
XPACK: A HIGH-PERFORMANCE WEB DOCUMENT ENCODING

Daniel Rocco
Department of Computer Science

University of West Georgia
Carrollton, GA 30118 USA

drocco@westga.edu

James Caverlee, Ling Liu
College of Computing

Georgia Institute of Technology
Atlanta, GA 30332, USA

{caverlee,lingliu}@cc.gatech.edu

Keywords: XML compression, path queries

Abstract: XML is an increasingly popular data storage and exchange format whose popularity can be attributed to its
self-describing syntax, acceptance as a data transmission and archival standard, strong internationalization sup-
port, and a plethora of supporting tools and technologies. However, XML’s verbose, repetitive, text-oriented
document specification syntax is a liability for many emerging applications such as mobile computing and dis-
tributed document dissemination. This paper presents XPack, an efficient XML document compression system
that exploits information inherent in the document structure to enhance compression quality. Additionally, the
utilization of XML structure features in XPack’s design should provide valuable support for structure-aware
queries over compressed documents. Taken together, the techniques employed in the XPack compression
scheme provide a foundation for efficiently storing, transmitting, and operating over Web documents. Initial
experimental results demonstrate that XPack can reduce the storage requirements for Web documents by up
to 20% over previous XML compression techniques. More significantly, XPack can simultaneously support
operations over the documents, providing up to two orders of magnitude performance improvement for certain
document operations when compared to equivalent operations on unencoded XML documents.

1 INTRODUCTION

The XML document format (Bray, 1998) is emerg-
ing as a popular document encoding for online in-
formation exchange. Standardized Web document
formats like XML are advantageous for a variety of
reasons. XML has well-defined semantics, strong
internationalization support (Savourel, 2001), and a
plethora of developer tools for managing and ex-
changing data. In addition, XML derived lan-
guages, such as WSDL (Christensen et al., 2001) and
SOAP (Mitra, 2003), provide higher level interac-
tion standards that leverage existing XML technology.
XML data is self-describing and authors are encour-
aged to use clear entity names to assist other users
in understanding the data (Bray, 1998). Since many
parties interested in data exchange interact with dif-
ferent entities during the course of a transaction, pre-
defined data exchange standards are a must. In the
highly dynamic world of the Web, the set of data ex-
change partners an entity may use will evolve over
time, which provides a strong argument for the use of
industry-standard communication technologies rather
than ad hoc solutions.

However, XML has two disadvantages that present
obstacles to widespread adoption as an information
exchange medium for many applications: the size
penalty and textual representation. Many entities that
might consider XML would need to convert existing
proprietary document formats into XML, which typ-
ically produces an undesirable and dramatic increase
in the size of the stored data (Liefke and Suciu, 2000).
Another concern stems from the fact that XML is
stored in a text document encoding like ASCII, which
incurs significant computational costs for parsing and
validation.

Many applications exist that could benefit from the
standardization of XML but require a more efficient
document representation. For example, data distri-
bution and routing applications require large num-
bers of documents to be handled quickly (Altinel and
Franklin, 2000), while today’s mobile devices have
limited processing power, communication bandwidth,
and storage capacity. For these and other applications,
it is advantageous to minimize the storage space re-
quired by documents and to provide efficient access
to application-specific areas of interest. While XML
provides advantages with its self-describing charac-



teristics and universally recognized format, these ap-
plications cannot afford the performance penalty that
has previously been the price of converting to XML.

There have been several efforts to reduce the stor-
age impact of converting to or otherwise utilizing
XML. XMill (Liefke and Suciu, 2000) is an XML
document compressor designed to alleviate the con-
cern of data expansion due to XML conversion. The
WAP Binary XML Format (World Wide Web Con-
sortium, 1999) and its extension Millau (Girardot and
Sundaresan, 2000) have been introduced for the effi-
cient encoding and streaming of XML structure, par-
ticularly in a wireless environment. These compres-
sion schemes addressed the data expansion concern
but do not provide explicit support for querying com-
pressed documents. There have been subsequent ef-
forts to provide query support over compressed XML
documents with systems that compress the content of
the document (Min et al., 2003) or its structure (Bune-
man et al., 2003).

This paper presents XPack, a document compres-
sion system providing both good compression and
strong query support for compressed documents. The
design goal of XPack is to support the acceptance of
XML as a viable data exchange mechanism by min-
imizing the performance penalty incurred by appli-
cations that use it. XPack’s compression and query
techniques are built upon these fundamental design
principles:

1. Redundancy Elimination.XPack reduces much of
the redundancy found in XML documents, yielding
a smaller document footprint.

2. Binary Format. XPack’s binary encoding requires
no parsing when loading a document from disk.
Document parsing and verification is a resource
intensive operation, so applications using XPack
can expect better performance when loading doc-
uments.

3. Compartmentalization. XPack separates various
document components to provide faster access to
interesting aspects of a document, such as its tree
structure information or node tag list.

4. Compressed Data Access.Unlike other widely
used document compression systems, XPack pro-
vides general query facilities that operate over the
compressed documents. Compressed data access
allows applications to store data in a compact,
space-saving format without sacrificing the ability
to do ad hoc querying.

2 RELATED WORK

The XPack document encoding leverages ideas
from our previous work on the Page Digest sys-

tem (Rocco et al., 2003) for efficient representation
of HTML Web pages. The Page Digest was designed
to support efficient document processing in applica-
tions such as Web change monitoring (Buttler et al.,
2004; Buttler et al., 2003). XPack is an extension
of this work that targets XML documents, in particu-
lar, by providing a more flexible framework that sup-
ports containerized document compression and effi-
cient path querying.

The foundation work for modern data compression
was done by Ziv and Lempel (Ziv and Lempel, 1977),
who proposed the idea of the dictionary compres-
sor. Dictionary compressors operate by substituting
repeated occurrences of a given string with a shorter
sequence; the original file can be reconstructed by re-
versing the substitution. This technique and its vari-
ants have become integral components of many stan-
dard computing tools such as the Gzip (loup Gailly
and Adler, 2004) file compression tool. For a more
general introduction to data compression, we refer the
reader to (Sayood, 2000; Witten et al., 1999).

Recently, there have been several efforts to de-
sign XML-specific compression algorithms. The first,
XMill (Liefke and Suciu, 2000), was designed to pro-
mote standardized document storage and transmission
formats while alleviating the concern of data expan-
sion that is often the penalty of converting data to
XML. The XMill compressor achieves this goal by
creating a container for each document tag and plac-
ing the data values for each tag into the same con-
tainer. The containers are then compressed using
a standard dictionary compression library. The in-
tuition behind this approach is that grouping values
by their tag names would arrange repetitious sections
of the document closer to each other, which would
yield greater compression efficiency from the dictio-
nary compressor. The fundamental problem with the
XMill approach is its opaque nature: data compressed
with the XMill compressor is only available for use
after being decompressed, a costly overhead step that
must be added to the overhead of parsing the text doc-
ument.

The Millau (Girardot and Sundaresan, 2000) bi-
nary format—an extension to the WAP Binary XML
Format (World Wide Web Consortium, 1999)—has
been introduced for the efficient encoding and stream-
ing of XML structure, particularly in a wireless envi-
ronment. A technique using multiplexed hierarchical
PPM models was introduced in (Cheney, 2001). It
has been shown to be slower than XMill, but in some
cases achieves a higher degree of compression.

There have been several recent efforts to provide
query support over compressed XML documents,
typically by making a trade-off between the degree
of compression and support for queries. The first
of these techniques, XGRIND (Tolani and Haritsa,
2002), compresses XML documents by using Huff-



man encoding for non-enumerated types. If a doc-
ument conforms to a known DTD, additional com-
pression may be achieved by encoding the enumer-
ated types listed in the DTD. XGRIND supports exact
match and range queries over the compressed XML
document. Similarly, XPRESS (Min et al., 2003)
maintains the original structure of each XML doc-
ument to support path queries, but instead uses a
technique called reverse arithmetic encoding for com-
pressing labeled paths of the document. In exper-
iments, the XPRESS system is shown to be faster
than XGRIND for compression and query resolu-
tion. In (Buneman et al., 2003), the authors present
an XML compression technique that supports path
queries over the compressed XML. Their technique
relies on the identification of shared subtrees across a
single document.

3 XPACK DOCUMENT
ENCODING

XPack is a document encoding and compression
system designed to operate over XML data. In this
section, we construct a formal model of an XML doc-
ument to facilitate the explanation of the techniques
that XPack employs. Using this document model,
we define a set ofdocument operators, which are re-
versible functions that transform the XML data to re-
duce representation redundancy and provide efficient
access to interesting document components.

3.1 Reference Document Model and
Design Concepts

We model an XML document as an ordered tree of
nodes where each node has a name and optionally
contains a namespace qualifier, attributes, and text
content. More formally, an XML documentD is a set
of tags{t1, . . . , t2n}; each tagti is a string of char-
acters denoting the tag’s name and value. We say that
tag ti is aclosing tagif the tag name begins with the
slash character ‘/’; otherwise the tag is anopening tag.
A documentD is required to have the same number
of opening and closing tags, which occur in tag pairs.1

A tag pair describes anode used in a document’s tree
model: a node is a descendent of the tag pairs that
enclose it and an ancestor of the tag pairs that it en-
closes. The documentD’s tag set{t1, . . . , t2n} must
satisfy the following invariants:

1Actual XML documents can also have “self closing”
tags which combine the opening and closing tag. We model
such tags as a tag pairti, ti+1; in the ASCII version the
closing tagti+1 is implied.

1. ∀ opening tagsti, ∃ tj s.t.

(a) i < j

(b) tj is a closing tag forti
(c) @ a tag pairtk, tl s.t. i < k < j < l, and
(d) @ a tag pairtk, tl s.t.k < i < l < j

2. D contains the same number of opening and clos-
ing tags

3. t1 is an opening tag

4. by extension of the above,t2n is the closing tag for
t1

Invariants 1 and 2 require all documents to contain a
balanced tag set, i.e. each open tag must have a corre-
sponding close tag. (a) and (b) state that open tags are
required to preceed their closing tag. (c) and (d) are
concerned with the proper nesting of tags; Figure 1
demonstrates proper nesting along with two examples
of improper nesting. Finally, invariants 3 and 4 state
that the first tag must be an open tag and that the last
tag must be the corresponding closing tag.

...
<i>

<k>
</i>

</k>
...

(a)

...
<k>

<i>
</k>

</i>
...

(b)

...
<i>

<k>
</k>

</i>
...

(c)

Figure 1: Examples of improperly nested tags (a) and
(b) along with a properly nested example (c).

3.2 XPack System Overview

The XPack encoding system operates over this docu-
ment model to produce an XPack-encoded version of
the document that retains the same structural elements
and semantic meaning as the original document rep-
resented in a more efficient format. XPack espouses a
container-oriented document structure that is created
and modified by a set of unary document operators:

• PagePack (φ): document container encoding

• PathPack (ψ): path structure encoding

• NamePack (ρ): node tag name encoding

• URLPack (γ): document URL encoding

• AttributePack (α): attribute encoding

• ContentPack (χ): content encoding

XPack’s document operators are designed to support
flexible redundancy reduction. The PagePack oper-
ator is unique in that it operates over the original



XML, while the remaining operators take a docu-
ment that has already been containerized as their in-
put. PagePack’s purpose is to transform the text-
oriented representation of an XML document into
a compact tree-oriented representation of the docu-
ment’s structure augmented by a series of content
containers. These containers can then be transformed,
augmented, or replaced by subsequent operators. To
as great an extent as possible, the remaining operators
are designed to work in parallel so that overlapping
computation can be used on parallel machines.

Figure 2 shows the XPack document compression
process. When a document enters the system, a type
detector module determines the document’s type and
loads a document type profile. The document type
profile determines the default set of operators XPack
will use in the redundancy elimination phase and also
specifies how the document is split into components.
Next, the document enters the redundancy elimination
phase, which uses the selected XPack document oper-
ators to reduce the redundancy, and therefore the size,
of the document. The minimized document compo-
nents are then passed to the aggregator for reassem-
bly and compressed to yield the final XPack-encoded
document.

The heart of the XPack system is the redundancy
elimination operators. The PathPack operator tries to
reduce the space consumed by the document’s tree
structure. This encoding works best on documents
that utilize structure more than content to convey
meaning. PathPack is also designed to provide ef-
ficient access to the paths between document nodes
for faster path matching and query operations. The
NamePack operator utilizes observations about the
tag names in XML documents to reduce their size.
The URLPack operator reduces the space consumed
by a document’s URLs. The AttributePack operator
combines the concepts found in the NamePack and
URLPack operators and reduces the space consumed
by element attribute names and values. AttributePack
performs identifier substitution on attribute names and
substitution and prefix production on attribute values.

PagePack The PagePack operatorφ creates anode
structure containerS by assigning a unique identifier
to each node in the document and extracting the struc-
ture information inherent in the opening and clos-
ing tag sequence.φ(D) = (S,M) is a reversible
function mapping an XML documentD to a com-
pact tree-structure representation and a set of contain-
ers for the document’s content.S = {a1, . . . , an}
whereai is the number of child nodes under the open-
ing tagti. S preserves the document’s tree structure
by recording the relationship between opening tags.
Node content is placed into a list of containersM =
{m1, . . . , mn}, which retain the information from the
original document regarding each node’s name, asso-

File Type 

Detector

XML

HTML

Operator Selection

Content 

Pack
PathPack URLPack NamePack

Attribute 

Pack

XPack Aggregator

XPack

Compressed File

Compressor

Type

determination 

phase

Redundancy

elimination 

phase

Aggregation &

compression 

phase

... PagePack

Figure 2: XPack system overview.

ciated attributes, and content. The PagePack trans-
formation stands as the basis upon which the other
document operators are constructed.

Conceptually, PagePack encodes the document in
three steps. First, the document tree is traversed in
depth-first order and each node in the tree is assigned
a unique identifier. For the sake of convenience, we
choose an identifier equal to the visit order of each
node; the root of the tree is assigned identifier “1.” Af-
ter each node has an ID, PagePack constructs a struc-
ture array that succinctly encodes the relationships be-
tween document nodes. Finally, node containers are
constructed for each node in the document.

The remaining containers in the PagePack structure
hold the information contained in the original nodes
of the document tree, such as each node’s tag name,
attributes, and any associated content. Node contain-
ers are stored in index order, so the first node con-
tainer holds the data belonging to the node with index
“1,” the root node.

PathPack Path structure encoding transforms the
tree structure of an XML document into a sequence
that encodes the paths found in the document tree
to support efficient execution of path-style queries.
Given a node structure containerS, PathPackψ(S)
is a reversible function that generates a sequence
xj , 1 ≤ j ≤ m, wherem ≤ n and eachxj is a
subpath tuple of the form<startj , endj , parentj >.
Each subpath in the sequence represents a nonbranch-
ing fragment of a root-leaf path; later paths in the se-
quence are further to the right and further down the
tree than earlier paths in the sequence. For example,
the subpath< 2, 3, 1 > represents a two-node non-
branching path between nodes 2 and 3; the start node



of path, 2, is a child of node 1. Given a node structure
containerS for documentD, the following algorithm
sketch highlights the main components of the Path-
Pack operation:

1. set the start of the next path to the root nodea1 ∈ S

2. for each nodeaj ∈ S

(a) if aj is a branch or leaf, output the current path.
for each childc, setc to the start of the next path
and run PathPack with it as the root.

(b) otherwise continue.

NamePack The NamePack operatorρ eliminates
document tag name redundancy by storing each
unique tag name once and assigning a short reference
to each name. For a documentD with node container
M = {m1, . . . , mn}, ρ(M) = (I, M ′) is a reversible
function that generates a set of tag name identifiers
I = {i| unique tag names inM}, stored in lexical
order for efficient tag name searching.

NamePack reduces the redundancy of a Web docu-
ment by generating tag name references and substi-
tuting the shorter references for the occurrences of
the name in the document, eliminating the extra char-
acters needed to store long and repeated tag names.
NamePack is effective because the opening and clos-
ing tags that are the main structural feature of XML
documents require tag names to be repeated; this ne-
cessity stems from the design of the document storage
model but is not fundamental to representing struc-
tured documents in a computer system. Repetition of
tag names can amount to a considerable proportion of
the document’s size.

NamePack collects the tag names from the node
containerM and stores each unique name in a new
container. Occurrences of the names in the document
are then replaced with a name reference that indicates
which container and what name from that container is
being referenced.M ′ is the new node container forD
where tag names have been replaced with the appro-
priate index into the tag name containerI.

<env:Envelope
xmlns:env="http://www.w3.org/2003/05/soap-envelope">

<env:Header>
<n:alertcontrol

xmlns:n="http://example.org/alertcontrol">
<n:priority>1</n:priority>
<n:expires>2001-06-22T14:00:00-05:00</n:expires>

</n:alertcontrol>
</env:Header>
<env:Body>

<m:alert xmlns:m="http://example.org/alert">
<m:msg>Pick up Mary at school at 2pm</m:msg>

</m:alert>
</env:Body>

</env:Envelope>

Figure 3: Example SOAP Message

URLPack A common feature found in many Web
documents is the hyperlink reference, which directs
the application processing the document to further in-
formation or provides additional material for an end-
user to explore. Hyperlinks are described via a URL
that typically specifies a protocol, a target site, and a
document reference. Figure 3 shows an example of a
SOAP message used to invoke a remote Web service.
SOAP messages make heavy usage of namespace ref-
erences, which are externally linked documents that
define the semantics of the call. The example mes-
sage contains three such references.

We have observed that many URLs contain com-
mon prefixes. For example, two of the URLs in
the SOAP message in Figure 3 start with the prefix
“http://example.org/alert” and all three have the same
“http://” protocol specifier. The URLPack operator
γ is designed to eliminate repetition in a Web doc-
ument’s URLs by factoring out these common pre-
fixes. URLPack uses a modified dictionary substi-
tution mechanism (Bharat et al., 1998) for encoding
URLs that is restricted to start of string prefixes to
maximize efficiency.

In general, the URLPack operatorγ(M) =
(U,M ′) whereU = {u|u ∈ extractURLs(M)};
extractURLs encodes the document’s URLs
through the following steps:

1. Retrieve the document’s URLs from the node con-
tainerM

2. Sort the URLs into lexical order, remove duplicates

3. For eachui, replace the prefix shared with the ex-
panded form ofui−1 with the count of shared char-
acters

AttributePack The AttributePack operatorα is
a logical combination of the ideas found in the
NamePack and URLPack operators that is used to
compress document attributes and expose them for
faster processing. Attributes are associated with
nodes: a single node can have zero or more attributes,
each of which consists of a name and a possibly empty
value. Attribute names are frequently reused through-
out the document; certain attribute values—hyperlink
reference URLs, for instance—will also appear mul-
tiple times in a document’s attributes.

Consistent with the approach we have espoused
with the other XPack operators, AttributePack ex-
tracts attribute names and values from a docu-
ment D’s node containersM . For a document
D with node containerM = {m1, . . . , mn},
the AttributePack operatorα(M) = (X,Y, M ′)
where X = {x| unique attribute names inM},
stored in lexical order for efficient searching, and
Y = {y|y ∈ extractAttributeV alues(M)};
extractAttributeV alues operates identically to the



functionextractURLs used in the URLPack opera-
tor γ.

ContentPack The ContentPack operatorχ elimi-
nates duplication of document content and organizes
the content to achieve better document compression.
ContentPackχ(M) = (C,M ′) is a reversible func-
tion mapping a documentD’s node containersM to
a content listC and an updated list of node containers
M ′. The updated node containers replace each node’s
content with a reference to the appropriate entry in the
content list for that node. Any duplicated text nodes
in the original document will receive references to the
same entry inC. It is common for ASCII-encoded
XML documents to contain many equivalent whites-
pace nodes for formatting purposes to assist human
readability of the document. ContentPack eliminates
this and any other content redundancy that is present
in the document’s non-markup content.

4 EXPERIMENTAL EVALUATION

The experiments in this section are designed to test
the features of the XPack system. Due to space limi-
tations, we restrict our experimental evaluation to two
sets of experiments that are designed to provide a rep-
resentative sample of XPack’s performance character-
istics. The first set of experiments demonstrate the
compression performance of XPack over several doc-
ument sets. The second set of experiments test the
query performance of XPack and demonstrate that it
is possible to achieve both good compression and per-
formance. The experiments show the power of the
XPack encoding system: many interesting document
operations can be completed with only a partial de-
compression of the document.

4.1 Experimental Environment

To test the XPack design experimentally, we have
implemented a prototype XPack encoder and query
processor. The prototype is implemented in Java.
All experimental results presented here were con-
ducted on a PC with an AMD Athlon XP proces-
sor at 1.4GHz with 512MB RAM running Windows
XP Professional. The experiments were run on Sun’s
Java virtual machine for Windows, version 1.4.2. The
Apache Foundation’s Xerces XML parser was used
for testing SAX and DOM document materialization
performance and the Xalan XSLT library provided
XPath query evaluation support for DOM documents.

4.1.1 Experimental Data

Random Walk. The random walk data set consists
of approximately 2000 Web pages gathered by an au-
tomated crawler. To gather the data, the crawler’s
URL frontier was seeded with a small set of start
pages. At each iteration, a URL was chosen at ran-
dom from the frontier and the corresponding docu-
ment retrieved. The document was then converted
from HTML into XML and annotated with a single
comment tag recording the originating URL of the
document and a timestamp. The document’s links
were then added to the URL frontier for possible se-
lection in the next iteration. The average size of the
documents collected after normalization to XML was
43,888 bytes with a minimum of 161 bytes, maximum
of 898,924 bytes, and standard deviation of 37,150
bytes.

Shakespeare.The Shakespeare data set is a pub-
lic domain collection of Shakespeare’s plays that
have been converted into XML. The tag set is small
and consists of such tags as LINE, SPEECH, and
SPEAKER. None of the nodes have attributes. The
data set contains 37 documents whose average size
is 213,448 bytes with a minimum of 141,345 bytes,
maximum of 288,735 bytes, and standard deviation
of 36,345 bytes.

4.2 XPack Compression
Performance

Our first set of experiments test the aggregate perfor-
mance of the XPack compression system. The data
sets that we have selected are intended to represent a
broad cross-section of the types of XML documents
typically used by applications. The random walk data
set contains documents representative of the XHTML
format used by modern, standards compliant Web ap-
plications. An important characteristic of this data
set is the large number of attributes containing long,
somewhat similar values. In contrast, the Shakespeare
data set is characterized by a large amount of text con-
tent with no attributes and a small, terse tag set.

The documents in these experiments were con-
verted from XML to three compressed document for-
mats: gzip compressed XML, XMill, and XPack. The
XPack documents were encoded with the PagePack,
NamePack, and AttributePack redundancy elimina-
tion operators. The resulting XPack document con-
tainers, including the node containers holding the text
content of the document, were then sent through a
gzip compression filter and written to disk.

The random walk data set contains documents hav-
ing a relatively small tag dictionary consisting of
short names—each document employs a subset of the
HTML tag set. These documents contain many at-



0

2000

4000

6000

8000

10000

12000

1 27 34 40 46 55

Average Document Size (kilobytes)

C
om

pr
es

se
d 

si
ze

 (
by

te
s)

XPack

gzip

XMill

Figure 4: XPack document compression, random
walk data set.

0

10

20

30

40

50

60

70

80

90

142 179 194 209 221 250 282

Document size (kilobytes)

C
om

pr
es

se
d 

si
ze

 (
ki

lo
by

te
s)

XPack

gzip

XMill

Figure 5: XPack document compression, Shake-
speare data set.

tributes with repeated or similar values, such as hy-
perlink URLs. The documents also have significant
text content but are not dominated by it as in the
Shakespeare data set. Figure 4 demonstrates the ef-
fectiveness of the XPack encoding system for com-
pressing the random walk data set. The graph shows
the size of the XMill, gzip, and XPack compressed
versions of the documents, whose original sizes ap-
pear on the x-axis. The documents have many repeti-
tive attributes, such as navigation URLs, that provide
a significant opportunity for redundancy elimination
by AttributePack, allowing XPack to achieve com-
pression rates up to 20% better than the other systems’
rates.

In contrast with the random walk dataset, the
Shakespeare data set is content-heavy, with the ma-
jority of the size of the documents occupied by ac-
tors’ lines. None of the documents contained node
attributes, eliminating any potential savings from At-
tributePack. The tag dictionaries are composed of a
few short names. Even in the Shakespeare data set,
with its limited redundancy, XPack achieves compres-
sion rates comparable to the other systems. Com-
pression results for the Shakespeare data set are pre-
sented in Figure 5, which demonstrates that XPack
can achieve compression rates comparable to XMill
and gzip. XPack enjoys a significant usability advan-
tage over the systems due to its query-capable format.

4.3 Query Performance Experiments

The next experiment evaluates the XPack system’s
ability to provide query support over compressed doc-
uments by testing the performance of XPath path ex-
pression queries on XPack documents. Path queries
over XML documents using the XPath node selec-
tion language are a popular means for extracting data
from XML documents. Table 1 presents the per-

//PERSONA
Time (ms) DOM gzDOM XPack
≤ 100 0 0 15
101–200 0 0 22
201–500 0 0 0
501–600 28 8 0
601–700 9 29 0

/PLAY/ACT/SCENE
≤ 100 0 0 15
101–200 0 0 22
201–500 0 0 0
501–600 29 5 0
601–700 8 32 0

Table 1: XPath Evaluation Time, Shakespeare data
set.

formance results obtained for two test queries over
the Shakespeare data set and compares these results
with the performance of the same queries over stan-
dard and compressed XML. The first query, “//PER-
SONA,” selects all the nodes in the document with
the name “PERSONA” while the second selects all
SCENE nodes with a parent ACT and a root grand-
parent PLAY. For each of the three document types
used in the experiment—DOM, compressed DOM,
and XPack—Table 1 lists the frequencies of query ex-
ecution times obtained executing the query over each
of the 37 documents in the Shakespeare data set. Note
that these are “cold start” measurements: the time
recorded for each test is the sum of the time needed to
load the document from disk, parse it into an internal
memory representation, and execute the query.

These results indicate that XPack can support ef-
ficient evaluation of path queries while simultane-
ously reducing the storage and materialization costs



for XML documents. For many types of interesting
queries, XPack’s compartmentalization and separa-
tion of document components supports faster query-
ing than the original documents: as shown in Ta-
ble 1, document queries requiring more than 500 ms
using a standard XML parsing and querying library
can be executed in less than 200 ms with XPack. Be-
cause the queries in question require only the docu-
ment structure and tag names to be satisfied, XPack
can service the query without reading the entire doc-
ument, which is an impossibility with XML. These
measurements also demonstrate XPack’s advantage
over opaque XML compression systems like gzip
and XMill, which must add document decompression
overhead to the cost of a complete parse of the docu-
ment.

5 CONCLUSION

The XPack document encoding and compression
system achieves both good compression and strong
query support for compressed documents.Redun-
dancy eliminationallows XPack to significantly re-
duce the size of Web documents, whilecompartmen-
talization separates the components of a document
into logical containers. XPack’s binary encoding
scheme eliminates the expense of parsing XML text
into memory objects by instead storing the document
in a format that can be read directly into memory and
immediately operated upon. XPack’s compression
performance compares favorably with other widely
used XML compression systems in testing with docu-
ment sets having considerably different structural and
content characteristics. XPack’s document compart-
mentalization enables efficient document querying
using XPack’s aggregate document operators and the
more general XPath query mechanism, which enjoys
up to a 95% performance increase over queries using
a standard XPath processor and text-based XML.

REFERENCES

Altinel, M. and Franklin, M. J. (2000). Efficient filtering
of xml documents for selective dissemination of in-
formation. InProceedings of the 26th International
Conference on Very Large Databases (VLDB ’00).

Bharat, K., Broder, A., Henzinger, M., Kumar, P., and
Venkatasubramanian, S. (1998). The connectivity
server: Fast access to linkage information on the web.
In Proceedings of the Seventh International World
Wide Web Conference (WWW ’98).

Bray (1998). Extensible markup language (XML) 1.0.
Technical report, W3C.

Buneman, P., Grohe, M., and Koch, C. (2003). Path queries
on compressed xml. InProceedings of the 29th Inter-
national Conference on Very Large Databases (VLDB
’03).

Buttler, D., Liu, L., and Rocco, D. (2003). Efficient process-
ing of web page sentinels using page digest. Technical
report, Georgia Institute of Technology.

Buttler, D., Rocco, D., and Liu, L. (2004). Efficient web
change monitoring with page digest.13th Annual In-
ternational World Wide Web Conference WWW2004
(poster symposium).

Cheney, J. (2001). Compressing XML with multiplexed hi-
erarchical PPM models. InData Compression Con-
ference.

Christensen, E., Curbera, F., Meredith, G., and Weer-
awarana, S. (2001). Web services description lan-
guage (WSDL) 1.1. Technical report, W3C.

Girardot, M. and Sundaresan, N. (2000). Millau: an encod-
ing format for efficient representation and exchange of
xml over the web. InProceedings of the Ninth Inter-
national World Wide Web Conference (WWW 2000).

Liefke, H. and Suciu, D. (2000). XMill: an efficient com-
pressor for XML data. InACM International Confer-
ence on Management of Data (SIGMOD), pages 153–
164.

loup Gailly, J. and Adler, M. (2004). Gzip compression
algorithm. http://www.gzip.org/algorithm.txt.

Min, J.-K., Park, M.-J., and Chung, C.-W. (2003). Xpress:
A queriable compression for xml data. InProceedings
of the 2003 ACM Conference on Management of Data
(SIGMOD ’03).

Mitra, N. (2003). Soap version 1.2 part 0: Primer. Technical
report, World Wide Web Consortium.

Rocco, D., Buttler, D., and Liu, L. (2003). Page digest for
large-scale web services. InProceedings of the IEEE
Conference on Electronic Commerce.

Savourel, Y. (2001).XML Internationalization and Local-
ization. SAMS.

Sayood, K. (2000). Introduction to Data Compression.
Morgan Kaufmann, New York, second edition.

Tolani, P. and Haritsa, J. R. (2002). XGRIND: A query-
friendly XML compressor. InICDE.

Witten, I. H., Moffat, A., and Bell, T. C. (1999).Manag-
ing Gigabytes: Compressing and Indexing Documents
and Images. Morgan Kaufmann, New York, second
edition.

World Wide Web Consortium (1999). WAP binary XML
content format.

Ziv, J. and Lempel, A. (1977). A universal algorithm for
sequential data compression.IEEE Transactions on
Information Theory, 23(65):337–343.


