a lookup on its behalf. The malicious
node 7 could log and report this information to the adversary.

7.1.1 Lookup Frequency Inference Guard

In this section we present lookup frequency inference attack
that would help a strategic adversary to infer the location of a
target file on the overlay network. It has been observed that the
general popularity of the web pages accessed over the Internet

follows a Zipf-like distribution [25]. An adversary may study
the frequency of file accesses by sniffing lookup queries and
match the observed file access frequency profile with a actual
(pre-determined) frequency profile to infer the location of a tar-
get file 2. Note that if the frequency profile of the files stored in
the file system is flat (all files are accessed with the same fre-
quency) then an adversary will not be able to infer any infor-
mation. Lemma 7.1 formalizes the notion of perfectly hiding a
file from a frequency inference attack.

Lemma 7.1 Let F denote the collection of files in the file sys-
tem. Let )\} denote the apparent frequency of accesses to file
f as perceived by an adversary. Then, the collection of files
is perfectly hidden from frequency inference attack if )\'f =c:
Vf € F and some constant c.

Corollary 7.2 A collection of read-only files can be perfectly
hidden from frequency inference attack.

Proof Let Ay denote the actual frequency of accesses on a file
f. Set the number replicas for file f to be proportional to its
access frequency, namely Ry = (l * Ay (for some constant
¢ > 0). When a user wishes to read the file f, the user ran-
domly chooses one replica of file f and issues a lookup query
on it. From an adversary’s point of view it would seem that the
access frequency to all the file replicas in the system is iden-
tical, namely, Vf \,, = })%—J; = c¢ (1 < i < Ry for file f).
By Lemma 7.1, an adversary would not be able to derive any
useful information from a frequency inference attack. |

Interestingly, the replication strategy used in Corollary 7.2 im-
proves the performance and load balancing aspect of the file
system. However, it is not applicable to read-write files since
an update operation on a file may need to update all the repli-
cas of a file. In the following portions of this section, we pro-
pose two techniques to flatten the apparent frequency profile
of read/write files.

Guard by Result Caching. The first technique to mitigate
the frequency inference attack is to obfuscate the apparent file
access frequency with lookup result caching. Lookup result
caching, as the name indicates, refers to caching the results of
a lookup query. Recall that wide-area network file systems like
CFS, Farsite and OceanStore permit nodes to join and leave
the overlay network. Let us for now consider only node de-
partures. Consider a file f stored at node n. Let Ay denote
the rate at which users accesses the file f. Let ji4., denote
the rate at which a node leaves the overlay network (rates are
assumed to be exponentially distributed). The first time the
user accesses the file f, the lookup result (namely, node n)
is cached. The lookup result is implicitly invalidated when
the user attempts to access file f the first time after node n

2This is analogous to performing a frequency analysis attack on old sym-
metric key ciphers like the Caesar’s cipher [24]



leaves the overlay network. When the lookup result is invali-
dated, the user issues a fresh lookup query for file f. One can
show that the apparent frequency of file access as observed by
an adversary is )\’f = )\/\fffﬁ (assuming exponential distri-
bution for Ay and fi4ep). The probability that any given file
access results is a lookup is equal to the probability that the
node responsible for the file leaves before the next access and
is given by Prisorup = ﬁ Hence, the apparent file
access frequency is equal to the product of the actual file ac-
cess frequency (Af) and the probability that a file access re-
sults in a lookup operation (Priookup). Intuitively, in a static
scenario where nodes never leave the network (gep << Ap),
)\’f ~ ltdep; and when nodes leave the network very frequently
(fbdep > Af), /\’f ~ As. Hence, more static the overlay net-
work is, harder it is for an adversary to perform a frequency
inference attack since it would appear as if all files in the sys-
tem are accessed at an uniform frequency fiqep.

It is very important to note that a node m storing a file f may
infer f’s name since the user has to ultimately access node m to
operate on file f. Hence, an adversary may infer the identities
of files stored at malicious nodes. However, it would be very
hard for an adversary to infer files stored at good nodes.

Guard by File Identifier Obfuscation. The second technique
that makes the frequency inference attack harder is based on
the file identifier obfuscation technique described in Section
6. Let f1, fa, -, fny denote the files stored at some node n.
Let the identifiers of these replicas be rlty, rlty,---rit,s. Let
the target file be f;. The key idea is to obfuscate the identi-
fiers such that an adversary would not be able to distinguish
between an obfuscated identifier intended for locating file f;
and that for some other file f; (2 < j < nf) stored at node n.

More concretely, when a user performs a lookup for fi, the
user would choose some random identifier in the range R, =
(rity — W%fc, rlt1). A clever adversary may cluster iden-
tifiers based on their numerical closeness and perform a fre-
quency inference attack on these clusters. However, one could
defend the system against such a clustering technique by ap-
propriately choosing a safe obfuscation range. Figure 4 presents
the key intuition behind this idea diagrammatically. As the
range R, overlaps with the ranges of more and more files stored
at node n, the clustering technique and consequently the fre-
quency inference attack would perform poorly. Let R; N Ro
denote the set of identifiers that belongs the intersection of
ranges R; and R,. Then, given an identifier tk € Ry N Ro,
an adversary would not able to distinguish whether the lookup
was intended for file f; or f; but the adversary would defi-
nitely know that the lookup was intended either for file f; or
f2. Observe that amount of information inferred by an ad-
versary becomes poorer and poorer as more and more ranges
overlap. Also, as the number of files (n f) stored at node n in-
creases, even a small obfuscation might introduce significant
overlap between ranges of different files stored at node n.
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Figure 4: Countering Frequency Analysis Attack by file identifier
obfuscation. X1 X», Y1Y> and Z1 Z5 denote the ranges of the
obfuscated identifiers of files f1, f2, f3 stored at node n. Frequency
inference attacks works in scenario (i), but not in scenario (ii). Given
an identifier tk € Y1 Z1, it is hard for an adversary to guess whether
the lookup was for file f1 or fa.

The apparent access frequency of a file f is computed as a
weighted sum of the actual access frequencies of all files that
share their range with file f. For instance, the apparent access
frequency of file f; (see Figure 4) is given by Equation 3.

A A A +A A
X1Yi # Mgy + Y12 # (7“;’ f2) 21X <7fl 2t f3>

th’l“s,,,fﬁ

Ny =
3

The apparent access frequency of a file evens out the sharp
variations between the frequencies of different files stored at a
node, thereby making frequency inference attack significantly
harder. We discuss more on how to quantify the effect of file
identifier obfuscation on frequency inference attack in our ex-
perimental section 9.

7.1.2 End-User IP-Address Inference Guard

In this section, we describe an end-user IP-address inference
attack that assumes that the identity of an end-user can be in-
ferred from his/her IP-address. Note that this is a worst-case-
assumption; in most cases it may not possible to associate a
user with one or a small number IP-addresses. This is partic-
ularly true if the user obtains IP-address dynamically (DHCP
[2]) from a large ISP (Internet Service Provider).

A user typically locate their files on the overlay network by is-
suing a lookup query to some node r on the overlay network.
If node r were malicious then it may log the file identifiers
looked up by a user. Assuming that a user accesses only a
small subset of the total number of files on the overlay net-
work (including the target file) the adversary can narrow down
the set of nodes on the overlay network that may potentially
hold the target file. One possible solution is for users to issue
lookup queries through a trusted anonymizer. The anonymizer
accepts lookup queries from users and dispatches it to the over-
lay network without revealing the user’s IP-address. However,
the anonymizer could itself become a viable target for the ad-
versary.

A more promising solution is for the user to join the over-
lay network (just like other nodes hosting files on the overlay
network). When the user issues lookup queries, it is routed



through some of its neighbors; if some of its neighbors are ma-
licious, then they may log these lookup queries. However, it is
non-trivial for an adversary to distinguish between the queries
that originated at the user and those that were simply routed
through it.

For the sake of simplicity, let us assume that ¢ denotes the
number of lookups issued per user per unit time. Assuming
there are N users, the total lookup traffic is Ng lookups per
unit time. Each lookup on an average requires % logy N hops
on Chord. Hence, the total lookup traffic is Ngq * %logz N
hops per unit time. By the design of the overlay network,
the lookup traffic is uniformly shared among all nodes in the
system. Hence the number of lookup queries (per unit time)
routed through any node u is % * %qN logo N=q* % logy, N.
Therefore, the ratio of lookup queries that originate at a node
to that routed through it is s 1?)g2 = = log22 ~. For N = 106,
this ratio is about 0.1, thereby making it hard for an adversary
to selectively pick only those queries that originated at a par-
ticular node. Further, not all neighbors of a node are likely to
be bad; hence, it is rather infeasible for an adversary to collect
all lookup traffic flowing through an overlay node.

7.2 Host Compromise based Inference Guards

Host compromise based inference attacks require the adver-
sary to perform an active host compromise attack before it
can infer the location of a target file. We present two infer-
ence guards: file replica inference guard and file size inference
guard to guard the file system against two common host com-
promise based inference attacks. The file replica inference at-
tack attempts to infer the identity of a file from its contents.
Note that an adversary can reach the contents of a file only af-
ter it compromises the replica holder (unless the replica holder
is malicious). The file size inference attack attempts to infer
the identity of a file from its size. If the sizes of files stored on
the overlay network are sufficiently skewed, the file size could
by itself be sufficient to identify a target file.

7.2.1 File Replica Inference Guard

Despite making the file capabilities and file access frequencies
appear random to an adversary, the contents of a file could by
itself reveal the identity of the file f. The file f could be en-
crypted to rule out the possibility of identifying a file from its
contents. Even when the replicas are encrypted, an adversary
can exploit the fact that all the replicas of file f are identical.
When an adversary compromises a good node, it can extract a
list of identifier and file content pairs (or a hash of the file con-
tents) stored at that node. Note that an adversary could perform
a frequency inference attack on the replicas stored at malicious
nodes and infer their filenames. Hence, if an adversary were to
obtain the encrypted contents of one of the replicas of a target
file f, it could examine the extracted list of identifiers and file
contents to obtain the identities of other replicas. Once, the
adversary has the locations of c¢r copies of a file f, the f could
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be attacked easily. This attack is especially more plausible on
read-only files since their contents do not change over a long
period of time. On the other hand, the update frequency on
read-write files might guard them file replica inference attack.

We guard read-only files (and files updated very infrequently)
by making their replicas non-identical; this is achieved by en-
crypting each replica with a different cryptographic key. We
derive the cryptographic key for the i*" replica of file f using
its location key Ik as k* = khashyx(f || i || ‘cryptkey’). Further,
if one uses a symmetric key encryption algorithm in cipher-
block-chaining mode (CBC mode [15, 5]), then we could re-
duce the encryption cost by using the same cryptographic key,
but a different initialization vector (iv) for encrypting different
file replicas: k* = khashyx(f || ‘cryptkey’) and iv® = khash(f
[[4] ‘ivec’).

We show in our experimental section that even a small update
frequency on read-write files is sufficient to guard them the file
replica inference attack. Additionally, one could also choose
to encrypt read-write file replicas with different cryptographic
keys (to make the replicas non-identical) to improve their re-
silience to file replica inference attack.

7.2.2 File Size Inference Guard

File size inference attack is based on the assumption that an
adversary might be aware of the target file’s size. Malicious
nodes (and compromised nodes) report the size of the files
stored at them to an adversary. If the size of files stored on
the overlay network follows a skewed distribution, the adver-
sary would be able to identify the target file (much like the
lookup frequency inference attack). We guard the file system
from this attack by fragmenting files into multiple file blocks
of equal size. For instance, CFS divides files into blocks of
8 KBytes each and stores each file block separately. We hide
the location of the j** block in the i*" replica of file f using
its location key Ik and token rit("J) = khashy,(f || i || ).
Note that the last file block may have to be padded to make
its size 8 KBytes. Now, since all file blocks are of the same
size, it would be vary hard for an adversary to perform file size
inference attack. It is interesting to note that dividing files into
blocks is useful in minimizing the communication overhead
for small reads/writes on large files.

7.3 Location Rekeying

In addition to the inference attacks listed above, there could be
other possible inference attacks on a LocationGuard based file
system. In due course of time, the adversary might be able to
gather enough information to infer the location of a target file.
Location rekeying is a general defense against both known and
unknown inference attacks. Users can periodically choose new
location keys so as to render all past inferences made by an
adversary useless. This is analogous to periodic rekeying of
cryptographic keys. Unfortunately, rekeying is an expensive
operation: rekeying cryptographic keys requires data to be re-



encrypted; rekeying location keys requires files to be relocated
on the overlay network. Hence, it is important to keep the
rekeying frequency small enough to reduce performance over-
heads and large enough to secure files on the overlay network.
In our experiments section, we estimate the periodicity with
which location keys have to be changed in order to reduce the
probability of an attack on a target file.

8 Discussion

In this section, we briefly discuss a number of issues related to
security, distribution and management of LocationGuard.

Key Security. We have assumed that in LocationGuard based
file systems it is the responsibility of the legal users to secure
location keys from an adversary. If a user has to access thou-
sands of files then the user must be responsible for the secrecy
of thousands of location keys. One viable solution could be
to compile all location keys into one key-list file, encrypt the
file and store it on the overlay network. The user now needs to
keep secret only one location key that corresponds to the key-
list. This 128-bit location key could be physically protected
using tamper-proof hardware devices, smartcards, etc.

Key Distribution. Secure distribution of keys has been a ma-
jor challenge in large scale distributed systems. The problem
of distributing location keys is very similar to that of distribut-
ing cryptographic keys. Typically, keys are distributed using
out-of-band techniques. For instance, one could use PGP [18]
based secure email service to transfer location keys from a file
owner to file users.

Key Management. Managing location keys efficiently be-
comes an important issue when (i) an owner owns several thou-
sand files, and (ii) the set of legal users for a file vary signifi-
cantly over time. In the former scenario, the file owner could
reduce the key management cost by assigning one location key
for a group of files. Any user who obtains the location key for
a file f would implicitly be authorized to access the group of
files to which f belong. However, the later scenario may se-
riously impede the system’s performance in situations where
it may require location key to be changed each time the group
membership changes.

The major overhead for LocationGuard arises from key dis-
tribution and key management. Also, location rekeying could
be an important factor. Key security, distribution and manage-
ment in LocationGuard using group key management proto-
cols [8] are a part of our ongoing research work.

Other issues that are not discussed in this paper include the
problem of a valid user illegally distributing the capabilities
(tokens) to an adversary, and the robustness of the lookup pro-
tocol and the overlay network in the presence of malicious
nodes. In this paper we assume that all valid users are well
behaved and the lookup protocol is robust. Readers may re-
fer to [22] for detailed discussion on the robustness of lookup
protocols on DHT based overlay networks.
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9 Experimental Evaluation

In this section, we report results from our simulation based ex-
periments to evaluate the LocationGuard approach for build-
ing secure wide-area network file systems. We implemented
our simulator using a discrete event simulation [5] model, and
implemented the Chord lookup protocol [23] on the overlay
network compromising of N = 1024 nodes. In all experi-
ments reported in this paper, a random p = 10% of N nodes
are chosen to behave maliciously. We set the number of repli-
cas of a file to be R = 7 and vary the corruption threshold
cr in our experiments. We simulated the bad nodes as having
large but bounded power based on the parameters a (DoS at-
tack strength), A (node compromise rate) and . (node recovery
rate) (see the threat model in Section 3). We quantify the over-
head due to LocationGuard and demonstrate the effectiveness
of LocationGuard against DoS and host compromise based tar-
get file attacks.

9.1 LocationGuard

Operational Overhead.> We first quantify the performance
and storage overheads incurred by LocationGuard. Let us con-
sider a typical file read/write operation. The operation consists
of the following steps: (i) generate the replica location tokens,
(ii) lookup the replica holders on the overlay network, and (iii)
process the request at replica holders. Step (i) requires com-
putations using the keyed-hash function with location keys,
which otherwise would have required computations using a
normal hash function. We found that the computation time
difference between HMAC (a keyed-hash function) and MD5
(normal hash function) is negligibly small (order of a few mi-
croseconds) using the standard OpenSSL library [16]. Step (ii)
involves a pseudo-random number generation (few microsec-
onds using the OpenSSL library) and may require lookups to
be retried in the event that the obfuscated identifier turns out to
be unsafe. Given that unsafe obfuscations are extremely rare
(see Table 1) retries are only required occasionally and thus
this overhead is negligible. Step (iii) adds no overhead be-
cause our access check is almost free. As long as the user can
present the correct pseudo-filename (token), the replica holder
would honor a request on that file.

Now, let us compare the storage overhead at the users and the
nodes that are a part of the overlay network. Users need to
store only an additional 128-bit location key (16 Bytes) along
with other file meta-data for each file they want to access. Even
a user who uses 1 million files on the overlay network needs to
store only an additional 16MBytes of location keys. Further,
there is no extra storage overhead on the rest of the nodes on
the overlay network.

Denial of Service Attacks. Figure 5 shows the probability
of an attack for varying o and different values of corruption

3 As measured on a 900 MHz Intel Pentium IIT processor running RedHat
Linux 9.0
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Figure 5: Probability of a Target File Attack
for N = 1024 nodes and R = 7 using DoS
Attack

threshold (cr). Without the knowledge of the location of file
replicas an adversary is forced to attack (DoS) a random col-
lection of nodes in the system and hope that that at least cr
replicas of the target file is attacked. Observe that if the mali-
cious nodes are more powerful (larger o) or if the corruption
threshold cr is very low, then the probability of an attack is
higher. If an adversary were aware of the R replica holders of
a target file then a weak collection of B malicious nodes, such
as B =102 (i.e., 10% of N) with v = £ = ;I = 0.07, can
easily attack the target file. Also, for a file system to handle the
DoS attacks on a file with = 1, it would require a large num-
ber of replicas (R close to B) to be maintained for each file.
For example, in the case where B = 10% x N and N = 1024,
the system needs to maintain as large as 100+ replicas for each
file. Clearly, without location keys, the effort required for an
adversary to attack a target file is dependent only on R, but is
independent of the number of good nodes (G) in the system.
On the contrary, the location key based techniques scale the
hardness of an attack with the number of good nodes in the
system. Thus even with a very small R, the location key based
system can make it very hard for any adversary to launch a
targeted file attack.

Host Compromise Attacks. To further evaluate the effective-
ness of location keys against targeted file attacks, we evaluate
location keys against host compromise attacks. Our first exper-
iment on host compromise attack shows the probability of an
attack on the target file assuming that the adversary does not
collect capabilities (tokens) stored at the compromised nodes.
Hence, the target file is attacked if ¢ or more of its replicas are
stored at either malicious nodes or compromised nodes. Figure
6 shows the probability of an attack for different values of cor-
ruption threshold (cr) and varying p = § (measured in number
of node recoveries per node compromise). We ran the simula-
tion for a duration of % time units. Recall that % denotes
the mean time required for one malicious node to compromise
a good node. Note that if the simulation were run for infinite
time then the probability of attack is always one. This is be-
cause, at some point in time, cr or more replicas of a target file
would be assigned to malicious nodes (or compromised nodes)
in the system.

Corruption Threshold (cr)

Figure 6: Probability of a Target File Attack
for N = 1024 nodes and R = 7 using Host
Compromise Attack (with no token
collection)
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Fraction of Good Nodes Compromised
Figure 7: Probability of a Target File Attack
for N = 1024 nodes and R = 7 using Host
Compromise Attack with token collection

from compromised nodes
p | 05110 L1 1.2 1.5 3.0
G| 0 0 | 005|044 | 0.77 | 0.96
Table 2: Mean Fraction of Good Nodes in Uncompromised State
(@)

From Figure 6 we observe that when p < 1, the system is
highly vulnerable since the node recovery rate is lower than
the node compromise rate. Note that while a DoS attack could
tolerate powerful malicious nodes (o > 1), the host compro-
mise attack cannot tolerate the situation where the node com-
promise rate is higher than their recovery rate (p < 1). This is
primarily because of the cascading effect of host compromise
attack. The larger the number of compromised nodes we have,
the higher is the rate at which other good nodes are compro-
mised (see the adversary model in Section 3). Table 2 shows
the mean fraction of good nodes (G”) that are in an uncompro-
mised state for different values of p. Observe from Table 2 that
when p = 1, most of the good nodes are in a compromised
state.

As we have mentioned in Section 4.3, the adversary could col-
lect the capabilities (tokens) of the file replicas stored at com-
promised nodes; these tokens can be used by the adversary
at any point in future to corrupt these replicas using a simple
write operation. Hence, our second experiment on host com-
promise attack measures the probability of a attack assuming
that the adversary collects the file tokens stored at compro-
mised nodes. Figure 7 shows the mean effort required to locate
all the replicas of a target file (cr = R). The effort required
is expressed in terms of the fraction of good that need to be
compromised by the adversary to attack the target file.

Note that in the absence of location keys, an adversary needs
to compromise at most R good nodes in order to succeed a
targeted file attack. Clearly, location key based techniques in-
crease the required effort by several orders of magnitude. For
instance, when p = 3, an adversary has to compromise 70% of
the good nodes in the system in order to increase the probabil-
ity of an attack to a nominal value of 0.1, even under the as-
sumption that an adversary collects file capabilities from com-
promised nodes. Observe that if an adversary compromises
every good node in the system once, it gets to know the to-
kens of all files stored on the overlay network. In Section 7.3



p 05]|110] 1.1 | 12| 15|30
Rekeying Interval | 0 0 [ 043 | 1.8 | 45 | 6.6
Table 3: Time Interval between Location ReKeying (normalized by
+ time units)

we had proposed location rekeying to protect the file system
from such attacks. The exact period of location rekeying can
be derived from Figure 7. For instance, when p = 3, if a user
wants to retain the attack probability below 0.1, the time inter-
val between rekeying should equal the amount of time it takes
for an adversary to compromise 70% of the good nodes in the
system. Table 3 shows the time taken (normalized by %) for
an adversary to increase the attack probability on a target file
to 0.1 for different values of p. Observe that as p increases,
location rekeying can be more and more infrequent.

9.2 Location Inference Guards

In this section we show the effectiveness of location inference
guards against the lookup frequency inference attack, and the
file replica inference attack. For a more comprehensive evalu-
ation of inference guards, refer to our tech-report [21].

Lookup Frequency Inference Guard. We have presented
lookup result caching and file identifier obfuscation as two
techniques to thwart frequency inference attack. Recall that
our solutions attempt to flatten the frequency profile of files
stored in the system (see Lemma 7.1). Note that we do not
change the actual frequency profile of files; instead we flatten
the apparent frequency profile of files as perceived by an adver-
sary. We assume that files are accessed in proportion to their
popularity. File popularities are derived from a Zipf-like dis-
tribution [25], wherein, the popularity of the ‘" most popular
file in the system is proportional to Z% with v = 1.

Our first experiment on inference attacks shows the effective-
ness of lookup result caching in mitigating frequency analy-
sis attack by measuring the entropy [14] of the apparent fre-
quency profile (measured as number of bits of information).
Given the apparent access frequencies of F’ files, namely, )\}1 ,
/\’f2, cee /\’fF, the entropy S is computed as follows. First the
frequencies are normalized such that Zf;l )\/fi = 1. Then,
S=-r A, * logy Ay, When all files are accessed uni-
formly and randomly, that is, )\./f'i % forl < i < F, the
entropy S is maximum Sy, = logs F'. The entropy S de-
creases as the access profile becomes more and more skewed.
Note that if S = log, F', no matter how clever the adversary
is, he/she cannot derive any useful information about the files
stored at good nodes (from Lemma 7.1). Table 4 shows the
maximum entropy (Syq.) and the entropy of a zipf-like dis-
tribution (S,4py) for different values of F'. Note that every
additional bit of entropy, doubles the effort required for a suc-
cessful attack; hence, a frequency inference attack on a Zipf
distributed 4K files is about 19 times (2'2~7-7°) easier than the
ideal scenario where all files are uniformly and randomly ac-
cessed.
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Table 5 shows the entropy of apparent file access frequency as
perceived by an adversary when lookup result caching is em-
ployed by the system for ' = 32K files. We assume that the
actual access frequency profile of these files follows a Zipf dis-
tribution with the frequency of access to the most popular file
(f1) normalized to one access per unit time. Table 5 shows
the entropy of the apparent lookup frequency for different val-
ues of figep (the mean rate at which a node joins/leaves the
system). Observe if ji4¢,, is large, the entropy of apparent file
access frequency is quite close to that of Zipf-distribution (see
Table 4 for 32K files); and if the nodes are more stable (ftgep
is small), then the apparent frequency of all files would appear
to be identically equal to ftgep.

In our second experiment, we show the effectiveness of file
identifier obfuscation in mitigating frequency inference attack.
Figure 8 shows the entropy of the apparent file access fre-
quency for varying values of sq (the probability that obfus-
cated queries are safe, see Theorem 6.1) for different values
of nf, the mean number of files per node. Recall that an
obfuscated identifier is safe if both the original identifier and
the obfuscated identifier are assigned to the same node in the
system. Higher the value sq, smaller is the safe obfuscation
range (srg); and thus, the lookup queries for a replica loca-
tion token are distributed over a smaller region in the identifier
space. This decreases the entropy of the apparent file access
frequency. Also, as the number of files stored at a node in-
creases, there would be larger overlaps between the safe ranges
of different files assigned to a node (see Figure 4). This evens
out (partially) the differences between different apparent file
access frequencies and thus, increases its entropy.

File Replica Inference Guard. We study the severity of file
replica inference attack with respect to the update frequency
of files in the file system. We measured the probability that
an adversary may be able to successfully locate all the repli-
cas of a target file using the file replica inference attack when
all the replicas of a file are encrypted with the same key. We
assume that the adversary performs a host compromise attack
with p = 3. Figure 9 shows the probability of a successful at-
tack on a target file for different values of its update frequency
and different values of rekeying durations. Note that the time
period at which location keys are changed and the time period
between file updates are normalized by % (mean time to com-
promise a good node). Observe the sharp knee in Figure 9;
once the file update frequency increases beyond 3\ (thrice the
node compromise rate) then probability of a successful attack
is very small.

Note that A, the rate at which a node can be compromised by
one malicious node is likely to be quite small. Hence, even if
a file is infrequently updated, it could survive a file replica in-
ference attack. However, read-only files need to be encrypted
with different cryptographic keys to make their replicas non-
identical. Figure 9 also illustrates that lowering the time pe-
riod between key changes lowers the attack probability signif-
icantly. This is because each time the location key of a file f is



F 4K | 8K | 16K | 32K
Smaz | 12 | 13 | 14 | 15
S.ips | 775 | 836 | 895 | 955

Table 4: Entropy (in number of bits) of a
Zipf-distribution

Entropy (hardness of inference attack)
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changed all the information collected by an adversary regard-
ing f would be rendered entirely useless.

Inference Attacks Discussion. We have presented techniques
to mitigate some popular inference attacks. There could be
other inference attacks that have not been addressed in this pa-
per. Even the location inference guards presented in this paper
does not entirely rule out the possibility of an inference attack.
For instance, even when we used result caching and file iden-
tifier perturbation in combination, we could not increase the
entropy of apparent lookup frequency to the theoretical maxi-
mum (5,4, in Table 4). Identifying other potential inference
attacks and developing better defenses against the inference at-
tacks that we have already pointed out in this paper is a part of
our ongoing work.

10 Related Work

Serverless distributed file systems like CFS [4], Farsite [1],
OceanStore [12] and SiRiUS [7] have received significant at-
tention from both the industry and the research community.
These file systems store files on a large collection of untrusted
nodes that form an overlay network. They use cryptographic
techniques to secure files from malicious nodes. Unfortunately,
cryptographic techniques cannot protect a file holder from DoS
or host compromise attacks. LocationGuard presents low over-
head and highly effective techniques to guard a distributed file
system from such targeted file attacks.

The secure Overlay Services (SOS) paper [11] presents an ar-
chitecture that proactively prevents DoS attacks using secure
overlay tunneling and routing via consistent hashing. How-
ever, the assumptions and the applications in [11] are notice-
ably different from that of ours. For example, the SOS pa-
per uses the overlay network for introducing randomness and
anonymity into the SOS architecture to make it difficult for
malicious nodes to attack target applications of interest. Lo-
cationGuard treats the overlay network as a part of the tar-
get applications we are interested in and introduce randomness
and anonymity through location key based hashing and lookup
based file identifier obfuscation, making it difficult for mali-
cious nodes to target their attacks on a small subset of nodes
in the system, who are the replica holders of the target file of

f0.740.760.78 08 0.620.64 0.860.68 0.9 0.920.94 0.96 12 3 4 5 6 7 8 9
Probability of Safe Perturbed Query (sq)
Figure 8: Countering Lookup Frequency
Inference Attack Approach II: File Identifier

obfuscation

File Update Frequency
Figure 9: Countering File Replica Frequency
Inference Attack: Location Rekeying
Frequency Vs File Update Frequency

interest.

The Hydra OS [3] proposed a capability-based file access con-
trol mechanism. LocationGuard implements a simple and ef-
ficient capability-based access control on a wide-area network
file system. The most important challenge for LocationGuard
is that of keeping a file’s capability secret and yet being able to
perform a lookup on it (see Section 6).

Indirect attacks such as attempts to compromise cryptographic
keys from the system administrator or use fault attacks like
RSA timing attacks, glitch attacks, hardware and software im-
plementation bugs [17] have been the most popular techniques
to attack cryptographic algorithms. Similarly, attackers might
resort to inference attacks on LocationGuard since a brute force
attack (even with range sieving) on location keys is highly in-
feasible.

11 Conclusion

We have described LocationGuard — a technique for securing
wide area serverless file sharing systems from targeted file at-
tacks. Analogous to traditional cryptographic keys that hide
the contents of a file, LocationGuard hides the location of a
file on an overlay network. LocationGuard protects a target
file from DoS attacks, host compromise attacks, and file loca-
tion inference attacks by providing a simple and efficient ac-
cess control mechanism with minimal performance and stor-
age overhead. The unique characteristics of LocationGuard
approach is the careful combination of location key, lookup
guard, and an extensible package of location inference guards,
which makes it very hard for an adversary to infer the loca-
tion of a target file by either actively or passively observing
the overlay network. Our experimental results quantify the
overhead of employing location guards and demonstrate the
effectiveness of the LocationGuard scheme against DoS at-
tacks, host compromise attacks and various location inference
attacks.

Our research on LocationGuard continues along several di-
mensions. First, we are currently working on identifying other
potential and possibly more sophisticated inference attacks and,
aiming at developing better defenses against various inference
attacks. Second, we are actively working on secure key distri-



bution algorithms and investigating factors that can influence
the frequency and timing of rekeying process. Furthermore,
we have started the development of LocationGuard toolkit as
a value-added package that can be plugged on top of existing
DHT-based P2P systems. We believe location hiding is an im-
portant property and that LocationGuard mechanisms are sim-
ple, secure, efficient and applicable to many large-scale overlay
network based applications.
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