
Data Privacy: Are Operating Systems Doing Enough?

Aameek Singh
College of Computing

Georgia Institute of Technology
aameek@cc.gatech.edu

Ling Liu
College of Computing

Georgia Institute of Technology
lingliu@cc.gatech.edu

Abstract
In this paper, we evaluate operating systems for
their support for user-data privacy. Our studies at
three different installations indicate that current
levels of user education and OS support are aston-
ishingly poor. For example, at one installation of
836 users, we were able to access over 86 GB of
private data, including more than 300,000 emails,
using simple scanning techniques. Along with this
analysis, we also present a number of OS support
mechanisms to alleviate this problem and discuss
their pros and cons.

1 Introduction
The growing use of technology in day-to-day af-
fairs has brought about an immediate need for user
privacy. While a lot of privacy issues are regu-
larly researched for new and upcoming technolo-
gies like RFID [4, 3] and P2P [5], little has been
discussed on the support for data privacy in operat-
ing systems and most of the original access control
mechanisms still work the same way. This problem
is exacerbated by the archaic nature of user educa-
tion in protecting their data. For example, newer
mechanisms like Access Control Lists (ACL) for
Unix-like OSes, which can provide better data pri-
vacy, have failed to penetrate into regular usage1.

In this paper, we discuss the current state of data
privacy in Unix-like operating systems. Multi-user
operating systems like Unix, Linux allow users

1Latest Linux GUIs do not let users set ACLs, for example.

to share their data and in order to control access,
POSIX-standard [2] file/directory permissions are
used. Each file and directory is associated with
three kinds of permissions: read (r), write (w) and
execute (x). This set of permissions is defined for
three kinds of users: (1) owner - the owner of the
file, (2) group - users with the same group as the
owner, and (3) others - every other user.

Users maintain their data privacy using these
file permissions. For example, users can decide to
give no permissions to group and others for cer-
tain data like email, thus keeping it absolutely pri-
vate, or can provide certain access rights to the
group for appropriate sharing of data (can be con-
sidered as private from other users). Another pop-
ular technique is the use of execute-only (x-only)
permissions for the home directory. This prevents
users from reading the content of the directory (the
files/subdirectories it contains), though authorized
users, who know the names of the lower level di-
rectories, can access that data.

However, inappropriate usage of these permis-
sions, partly due to lack of convenient support from
OSes, can lead to private data to be accessible
by unauthorized users. For example, in our study
we found many users without appropriate permis-
sions for their mailboxes, which could allow other
users to read them. In addition, usage of popular
directory names allowed scanners to penetrate x-
only permissions and led to access to private data.
Since it is believed the nearly 80 percent of infor-
mation security breaches and resulting losses orig-
inate from inside an organization [1], we contend

1



that it is absolutely essential to plug this hole.
Our main contributions in this paper are:

1. We identify issues that cause privacy compro-
mise and discuss privacy-enhancing features
that an OS should provide. We believe this
paper to serve as an important tool for user-
education in understanding this problem.

2. We present results from three multi-user in-
stallations measuring the amount of private
data accessible to unauthorized users2.

3. We discuss a number of solutions at user, OS
and filesystem levels that can provide much
greater privacy support and discuss their pros
and cons.

The rest of the paper is organized as follows. We
describe in detail the issue of data privacy in oper-
ating systems in Section-2. We present and ana-
lyze our measured privacy results at deployed user
installations in Section-3. Later, in Section-4 we
discuss a number of solutions.

2 Privacy: Expectation and Reality
In this section we discuss how users try to protect
their data and how it can be compromised. We be-
gin with the description of what we consider as pri-
vate in this paper.

2.1 What is Private?

An important part of this study is the definition of
the term private, i.e. the question - what kind of
user data is considered private? This is a tough
question to answer since any data with permis-
sions allowing access to other users can be readily
deemed public, even though it is due to improper
settings by the data owner. Thus, it is important
to reach a reasonable definition of private data. In
this paper, we consider the following two kinds of
data to be private:

2It is worthwhile to mention that the scanning techniques
used for measurement, are regular Unix commands and do
not use any technical exploits (hacks).

– All email is considered private. This is con-
sistent with current social norms.

– Any data contained in a directory which has
an x-only parent or ancestor in the directory
path.

The second assumption merits further justifica-
tion. As described earlier, a x-only directory is
one that has execute-only permissions for group
or others. As an example, consider the home di-
rectory /home/aameek with full permissions to the
owner and execute only permissions to the group
and others. Such a directory would be listed as
drwx ��� x ��� x3 by the ls -l command. The se-
mantics of this permission set dictate that any user
other than the owner cannot list the contents of the
directory, though he/she can traverse the subdirec-
tories by executing a change-directory (cd) to that
subdirectory (using its name). For example, the
“ls -l /home/aameek” would return a permission-
denied error, while a “cd /home/aameek/research”
would work and its contents would be visible (if
the subdirectory “research” has read permissions).

We consider any data contained in these subdi-
rectories to be private, since only authorized users
who know that a directory named “research” ex-
ists are supposed to access that data. The autho-
rization is usually provided to users by telling them
the subdirectory names using out-of-band mecha-
nisms like email or other personal modes of com-
munication.

While it can be argued that not every subdi-
rectory under an x-only parent is meant to be
private (for example, a directory named public),
we believe our definition to be a practical one.
Other than requiring user participation in auditing
and declaring their accessible private information,
there seems to be not many practical ways of mea-
suring private content. Also, if we look at the se-
mantic nature of the permission sets and the fact
that a user never broadcasts the details of the sub-
directories he/she does not consider private under

3This permission set is also called 711.

2



an x-only parent, it can be concluded that an unau-
thorized user should not be able to access that data.

2.2 Privacy Compromise

In a multi-user OS installation, the privacy com-
promise occurs due to many users having generic
names for the subdirectories. For example, names
like research, personal, home, work4 are common
as first level subdirectories in a research campus
installation. Therefore, an unauthorized user can
try and guess these names for an x-only home di-
rectory and access private information.

This problem is similar to the old problem
of unauthorized users guessing user passwords,
though more fundamental in nature. It is due to the
fact that passwords can be enforced to be tough-to-
remember cryptic clues, but a file/directory name
is supposed to convey its contents and thus fun-
damentally meant to be semantic in nature. Also,
there can be thousands of files for a single pass-
word (account), making the option of naming files
in unreasonable ways, practically impossible.

To access private content, an automated scan-
ner can be developed that guesses directory names.
The guessing can be done in multiple ways:
� Static Lists: A static list of popular directory

names is used. For example, names like re-
search, home, work etc.

� Global Lists: The scanner looks at user di-
rectories with read permissions and compiles
a name-frequency list and scans x-only home
directories for those names.

� Adaptive Lists: The scanner looks at users
in the same user group for the frequency lists.
Another adaptive mechanism is to look at
users with same higher level directories5 .

� History Lists: For each x-only user, the
scanner reads its history files like .history,

4along with their abbreviated forms and/or upper case ini-
tials like Research, pvt etc.

5In many settings, users entering an organization in the
same year are based in a single higher level directory

.bash history for any commands that lists
out directory names. As discussed later in
Section-3, information leaked through history
files was fairly significant.

This form of attack can also be thought of as
automated social engineering. Social engineer-
ing is referred to the process of exploiting the hu-
man element in mounting attacks. For example, a
renowned hacker Kevin Mitnick used to befriend
system administrators and attempt to get account
passwords from them. Our privacy attack can be
similarly mounted manually by trying to get subdi-
rectory names from a careless user. The scanning
process described above automates this process by
looking at information readable from a chunk of
similar users (those with read permissions).

3 Measurement Study
To measure the amount of private data accessible
to unauthorized users, we developed a prototype
scanner and ran it at three geographically different
organizations across the country. Users at these in-
stallations are divided into three categories:

1. Read-Users The users that have read permis-
sions on their home directories, thus allowing
listing of subdirectories. Such users are used
for compiling frequency lists and scanned
only for readable emails.

2. No-Users The users that have no permissions
on their home directories for other users.
Such users are not used in the scanning pro-
cess.

3. X-only-Users Users that have x-only permis-
sions on their home directories. This is the
most interesting set of users for our study.

The characteristics of the three installations
were as shown in Figure-16. The unusually low
number of x-only user homes in Org-3 is due to
the fact of it being an installation of non-primary

6Names of the organization have been withheld.

3



Org. OS # Users # Read-Users # No-Users # X-only-Users
Org-1 HP-UX 836 198 54 573
Org-2 HP-UX 768 136 39 593
Org-3 Solaris 2000 443 1491 66

Figure 1: Installation Characteristics

accounts for users with default permissions and
umask set to 700.

The scanner used all guessing mechanisms for
x-only user homes described earlier in Section-
2.2. Along with an input of a static list of direc-
tories, it automatically compiled a global list, an
adaptive usergroup based list and also an adaptive
higher-level-directory list. In addition, history files
.history and .bash history were used to extract di-
rectory names. Symbolic links outside the user
home were not followed and duplicates in the lists
were removed to prevent double-counting. Guess-
ing was done only for first level subdirectories For
every successful guess of a subdirectory name, a
crawler-like operation is initiated which looks at
all the data in that subdirectory and calculates var-
ious statistics.

We measured the number of files and size of data
which were private but accessible by unauthorized
users. A static list of email directories and mail-
boxes names was also used to measure the num-
ber of email folders, number of emails7 and size of
emails readable by unauthorized users. In addition,
we also calculated the number of times the word
“password” appeared in these emails. The results
are presented in Figure-2. Again, the low numbers
for Org-3 are explained by the much lesser number
of X-only-Users. In addition, the low number of
Read-Users makes it tougher to compile effective
frequency lists.

History files also had a significant contribution
into leaking this private information. Figure-3
shows the number of occurrences of readable his-
tory files, the number of private files it led to be

7Number of emails was measure by searching for “Sub-
ject:” at the beginning of a line

accessed and the size of data it leaked, for Org-1
and Org-2. Org-3 did not leak any information due
to history files.

A number of other statistics like the kind of user
shells most used (which influences history files),
frequency of directory names, evaluation per each
guessing method (static/global/adaptive) were also
collected. We omit those due to space constraints.

4 Solutions
In this section, we present a number of potential
solutions to this privacy compromise issue. The
solutions are broadly divided into two categories:

1. Administrative and Educational: Solutions
like setting default user permissions and
umask to 700, educating users to newer ac-
cess control mechanisms like ACLs (setfacl,
getfacl commands) and enforcing their usage.
In addition, an auditing tool can be developed
which informs an administrator of the lev-
els of privacy compromise and can also list
main victims. The code for the auditing tool
is similar to the scanner developed for our
study. Another form of auditing is to allow
data owners access to information of accesses
to their data by other users. However, this
raises an important ethical issue of whether
such information is violation of privacy of the
user accessing that data.

2. Technical: Solutions that enhance OS-support
for data privacy by making changes to the OS
code, for example, changing access control
mechanisms.

In this paper we discuss only technical solutions
for its suitability to the publication forum.

4



Org. # Files Data Size #Email Folders #Emails Email Size # Pwd
Org-1 983086 82 GB 2509 315919 4.2 GB 6352
Org-2 364932 25 GB 505 38206 120 MB 237
Org-3 1288 146 MB 87 559 1.7 MB 11

Figure 2: Accessible Private Data

Org. # Readable History Files # Private Files Leaked Private Data Size
Org-1 253 561254 35 GB
Org-2 237 155826 14 GB

Figure 3: Private Data Leaked by History Files

As described earlier, we consider two kinds of
data to be private - emails and data hidden by x-
only parents. Emails can be protected by enforc-
ing appropriate permissions to the default mail in-
boxes (for example, in /var/mail directories). Us-
ing mechanisms similar to our scanner, user mail-
boxes can be identified and permissions corrected.
A simple multi-threaded8 daemon process can ef-
ficiently perform this operation periodically.

For data hidden under x-only parents, we pro-
pose a more sophisticated access control mecha-
nism. Note that the scanning attack is successful
only due to the ability of an attacker to guess a sub-
directory name. The aim of our solution is to take
away that ability, while protecting the semantics of
names and convenience of data owners.

Our proposed solution can be implemented at
various level of OS stack - user level, Virtual File
System (VFS) level or a File System (FS) level.
The common feature at all levels is that it dis-
tinguishes between a file/directory name seen by
the data owner and by other users. The name
seen by data owner is a simple semantics based
named like “research”, while the name seen by
other users is the actual name appended with a ran-
dom string like “research-1453d3dfg45gy”. Such
a random string can be generated doing a secure
hash on a key appended with the actual name,
i.e.

�����
	����������� �����
��������	��
for our example. This

mechanism of generating random strings helps in
8for parallelizing across multiple users

sharing of data (only need to authorize users by
telling a key). We briefly discuss the solution at
each level below:
� User Shell Level: The actual name of the
file/directory is the random name. However, when-
ever a data owner executes a command that inter-
acts with the file system (listing directories, cd to
a directory), he/she uses a semantics based name
which is mapped to the actual name by the user
shell. Such commands can be identified by us-
ing mechanisms similar to Bourne shell’s name
completion feature. Clearly this is a rudimentary
solution and only works for primitive commands
(Name completion feature does not work while
running scripts).
� VFS Level: Many OSes like Unix, Linux, Solaris
have a Virtual File System (VFS) interface layer
which defines how a file is opened after an open
command is issued. This function can be modified
by first doing a check of whether a data owner is
executing the open command and then doing map-
ping of the semantics based name to the actual
name in that case. For any other user, the name
of the file is the random string and thus, an unau-
thorized user would need to guess the entire name
(which is unlikely and can be made practically im-
possible by increasing the length of the key). Users
can be authorized by informing them of the name
and a key (using similar out-of-band mechanisms).
� FS Level: Instead of enforcing a new access con-
trol mechanism over all FS supported by the OS,

5



the above feature can be pushed down to the FS
level, thus letting users mount their home directo-
ries only on such private FS.

5 Conclusions
In this paper, we have raised the issue of data pri-
vacy support in popular operating systems. We
identified various privacy compromising features
and proposed a range of solutions. Based on a mea-
surement study at three different installations, we
also demonstrated the immediate need for enhanc-
ing OS support for data privacy.

References
[1] http://nsi.org/SSWebSite/TheService.html.

[2] http://www.pasc.org.

[3] A. Juels and J. Brainard. Soft blocking: Flexi-
ble blocker tags on the cheap. In Workshop on
Privacy in Electronic Society, 2004.

[4] A. Juels, R. L. Rivest, and M. Szydlo. The
blocker tag: Selective blocking of rfid tags for
consumer privacy. In ACM CCS, 2003.

[5] A. Singh and L. Liu. Agyaat: Providing mu-
tually anonymous services over structured p2p
networks. In Technical Report, CERCS, 2004.

6


